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Abstract. Maude is a high-level language and high-performance system
supporting both equational and rewriting computation for a wide range
of applications. Maude also provides a model checker for linear temporal
logic. The model-checking procedure can be used to prove properties when
the set of states reachable from an initial state in a system is finite; when
this is not the case, it may be possible to use an equational abstraction
technique for reducing the size of the state space. Abstraction reduces the
problem of whether an infinite state system satisfies a temporal logic prop-
erty to model checking that property on a finite state abstract version of
the original infinite system. The most common abstractions are quotients
of the original system. We present a simple method for defining quotient
abstractions by means of equations identifying states. Our method yields
the minimal quotient system together with a set of proof obligations that
guarantee its executability, which can be discharged with tools such as
those available in the Maude formal environment. The proposed method
will be illustrated by means of detailed examples.

Keywords: Maude · Rewriting logic · Model checking · Abstraction ·
Formal environment

1 Introduction

Given a concurrent system, we want to check whether certain properties hold in
it or not. If the number of reachable states is finite, one can use model checking;
however, if the number of such states is infinite (or just too large), model check-
ing does not work. For these systems, we can calculate an abstract version of the
infinite-state transition system, with a finite set of states, to which model check-
ing can be applied. A simple method for defining an abstraction is by means of
a quotient that collapses the set of states [5].

In the rewriting logic framework implemented in Maude [1], a concurrent
system is specified by a rewrite theory R = (Σ, E,R), where Σ is a signature
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declaring types and operations, E is a set of equations, and R is a set of rules. The
quotient abstraction is specified by a set of equations E, added to R, resulting in
a rewrite theory R = (Σ, E∪E,R). However, such a quotient will only be useful,
for model-checking purposes, if R is executable, as detailed later, and the state
predicates are preserved by equations [5]. These proof obligations (executability
and state predicate preservation) can be discharged using tools in the Maude
Formal Environment [3].

This paper has the three following goals:

1. To introduce Maude as a framework for modeling systems and model check-
ing their properties.

2. To present a simple method of defining quotient abstractions by means of
equations collapsing the set of states.

3. To show how the Maude Formal Environment tools can help in discharging
the associated proof obligations.

All of this is going to be done by means of examples. The theoretical basis
for the work summarized here has already been described in previous papers,
where the reader can find all the missing details [2,3,5].

The following section introduces two examples; in the first, the set of reach-
able states is finite and model checking will be applied to get the desired results,
while in the second this will not be possible because the set of reachable states
is infinite. Section 3 first summarizes the concepts necessary and then intro-
duces the equational abstraction method and the associated proof obligations.
In Section 4 we apply in detail the method to the second example and manage
to get an abstract version satisfying all the requirements, so that we can model
check on it the desired property.

2 Maude by Example

In order to model a system in rewriting logic, that is, to specify such a system in
Maude, we distinguish between its static part (state structure) and its dynamics
(state transitions). The static part is specified as an equational theory, while the
dynamics are specified by means of rules. Computation in a transition system is
then precisely captured by the term rewriting relation using those rules, where
terms represent states of the given system. Moreover, rules need only specify the
part of the system that actually changes, so that the frame problem is avoided.

This distinction is reflected in Maude by the difference between functional
and system modules [1]. Functional modules in Maude correspond to equational
theories (Σ, E) which are assumed to be Church-Rosser (confluent and sort
decreasing) and terminating; their operational semantics is equational simpli-
fication, that is, rewriting of terms until a canonical form is obtained. Equations
are used to define functions over static data as well as properties of states. Usu-
ally the equations E are divided into a set A of structural axioms (such as
associativity, commutativity, or identity), also known as equational attributes,
for which matching algorithms exist in Maude, and a set E′ of equations that
are Church-Rosser and terminating modulo A.
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System modules in Maude correspond to rewrite theories (Σ, A ∪ E′, R);
rewriting with R is performed modulo the equations A ∪ E′. Furthermore, the
rules R must be coherent with the equations E′ modulo A [2], allowing us to
intermix rewriting with rules and rewriting with equations without losing rewrite
computations by failing to perform a rewrite that would have been possible
before an equational deduction step was taken. By assuming coherence, Maude
always reduces to canonical form using E before applying any rule in R.

