
An Approach for Creating Domain Specific
Visualisations of CSP Models

Lukas Ladenberger(B), Ivaylo Dobrikov, and Michael Leuschel

Institut für Informatik, Universität Düsseldorf, Düsseldorf, Germany
{ladenberger,dobrikov,leuschel}@cs.uni-duesseldorf.de

Abstract. A domain specific visualisation can greatly contribute to bet-
ter understanding of formal models. In this work we propose an approach
that supports the user in creating domain specific visualisations of CSP
models. CSP (Communicating Sequential Processes) is a formal language
that is mainly used for specifying concurrent and distributed systems. We
have successfully created various visualisations of CSP models in order
to demonstrate our approach. The visualisations of two case studies are
presented in this paper: the bully algorithm and a level crossing gate.
In addition, we discuss possible applications of our approach.

Keywords: Formal methods · CSP · Domain specific visualisation ·
Validation · Method · Tool support · Graphical editor

1 Introduction and Motivation

The feedback from a domain expert is crucial in the process of creating a formal
model since certain types of errors can only be detected by a domain expert.
Moreover, it is very important for the domain expert to make sure that his
expectations are met in the formal model. However, the communication between
the developer of a formal model and the domain expert can be challenging. One
reason for this is the fact that discussing a formal model requires knowledge
about the mathematical background of the respective formalism that the domain
expert might not have. To overcome this challenge, it may be useful to create
domain specific visualisations of formal models.

Inspired by the successful application of domain specific visualisations [1,6]
of Event-B models [3], we have started an attempt to develop an approach
for creating domain specific visualisations for CSP (Communicating Sequential
Processes). CSP is a notation used mainly for describing concurrent and distrib-
uted systems. There are two major CSP dialects: CSP-M [15] and CSP# [17].
The most popular tools that support model checking of CSP-M specifications
are FDR [19] and ProB [10]. Support for animating processes of CSP-M spec-
ifications is provided by ProB and ProBE [5]. The more recent CSP# [17] is

The work in this paper is partly funded by ADVANCE, an European Commission
Information and Communication Technologies FP7 project.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 20–35, 2015.
DOI: 10.1007/978-3-319-15201-1 2

An Approach for Creating Domain Specific Visualisations of CSP Models 21

supported by the PAT system [18]. In this work, we concentrate on the creation
of domain specific visualisations for CSP-M models.

Some of the tools provide features for visualising some aspects of the formal
CSP model. For instance, ProB, PAT, and FDR can provide visualisations of
counter examples that come in form of graphs. On the other hand, this work
is concerned with creating domain specific visualisations. This means that if
we were modelling, an interlocking system we could create a domain specific
visualisation that shows a track layout with blocks and points as well as signals
and trains. From now on, when we speak about a visualisation we mean a domain
specific visualisation.

In this work we present an approach (method and tool) for visualising CSP-
M models. We describe the method and present an implementation that comes
as an extension for BMotion Studio [8]. BMotion Studio is a visual editor that
supports the user in creating domain specific visualisations for Event-B, a formal
language for state-based modelling and verification of systems.

The difference between our contribution and the original visualisation app-
roach of BMotion Studio is imposed by the specifics of the CSP formal language.
The basic idea of BMotion Studio is to visualise the information that is encoded
in the states of an Event-B model (e.g. the values of variables), where each state
of the model is mapped to a particular visualisation. In contrast to Event-B, in
CSP the states of the modelled system are left uninterpreted and the behaviour
is defined in terms of sequences of events (traces). Thus, the concepts of BMo-
tion Studio are not longer applicable on event-based formalisms as CSP. The
intention of our approach is to visualise the traces of the underlying CSP model.

In order to demonstrate our approach, we have created visualisations for
various CSP-M models that we have found in the literature. In this paper, we
focus on the presentation of the visualisations of the bully algorithm [13] and of
a level crossing gate [14]. We also discuss how our approach can be of use in the
process of analysing and validating CSP specifications.

The paper is organised as follows: Sects. 2 and 3 describe the method and tool
support, respectively. The presentation of the visualisation of both case studies
is given in Sect. 4. The discussion of possible applications of our approach is
outlined in Sect. 5. Finally, we present our conclusions and compare our work
with related work.

Tool Website. The tool, various case studies, and a tutorial can be found at
http://www.stups.hhu.de/bmotionstudio/index.php/CSP.

2 The Method

The mathematical semantics of CSP are mainly based on traces. A trace is a
sequence of events performed by a process that can communicate and interact
with other processes within the CSP model. The basic idea of our approach
is to visualise the information encoded in the given sequence of events (trace).
However, a process may perform many different traces and thus creating a visu-
alisation manually for each possible trace is an almost impossible task.

http://www.stups.hhu.de/bmotionstudio/index.php/CSP

22 L. Ladenberger et al.

Our method requires the user to set up only one visualisation that may be
capable of representing any possible trace of a CSP process of a particular model.
This is achieved by means of observers that are used to link the visualisation
with the model. Formally, one can describe the method by means of Algorithm1.

Algorithm 1. Visualising a CSP trace
1 procedure visualiseTrace(trace 〈e1, e2, . . . , en〉, observers obs)
2 for i=1 to n do
3 foreach o ∈ obs do
4 if member(ei, o.exp) then
5 trigger(o.acts)
6 end if

7 end foreach

8 end for
9 end proc

For visualising a particular trace tr = 〈e1, e2, . . . , en〉, we sequentially go
through each event ei of tr with i ∈ {1..n} and execute all established observers
obs for ei. Note that by “visualisation of a trace” we mean the visualisation of
the state reached after the sequential execution of the events of a trace.

Each observer o has a user-defined CSP expression o.exp that constitutes
a set of observed events. For instance, the CSP expression {e.x | x ← {0..3}}
will constitute the set of observed events {e.1, e.2, e.3}. In addition, an observer
defines a list of actions o.acts that determine the appearance and the behaviour
of the visualisation. The actions are only triggered when the currently processed
event ei of the given trace is a member of the respective set of observed events
defined by o.exp. More precisely, the actions are triggered (line 5) whenever the
expression member(ei, o.exp) evaluates to true (line 4).

3 Tool Support

Figure 1 shows an overview of the tools and components that are used in this
work, as well as how our contribution fits into this overview (marked with dotted
border).

We implemented the method presented in Sect. 2 as an extension for the new
version1 of BMotion Studio [8]. BMotion Studio is a visual editor for creating
domain specific visualisations of formal models. It uses ProB [9] to interact
with the model, to obtain trace information and to evaluate expressions. ProB
is a validation tool for model checking and animating Event-B, Classical-B and
CSP-M models [10], as well as other formalisms (e.g. [7,12]). The current ver-
sion of BMotion Studio supports the user in creating visualisations for Event-B
models [8]. This work extends BMotion Studio to support the creation of visu-
alisations for CSP-M models.
1 The new version of BMotion Studio is not officially released yet, but the source code

is available from http://www.stups.hhu.de/bmotionstudio/index.php/Source.

http://www.stups.hhu.de/bmotionstudio/index.php/Source

An Approach for Creating Domain Specific Visualisations of CSP Models 23

ProB

Model
Checker Animator

BMotion Studio
Graphical Editor

query
CSP expression

result of
CSP expression

+
trace

information

Visualisation Template

CSP Event Observers
(JSON)

actions

Visual Elements
(SVG and CSS)

CSP-M model

Refinement
Checker

CSP Support

Fig. 1. Overview of the components that are used in this work

In BMotion Studio, a visualisation is described by a visualisation template
that contains visual elements and observers. Visual elements may be, for instance,
shapes or images that represent some aspects of the model. For example, in case of
modelling a communication protocol, we can use circles for representing the com-
municating entities of the protocol and arrows for the message exchanges between
the entities. The new version of BMotion Studio uses web technologies like Scal-
able Vector Graphics (SVG) [21] and Cascading Style Sheets (CSS) [20] for this
purpose. SVG is an XML-based markup language for describing two-dimensional
vector graphics. It comes with a number of visual elements like shapes, images and
paths. On the other hand, CSS is a language that can be used to describe the style
of SVG visual elements (e.g. the colour or the dimension).

Observers are used to link visual elements with the model. An observer is noti-
fied whenever a model change its state, e.g. an event was executed. In response,
the observer will query the model’s state and triggers actions on the linked visual

24 L. Ladenberger et al.

elements in respect to the new state. BMotion Studio comes with a number of
default observers for creating visualisations for Event-B. For instance, BMotion
Studio provides an observer that takes a user-defined predicate that is to be
evaluated in every state. Depending on the result of the predicate (true or false),
the observer will trigger an action to change the appearance of the linked visual
elements (e.g. the colour of a shape).