Next we illustrate the application of these general ideas to two different
examples.

2.1 Crossing the River

In our first example, we consider a famous puzzle where a shepherd needs to
transport to the other side of a river a wild dog, a lamb, and a cabbage. He has
only a boat with room for the shepherd himself and another item. The problem
is that in the absence of the shepherd the wild dog would eat the lamb, and the
lamb would eat the cabbage.

We represent the shepherd and his belongings as objects1 with only an
attribute indicating its river side location. The group is put together by means
of an associative and commutative juxtaposition operation. Constants left and
right represent the two sides of the river. Operation ch(ange) is used to modify
the corresponding attributes. Finally, the rules represent the ways of crossing
the river that are allowed by the small capacity of the boat. For instance, the
rule labeled wdog, for wild dog, specifies that when the shepherd and the wild
dog are on the same side of the river they can cross together.

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side [ctor] .

op ch : Side -> Side .

eq ch(left) = right .

eq ch(right) = left .

ops s w l c : Side -> Group [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

rl [shepherd] : s(S) => s(ch(S)) .

rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .

rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .

rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .

endm

In Section 2.4 we will see how to solve the puzzle, that is, how to find a way of
crossing the river satisfying all the constraints and without having the possibility
of losing any item in the process, by means of the Maude model checker.
1 Although Maude has a specific notation for objects, we do not make use of it in this
example.
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2.2 An Unordered Communication Channel

For our second example, consider a communication channel in which messages
can get out of order. There is a sender and a receiver. The sender is sending
a sequence of data items, for example numbers. The receiver is supposed to
obtain the data items in the same order they were sent. To achieve this in-order
communication in spite of the unordered nature of the channel, the sender sends
each data item in a message together with a sequence number. The receiver
sends back an acknowledgement indicating that the item has been received.

Sequences are specified as lists, while the contents of the unordered channel
are modeled as a multiset of messages of sort Conf(iguration) using the appropri-
ate equational attributes. The entire system state is a 5-tuple of sort State, built
by means of the operator {_,_|_|_,_} in the module below, where the compo-
nents are: a buffer with the items to be sent, a counter for the acknowledged
items, the contents of the unordered channel, a buffer with the items received,
and a counter for the items received.2

fmod UNORDERED-CHANNEL-EQ is

sorts Nats List Msg Conf State .

op 0 : -> Nats [ctor] .

op s : Nats -> Nats [ctor] .

op nil : -> List [ctor] .

op _;_ : Nats List -> List [ctor] . *** list cons

op _@_ : List List -> List . *** list append

op [_,_] : Nats Nats -> Msg [ctor] .

op ack : Nats -> Msg [ctor] .

subsort Msg < Conf .

op null : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: null] .

op {_,_|_|_,_} : List Nats Conf List Nats -> State [ctor] .

vars N : Nats . vars L P : List .

eq nil @ L = L .

eq (N ; L) @ P = N ; (L @ P) .

endfm

Having defined all the necessary infrastructure in the previous funcional mod-
ule, the following system module adds the rules modeling the transitions sending
and receiving messages. For instance, the rule labeled rec specifies that a mes-
sage [N, J] in the channel is read by the receiver, which adds the data N at the
end of its sequence, increments its counter to s(J), and puts the corresponding
acknowledgement ack(J) in the channel.

mod UNORDERED-CHANNEL is

including UNORDERED-CHANNEL-EQ .

vars N M J : Nats . vars L P : List . var C : Conf .

2 Maude provides predefined modules for natural numbers, lists, and many other
datatypes, but they cannot be used in this specification because they are not com-
patible with most tools in the Maude Formal Environment.
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rl [snd]: { N ; L, M | C | P, J } => { N ; L, M | [N, M] C | P, J } .

rl [rec]: { L, M | [N, J] C | P, J }

=> { L, M | ack(J) C | P @ (N ; nil), s(J) } .

rl [rec-ack]: { N ; L, J | ack(J) C | P, M } => { L, s(J) | C | P, M } .

endm

At the end of Section 4 we will manage to model check that the intended
property is indeed satisfied by going through an appropriate quotient specified
by a set of equations.

2.3 The Maude Formal Environment

The Maude Formal Environment [3] provides several tools for proving essential
properties of Maude modules:

– Maude Termination Tool (MTT) to prove termination of equations and of
rules in modules by connecting to external termination tools (we use the
AProVe tool [4] below).

– Church-Rosser Checker (CRC) to check the Church-Rosser property of equa-
tional specifications.

– Sufficient Completeness Checker (SCC) to check that defined functions have
been fully defined in terms of constructors.

– Coherence Checker (ChC) to check the coherence between rules and equa-
tions in system modules.

– Inductive Theorem Prover (ITP) to verify inductive properties of functional
modules (we will not make use of this tool in our examples).

To show how these tools are used, we apply them to the system module
UNORDERED-CHANNEL introduced above. First, we check termination of the equa-
tional part.

Maude> (select tool MTT .)

The MTT has been set as current tool.

Maude> (select external tool aprove .)

aprove is now the current external tool.

Maude> (ct UNORDERED-CHANNEL .)

Success: The module UNORDERED-CHANNEL is terminating.

Second, we check that the equational part is also Church-Rosser, which
depends on its termination (if the specification has no unjoinable critical pairs,
then it is locally confluent; if it is in addition terminating, then it is confluent
[2]). The submit command, which submits all pending proof obligations to the
corresponding tools, makes the connection between the proofs.

Maude> (select tool CRC .)

The CRC has been set as current tool.
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Maude> (ccr UNORDERED-CHANNEL .)

Church-Rosser check for UNORDERED-CHANNEL

All critical pairs have been joined.

The specification is locally-confluent.

The module is sort-decreasing.

Maude> (submit .)

The termination goal for the functional part of UNORDERED-CHANNEL has

been submitted to MTT.

The functional part of module UNORDERED-CHANNEL has been checked

terminating.

Success: The module is therefore Church-Rosser.

Success: The module UNORDERED-CHANNEL is Church-Rosser.

Third, we check that the equational part is sufficiently complete, which
depends on it being also terminating and Church-Rosser.

Maude> (select tool SCC .)

The SCC has been set as current tool.

Maude> (scc UNORDERED-CHANNEL .)

Sufficient completeness check for UNORDERED-CHANNEL

Completeness counter-examples: none were found

Freeness counter-examples: none were found

Analysis: it is complete and it is sound

Ground weak termination: not proved

Ground sort-decreasingness: not proved

Maude> (submit .)

The sort-decreasingness goal for UNORDERED-CHANNEL has been submitted

to CRC.

The termination goal for the functional part of UNORDERED-CHANNEL has

been submitted to MTT.

Church-Rosser check for UNORDERED-CHANNEL

The module is sort-decreasing.

Success: The functional module UNORDERED-CHANNEL is sufficiently

complete and has free constructors.

Finally, we check that the rules are coherent with respect to the equations,
and this depends on all the previous checks.

Maude> (select tool ChC .)

The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL .)

Coherence checking of UNORDERED-CHANNEL

All critical pairs have been rewritten and no rewrite with rules can

happen at non-overlapping positions of equations left-hand sides.

The sufficient-completeness, termination and Church-Rosser properties

must still be checked.
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Maude> (submit .)

The Church-Rosser goal for UNORDERED-CHANNEL has been submitted to CRC.

The Sufficient-Completeness goal for UNORDERED-CHANNEL has been

submitted to SCC.