We extended BMotion Studio with a new observer type called CSP event
observer in order to support creating visualisations of CSP models. The observer
has the following JSON structure (in BMotion Studio an observer is represented
in JSON [2]):

{ "exp": "<user-defined CSP expression>",

"actions": [

{"selector":"<selector>", "attr":"<attribute>", "value":"<value>" },

{ ... }

] }

Each observer has a user-defined CSP expression and a list of actions. The
user-defined expression constitutes a set of observed events, whereas the actions
determine the changes made on visual elements.

An action defines a selector that matches a set of visual elements in the
visualisation (SVG graphic). A selector follows the syntax provided by jQuery2.
For instance, to match the visual element with the ID “elem1” (each element
should have a unique ID in the visualisation) the user can define the selector
“#elem1”. The prefix “#” is used for matching a visual element by its ID in
jQuery. An action also defines an attribute (e.g. “fill” for colouring the interior
of a visual element like a circle shape) and a corresponding value that will be
set as the new value of the attribute when the action is triggered. The actions
of an observer o are triggered when the currently processed event is in the set
of observed events of o.

The user can refer to the information given by the arguments of the currently
processed event within the action fields (selector, attribute and value). This
is achieved by means of the construct “{{aN}}” where aN refers to the N-th
argument of the event. For instance, if the event has two arguments, then the first
and the second one can be obtained with “{{a1}}” and “{{a2}}”, respectively.
To illustrate this, consider an event evt.x with x ← 0..4. One may want to
use the information given by the first argument x of evt within a selector in
order to match visual elements that have an ID of the form “elemx”. This can
be done by defining the selector “#elem{{a1}}”. The construct “{{a1}}” will
be replaced by the value of the first argument of the currently processed event in
the observer. For instance, if the currently processed event is evt.2, the selector
“#elem{{a1}}” will become “#elem2”.

Figure 2 illustrates the function of the CSP event observer on a simple exam-
ple. The visualisation consists of an SVG graphic with a text field element with
the ID “txt” and one CSP event observer. The CSP event observer defines an
2 For more information about jQuery and selectors we refer the reader to the jQuery

API documentation http://api.jquery.com/category/selectors/.

http://api.jquery.com/category/selectors/

An Approach for Creating Domain Specific Visualisations of CSP Models 25

Fig. 2. The function of the CSP event observer

expression that constitutes the set of observed events evt = {evt.2, evt.4, evt.6, ..}
and one action act1 that changes the value of the attribute “text” to “{{a1}}”
of the visual element with the ID “txt” (the text field). According to our method
(see Sect. 2), the observer is executed for each event of a given trace. This means
that, whenever the currently processed event is in the set of observed events
evt, the observer will trigger the defined action act1. For instance, the execution
of the event evt.4 causes the observer to set the value of the text field element
to “4” as demonstrated in Fig. 2.

Creating a Visualisation. BMotion Studio provides a graphical editor with
different views and wizards that supports users in creating visualisations for for-
mal models. Figure 3 shows the bully algorithm visualisation template opened
in the graphical editor (the bully algorithm visualisation will be introduced
in Sect. 4). The editor consists of a set of tools (1) for creating SVG widgets
(e.g. visual elements as shapes and images), a canvas (2) holding the actual
visual elements, a view (3) for editing observers, and another view (4) for manip-
ulating the attributes of the currently selected visual element in the canvas. The
corresponding JSON file which contains the observers is created by the editor
automatically. We extended the graphical editor of BMotion Studio in order to
support the editing of CSP event observers.

Running a Visualisation. Once a visualisation template is created, it can
be started with BMotion Studio as shown in Fig. 4. BMotion Studio uses the
default web browser of the user’s operating system to view the visualisation and
the ProB tool to animate the corresponding CSP-M model.

26 L. Ladenberger et al.

(1) (2) (3) (4)

Fig. 3. CSP support within BMotion Studio graphical editor

The user can access the entire function range of ProB. For instance, Fig. 4
shows two views (Events and History) that come from ProB. The first one
(Events) lists all possible events that are available in the current state of the
animation. The second one (History) shows the executed events so far. The left
side of Fig. 4 shows the visualisation of the trace that is displayed in the History
view. If the user executes an event in the Events view, a new trace (the trace
generated so far plus the recently executed event) is provided which is visualised
according to our approach.