The termination goal for the functional part of UNORDERED-CHANNEL has

been submitted to MTT.

Sufficient completeness check for UNORDERED-CHANNEL [...]

Church-Rosser check for UNORDERED-CHANNEL [...]

The functional part of module UNORDERED-CHANNEL has been checked

terminating.

The module UNORDERED-CHANNEL has been checked Church-Rosser.

Success: The module UNORDERED-CHANNEL is coherent.

2.4 Model Checking

Temporal logic allows the specification of properties such as safety properties
(ensuring that something bad never happens) and liveness properties (ensur-
ing that something good eventually happens), related to the possibly infinite
global behavior of a system. Maude includes a model checker to prove properties
expressed in linear temporal logic (LTL) [1].

The semantics of temporal logic is defined on Kripke structures, which are
triples A = (A,→A, L) such that A is a set of states, →A is a total binary
relation on A representing the state transitions, and L : A −→ P(AP ) is a
labeling function associating to each state a ∈ A the set L(a) of those atomic
propositions in AP that hold in a.

Given a system module M specifying a rewrite theory R = (Σ, E,R), one
chooses a type k in M as the type of states (this is done in the module below by
means of a subsort declaration) and extends the module by declaring some state
properties Π (of type Prop) and defining their meaning by means of additional
equations using the basic “satisfaction operator”

op _|=_ : State Prop -> Bool .

Section 3 below details how then a Kripke structure K(R, k)Π = (TΣ/E,k,
(→1

R)•, LΠ) is obtained. The relation K(R, k)Π, t |= ϕ, where ϕ is a linear tem-
poral formula and t is the initial state, can be model checked under a few assump-
tions about the module M and its extension with the properties, including the
one stating that the set of states reachable from t is finite.

In the crossing-the-river example, the state type is Group and we define the
following two basic properties:

– success characterizes the (good) state in which the shepherd and his belong-
ings have all crossed the river; if we assume that in the initial state all of
them are on the left side, in the final state all of them are on the right
side.

– disaster characterizes the (bad) states in which some eating takes place,
because the shepherd is on the other side.
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mod RIVER-CROSSING-PROP is

protecting RIVER-CROSSING .

including MODEL-CHECKER .

subsort Group < State .

op initial : -> Group .

eq initial = s(left) w(left) l(left) c(left) .

ops disaster success : -> Prop [ctor] .

vars S S’ S’’ : Side .

ceq (w(S) l(S) s(S’) c(S’’) |= disaster) = true if S =/= S’ .

ceq (w(S’’) l(S) s(S’) c(S) |= disaster) = true if S =/= S’ .

eq (s(right) w(right) l(right) c(right) |= success) = true .

eq G:Group |= P:Prop = false [owise] .

endm

Since the model checker only returns either true or paths that are counterex-
amples of properties, in order to find a solution to the puzzle, that is, to find
a safe path in the river crossing example, we need a formula that expresses the
negation of the property we want: a counterexample will then witness a safe path
for the shepherd. If no safe path exists, then it is true that whenever success is
reached, a disastrous state has been traversed before. The following LTL formula
specifies this implication:

<> success -> ((~ success) U disaster)

A counterexample to this temporal logic formula (or any other equivalent
formula) is a safe path, completed so as to have a cycle.

Maude> red modelCheck(initial, <> success -> ((~ success) U disaster)) .

result ModelCheckResult: counterexample(

{s(left) w(left) l(left) c(left),’lamb}

{s(right) w(left) l(right) c(left),’shepherd}

{s(left) w(left) l(right) c(left),’wdog}

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’cabbage}

{s(right) w(right) l(left) c(right),’shepherd}

{s(left) w(right) l(left) c(right),’lamb}

{s(right) w(right) l(right) c(right),’lamb}

{s(left) w(right) l(left) c(right),’shepherd}

{s(right) w(right) l(left) c(right),’wdog}

{s(left) w(left) l(left) c(right),’lamb}

{s(right) w(left) l(right) c(right),’cabbage}

{s(left) w(left) l(right) c(left),’wdog},

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’lamb})

The path described by the first eight lines in this answer to our model check-
ing request provides the solution that we wanted for the crossing-the-river puzzle.
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3 Equational Abstractions

The unordered channel example cannot be model checked directly because the
space of reachable states is infinite, since the first rule may be repeatedly applied,
sending multiple copies of each message into the channel. It requires thus the
application of the abstraction technique in order to be model checked. We sum-
marize here the basic concepts necessary to understand our equational abstrac-
tion method [5].

An AP -simulation H : A −→ B between Kripke structures A and B over the
same set AP of atomic propositions is a total relation H ⊆ A × B such that,
when a →A a′ and aHb, then there is b′ ∈ B with a′Hb′ and b →B b′, and,
furthermore, if aHb then LB(b) ⊆ LA(a). The simulation H is strict when the
previous inclusion is indeed an equality.

A simulation H : A −→ B reflects the satisfaction of a formula ϕ if B, b |= ϕ
and aHb implies A, a |= ϕ.

Theorem 1. [5] AP-simulations reflect satisfaction of LTL−(AP ) formulas
(where LTL−(AP ) is the negation-free fragment of LTL).

Strict simulations reflect satisfaction of LTL(AP ) formulas.

Often we only have a Kripke structure M and a surjective function to a set of
abstract states h : M −→ A. The minimal system Mh

min (over A) corresponding
to M and h is defined by (A,→Mh

min
, LMh

min
), where:

– x →Mh
min

y ⇐⇒ ∃a.∃b.(h(a) = x ∧ h(b) = y ∧ a →M b)
– LMh

min
(a) =

⋂
x∈h−1(a) LM(x).

Theorem 2. [5] h : M −→ Mh
min is indeed a simulation.

Minimal systems can also be seen as quotients. For a Kripke structure A and
∼ an equivalence relation on A, define A/∼ = (A/∼,→A/∼, LA/∼), where:

– [a1] →A/∼ [a2] ⇐⇒ ∃a′
1 ∈ [a1]. ∃a′

2 ∈ [a2]. a′
1 →A a′

2

– LA/∼([a]) =
⋂

x∈[a] LA(x).

Theorem 3. [5] Given M and h surjective, the Kripke structures Mh
min and

M/∼h are isomorphic, where x ∼h y iff h(x) = h(y).

The adjective minimal is appropriate since Mh
min is the most accurate approx-

imation to M consistent with h, but it is not always possible to have a com-
putable description of Mh

min because the transition relation:

x →Mh
min

y ⇐⇒ ∃a.∃b.(h(a) = x ∧ h(b) = y ∧ a →M b)

is not recursive in general. Here we present methods that, when successful, yield
a computable description of Mh

min. As explained before, a concurrent system is
specified by a rewrite theory R = (Σ, E,R) which determines, for each type k,
a transition system (TΣ/E,k, (→1

R)•) where
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– TΣ/E,k is the set of equivalence classes [t] of terms of type k, modulo the
equations E;

– (→1
R)• completes the one-step rewrite relation →1

R with an identity pair
([t], [t]) for each deadlock state [t], to get a total relation.

LTL properties are associated to R and a type k by specifying the basic state
predicates Π in an equational theory (Σ′, E∪D) extending (Σ, E) conservatively.
State properties are constructed with operators p : s1 . . . sn → Prop and their
semantics is defined by means of equations D using the basic “satisfaction oper-
ator” |= : k Prop → Bool. A state property p(u1, . . . , un) holds in a state [t]
iff

E ∪ D � t |= p(u1, . . . , un) = true.