4 Case Studies

In order to test our approach, we successfully created various visualisations for
CSP specifications that we have found in the literature. In this work we present the
visualisation of the bully algorithm specification from [13] and of the level crossing
gate specification from [14]. The specifications are written in the machine readable
dialect CSP-M and have not been modified for the visualisation we have created.
Both visualisations were created by means of the built-in graphical editor of BMo-
tion Studio. However, for presentation purposes the observers of the visualisations
are described in the JSON notation in this section.

4.1 The Bully Algorithm

The algorithm represents a method of distributed computing for electing a node
to be the coordinator amongst a group of nodes. Each node has a unique ID
and the algorithm intends to select the node with the highest ID to be the
coordinator. It is assumed that the nodes may fail and revive from time to time
and the communication between the nodes is reliable. Three types of messages

An Approach for Creating Domain Specific Visualisations of CSP Models 27

ProBBMotion Studio

Fig. 4. The bully algorithm visualisation

are defined within the design of the algorithm: election (announcing an election),
answer (responding to an election message), and coordinator (announcing the
identity of the coordinator).

The specification from [13] defines six additional types of events needed for
the formalisation of the algorithm in CSP: the fail and revive events (for mod-
elling failing and reviving of a node), the test and ok events (for simulating a
test-response communication), the leader events (for indicating the coordinator
of a living node), and the tock event (for modelling timeouts and time).

Visualising the Bully Algorithm. In general, we want to visualise the process
of electing a leader in the network. More precisely, we aim to visualise the
Network process of the CSP specification. As the bully algorithm specifica-
tion in [13] is presented for a network with four nodes, we also intend to create
a visualisation for four nodes (the nodes are enumerated from 0 to 3). Figure 4
demonstrates the visualisation of a particular trace.

There are two major aspects of the specification that we want to visualise:
the nodes and the communication between the nodes. Each node is visualised
by means of a circle in which the respective ID is positioned, whereas the com-
munication between the nodes is illustrated by directed arrows. Each directed
arrow is made up of a line and a corresponding arrowhead.

To each visual element in the visualisation we assign a unique ID referring
to the elements in the CSP specification. Thus, the node with ID x in the CSP
specification is presented by the circle with ID “n-x” in the visualisation. Addi-
tionally, a message transfer from the node with ID x to the node with ID y is
represented by the line with ID “l-x-y” and the arrowhead with ID “p-y” (i.e.
the arrow connecting “n-x” and “n-y”). In this section, both symbols x and y
stand for an integer ranging from 0 to 3.

We can classify all types of events in the specification into the following
groups:

– status: Events that can change the status of a particular node x: fail.x,
revive.x, coordinator.x.y, and leader.x.y.

28 L. Ladenberger et al.

– message: Events illustrating a message transfer from node x to node y:
test.x.y, ok.x.y, election.x.y, answer.x.y, and coordinator.x.y.

– hidden: Events that are not considered in the visualisation: tock.

Thus, we can infer that there are two general types of observers to define: the
status and the message observers. Note that each coordinator event (coordina-
tor.x.y) has been included in the first two groups above. This is because in the
specification each of the coordinator events intends to identify the coordinator
(x) and at the same time represents a message transfer (to node y).

The status of a node usually changes when one of the status events has been
executed. Each node, except for the node with the lowest ID3, can have the fol-
lowing status: failed, revived, coordinator, or coordinated. A unique fill pat-
tern has been selected for distinguishing each possible status of a node (see legend
in Fig. 4).

In order to associate a status event from the CSP specification with a node
in the visualisation, we use the selector “#n-{{a1}}” in the definition of the
respective observer. The construct “{{a1}}” is used in the selector for obtaining
the value of the first argument of the respective status event. For example, the
observer for changing a status of a node to failed can be defined as follows:

{ "exp": "{fail.x | x <- {0..N-1}}",

"actions": [{"selector":"#n-{{a1}}",

"attr":"fill", "value":"url(#diagonalHatch) "}] }

The observer will fill the respective node with a diagonal hatch pattern whenever
a fail event has been processed. For instance, the node with ID “n-3” will be
filled with a diagonal hatch pattern when the event fail.3 has been processed. In
a similar fashion we have defined the observers for the other node status changes.