The Kripke structure associated to R, k, and Π, with atomic propositions

APΠ = {p(u1, . . . , un) ground | p ∈ Π}
is then defined as K(R, k)Π = (TΣ/E,k, (→1

R)•, LΠ) where

LΠ([t]) = {p(u1, . . . , un) | p(u1, . . . , un) holds in [t]}.

Assuming that the equations E ∪D are Church-Rosser and terminating, and
that the rewrite theory R is executable, the resulting Kripke structure is indeed
computable.

We can define an abstraction for K(R, k)Π by specifying an equational theory
extension (Σ, E) ⊆ (Σ, E ∪ E′) which gives rise to an equivalence relation ≡E′

on TΣ/E

[t]E ≡E′ [t′]E ⇐⇒ E ∪ E′ � t = t′ ⇐⇒ [t]E∪E′ = [t′]E∪E′

and therefore a quotient abstraction K(R, k)Π/≡E′ . We then need to answer the
following question: Is K(R, k)Π/≡E′ the Kripke structure associated to another
rewrite theory?

We focus on those rewrite theories R satisfying the following requirements:

– R is k-deadlock free, that is (→1
R)• = →1

R on TΣ/E,k,
– R is k-topmost, so k only appears as the coarity of a certain operator f :

k1 . . . kn −→ k, and
– no terms of type k appear in the conditions.

A rewrite theory R can often be transformed into an equivalent one satisfying
these requirements [5]. In particular, the unordered channel example satisfies
these requirements.

Let us take a closer look at the quotient:

K(R, k)Π/≡E′ = (TΣ/E,k/≡E′ , (→1
R)•/≡E′ , LΠ/≡E′ ).

First, TΣ/E/≡E′ ∼= TΣ,E∪E′ . Then, under the above assumptions, R/E′ =
(Σ, E ∪ E′, R) is k-deadlock free and

(→1
R/E′)• = →1

R/E′ = (→1
R)•/≡E′ .
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Therefore, at a purely mathematical level, R/E′ seems appropriate. Now, exe-
cutability requires that the equations E∪E′ are Church-Rosser and terminating,
and that the rules R are coherent with respect to E∪E′. To check or enforce these
conditions, one can use the tools available in the Maude Formal Environment,
as shown in Section 2.3.

Concerning the state properties in the quotient system, given its definition

LΠ/≡E′ ([t]E∪E′) =
⋂

[x]E⊆[t]E∪E′

LΠ([x]E).

it may not be easy to come up with equations D′ defining LΠ/≡E′ . But it becomes
easy if the properties are preserved by E′ in the following sense:

[x]E∪E′ = [y]E∪E′ =⇒ LΠ([x]E) = LΠ([y]E).

In this case we do not need to change the equations D and therefore we have

K(R, k)Π/≡E′ ∼= K(R/E′, k)Π.

Property preservation can be proved inductively or, instead, one can use tools
in the Maude Formal Environment to mechanically discharge the corresponding
proof obligations.

Once E,E′, and R satisfy all these executability requirements, by construc-
tion, the quotient simulation K(R, k)Π −→ K(R, E)Π/≡E′ ∼= K(R/E′, k)Π is
strict, so it reflects satisfaction of arbitrary LTL formulas. Moreover, since R/E′

is executable, for an initial state t having a finite set of reachable states we can
use the Maude model checker to check if a property holds. In this way, we model
check on the abstract version the properties we are interested in checking for the
original system.

4 Equational Abstraction on the Unordered-Channel
Example

Let us go back to the unordered-channel example in Section 2.2. The rule

rl [snd]: { N ; L, M | C | P, J } => { N ; L, M | [N, M] C | P, J } .

allows sending several times the same message, but then the reachable state space
is infinite. To identify repeated copies of sent messages, we add the following
equation:

mod UNORDERED-CHANNEL-ABSTRACTION is

including UNORDERED-CHANNEL .

vars M N P K : Nats . vars L L’ : List . var C : Conf .

eq [A1]: { L, M | [N, P] [N, P] C | L’, K }

= { L, M | [N, P] C | L’, K } .

endm
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Verification of Executability Requirements. We can then check using the tools3 in
the Maude Formal Environment that the proposed abstraction is terminating,
Church-Rosser, and sufficiently complete (although in the last case we get a
warning due to the fact that the added equation is not linear, and therefore
cannot be handled by the SCC tool).

Maude> (ct UNORDERED-CHANNEL-ABSTRACTION .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION is terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION .)

Maude> (submit .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION is Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION .)

Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION is

sufficiently complete and has free constructors. However‘,

module UNORDERED-CHANNEL-ABSTRACTION may still not be

sufficiently complete or not have free constructors.

However, the coherence check fails because the ChC tool returns a critical
pair:

Maude> (select tool ChC .)

The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION .)

Coherence checking of UNORDERED-CHANNEL-ABSTRACTION

The following critical pairs cannot be rewritten:

cp UNORDERED-CHANNEL-ABSTRACTION2 for A1 and rec

{ L:List,M:Nats | #3:Conf[N:Nats,J:Nats]| P:List,J:Nats }

=> { L:List,M:Nats | #3:Conf ack(J:Nats)[N:Nats,J:Nats]|

P:List @ N:Nats ; nil,s(J:Nats) }.

The sufficient-completeness, termination and Church-Rosser

properties must still be checked.

In this particular example, the critical pair indicates that one can lose possible
rewrites by applying first the equation and that this can be solved by adding
the rule which provides the corresponding rewrite steps. Therefore, to recover
coherence, we add the appropriate rule, which is just a simple renaming of the
returned critical pair.

Since, after the equational abstraction, multiplicity of messages in the channel
no longer matters, the new rule allows to receive a message without deleting it
from the channel; thus, in the channel of the righthand side of the rule, we can see
that the [N, K] message is kept in the channel together with the corresponding
acknowledgement ack(K).
3 In the code shown in this section we omit some intermediate commands and show
part of the output, to emphasize thus the final result.
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mod UNORDERED-CHANNEL-ABSTRACTION-2 is

including UNORDERED-CHANNEL-ABSTRACTION .

vars M N K : Nats . vars L L’ : List . var C : Conf .

rl [snd2]: { L, M | [N, K] C | L’, K }

=> { L, M | [N, K] ack(K) C | L’ @ N ; nil, s(K) } .

endm

Now we can check that all the executability conditions are indeed satisfied;
for instance, in checking coherence we get no critical pair this time.

Maude> (select tool ChC .)

The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-2 .)

Coherence checking of UNORDERED-CHANNEL-ABSTRACTION-2

All critical pairs have been rewritten and no rewrite with rules can

happen at non-overlapping positions of equations left-hand sides.

The sufficient-completeness, termination and Church-Rosser properties

must still be checked.

Maude> (submit .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION-2 is coherent.

Verification of Property Preservation. We can now move to the specification of
the properties. Here the essential property we are looking for is that the protocol
achieves in-order communication in spite of the unordered channel. This property
may be defined by means of a prefix property on lists, as done in the following
module which imports a module BOOLEAN (not shown here) providing Boolean
values and standard operations on them.

mod UNORDERED-CHANNEL-PROP is

protecting BOOLEAN .

protecting UNORDERED-CHANNEL .

sort Prop .

op _~_ : Nats Nats -> Bool . *** equality predicate

op _|=_ : State Prop -> Bool [frozen] . *** satisfaction

vars M N K P : Nats . vars L L’ L’’ : List . var C : Conf .

eq 0 ~ 0 = true .

eq 0 ~ s(N) = false .

eq s(N) ~ 0 = false .

eq s(N) ~ s(M) = N ~ M .

op prefix : List -> Prop [ctor] .

eq [I1]: { L’, N | C | K ; L’’, P } |= prefix(M ; L) =

(M ~ K) and { L’, N | C | L’’, P } |= prefix(L) .

eq [I3]: { L’, N | C | nil, K } |= prefix(L) = true .

eq [I4]: {L’, N | C | M ; L’’, K } |= prefix(nil) = false .

endm

We assume that all initial states are of the form

{n1 ; ... ; nk ; nil , 0 | null | nil , 0}
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where the sender’s buffer contains a list of numbers n1 ; ... ; nk ; nil and
has its counter set to 0, the communication channel is empty, the receiver’s
buffer is also empty, and the receiver’s counter is initially set to 0. The following
module puts everything together and declares a concrete initial state.

mod UNORDERED-CHANNEL-ABSTRACTION-CHECK is

extending UNORDERED-CHANNEL-ABSTRACTION-2 .

including UNORDERED-CHANNEL-PROP .

op init : -> State .

eq init = {0 ; s(0) ; s(s(0)) ; nil , 0 | null | nil , 0} .

endm

It is easy to see that the set of abstract states is finite and that the module
UNORDERED-CHANNEL is deadlock free. Moreover, to show property preservation,
we can check that the equations in both modules UNORDERED-CHANNEL-PROP and
UNORDERED-CHANNEL-ABSTRACTION-CHECK are terminating, Church-Rosser, and
sufficiently complete, and rules are still coherent.

Maude> (ct UNORDERED-CHANNEL-ABSTRACTION-CHECK .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION-CHECK .)

Maude> (submit .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION-CHECK .)

Maude> (submit .)

Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION-CHECK

is sufficiently complete and has free constructors. However [...]

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-CHECK .)

Maude> (submit .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is coherent.

Model Checking the Property. Finally, we can model check the desired property
on the abstract version of the unordered communication channel, as follows:

mod UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK is

including UNORDERED-CHANNEL-ABSTRACTION-CHECK .

including LTL-SIMPLIFIER . *** optional

including MODEL-CHECKER .

endm

Maude> reduce in UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK :

modelCheck(init, []prefix(0 ; s(0) ; s(s(0)) ; nil)) .

rewrites: 361 in 41ms cpu (42ms real) (8780 rewrites/second)

result Bool: true

The property then holds also in the original system, as justified in Section 3.
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5 Concluding Remarks

The equational abstraction technique introduced in [5] and summarized here is
fairly simple and takes advantage of the expressiveness of rewriting logic and its
Maude implementation [1], as well as of the tools available in the Maude Formal
Environment [3]. Other examples are available in the references, but they do not
use the Maude Formal Environment in its current integrated form, as we have
done with the main example in this paper.

Related work includes the generalization of the equational theory extension
(Σ, E) ⊆ (Σ, E ∪ E′) to theory interpretations (Σ, E) −→ (Σ′, E′′) and also to
(stuttering) simulations, studied in detail in [6].

Future work will be dedicated to improving the interface of the Maude Formal
Environment to make it more user-friendly. Also, the Inductive Theorem Prover
(ITP) needs more and better integration with the other tools.

Acknowledgments. We are very grateful to our colleagues José Meseguer and Miguel
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organizers of CBSoft and SBMF 2014 for their invitation to present this work in such
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3. Durán, F., Rocha, C., Álvarez, J.M.: Towards a Maude Formal Environment. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 329–351. Springer, Heidelberg (2011)

4. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp.
184–191. Springer, Heidelberg (2014)

5. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theoretical
Computer Science 403(2–3), 239–264 (2008)

6. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Algebraic simulations. Journal of Logic
and Algebraic Programming 79(2), 103–143 (2010)



http://www.springer.com/978-3-319-15074-1


	Equational Abstractions in Rewriting Logic and Maude
	1 Introduction
	2 Maude by Example
	2.1 Crossing the River
	2.2 An Unordered Communication Channel
	2.3 The Maude Formal Environment
	2.4 Model Checking

	3 Equational Abstractions
	4 Equational Abstraction on the Unordered-Channel Example
	5 Concluding Remarks
	References