For creating the message observers we need to consider both arguments of
the message events. The types of the messages are distinguished by different
stroke patterns (see Fig. 4). Thus, each message observer, except for the coordi-
nator observer (this observer has three actions), has two actions: one action for
appearing the arrow (the line and arrowhead constituting the respective arrow
in the visualisation) and one action for changing the stroke pattern of the arrow.
For instance, the observer for visualising the election message can be defined as
follows:

{ "exp": "{election.x.y | x <- {0..N-1}, y <- {0..N-1}}",

"actions": [{ "selector": "#l-{{a1}}-{{a2}}, #p-{{a2}}",

"attr": "class", "value": "visible" },

{ "selector": "#l-{{a1}}-{{a2}}",

"attr": "stroke-dasharray", "value": "5,2,2,2" }] }

To provide a clear visualisation an additional observer has been added to
hide all arrows after performing an arbitrary event. This observer is applied on
the currently processed event before all other defined observers.

3 The node with ID 0 can never be a coordinator as there is no node with a lower ID.

An Approach for Creating Domain Specific Visualisations of CSP Models 29

ProBBMotion Studio

Fig. 5. The level crossing gate visualisation

The initial state of the specification and the visualisation is the state in
the network where all nodes are alive and the coordinator is the node with the
ID 3 (the node with the greatest ID). Additionally, no message exchanges are
performed.

4.2 Level Crossing Gate

The model of the first case study introduced in [14] specifies a level crossing
gate of a single railway track along which trains move only in one direction. The
track is divided into segments such that each of the segments is at least as long
as any train. There are five track segments considered for the level crossing gate
where one of the track segments represents the outside world.

The track segments are numbered. The input sensor is placed in segment 1
and the crossing and output sensors in segment 4. The outside world segment is
identified by 0. A train enters segment (i+1) before it leaves segment i. Entering
and leaving of a segment are specified by the events enter and leave, respectively.
The entering of train t into segment j is described by enter.j.t. Accordingly, the
leaving of train t from segment j is designed by means of the event leave.j.t.

The sensors send control signals to the gate. The gate goes down after a
train enters segment 1 and accordingly the gate goes up after the train leaves
segment 3 and no train is moving along the segments 1 to 2. The control signals
sent by the input and output sensors are specified by the events sensor.in and
sensor.out, respectively. The communication between the controller and the gate
processes is specified by the channel gate which defines four different events. The
events gate.go down and gate.go up represent the commands from the controller
to the gate for moving the barriers down or up. And the events gate.down and

30 L. Ladenberger et al.

gate.up denote the confirmations from the gate sensors that the barriers are
down or up, respectively.

In addition, timing constraint are set for the trains moving on the tracks. The
speed of each train is determined by how many units of time a train can spend
per track segment. This additional property is required since the goal of the
system is to guarantee via timing that the gate is up and down at appropriate
moments. In the CSP model the speed of a train per track segment has been
set to three time units. A unit of time is denoted by the tock event in the level
crossing gate specification.

Visualising the Level Crossing Gate. In our visualisation (see Fig. 5) we
assume that the trains are moving from left to right. Track segments 1 to 4 are
illustrated by rectangles separated by vertical, dotted lines. Segment 0, which
represents the outside world, can be seen as the space left from track segment
1 and the space right from segment 4. A train leaves the outside world after
entering track segment 1 and a train enters the outside world before leaving track
segment 4. The length of each of the track segments 1–4 in the visualisation is
considered to be 100 pixels.

Since the model from [14] handles two trains, we also intend to visualise
only two trains (these are indicated as Train1 and Train2). Both trains are
represented by two boxes coloured in grey and slate grey, respectively. Moving
of a train along the track is simulated by shifting the respective box from left
to right. In order to simulate a movement along the track segments, we shift the
respective box 50 pixels from left to right. In doing so, entering of a new segment
is represented such that the box is laid half on the new segment and half on
the previous. On the other hand, when the train leaves a track segment, the
box is moved fully on the recently entered segment. Referring to Fig. 5, the grey
box representing Train1 is laid half on segment 4 and half on segment 3 after
executing the event enter.4.T rain1, whereas Train2 (the slate grey box) is moved
fully on segment 1 after performing consecutively the events enter.1.T rain2
and leave.0.T rain2. We have set each box representing a train to the length of
100 pixels.

For visualising the movement of the trains, we defined two observers that
listen respectively to the events enter.j.t and leave.j.t. Both observers contain
an action that changes the transform attribute [21] of the matched visual ele-
ment. For instance, the leave observer is defined such that by executing an event
leave.j.t the visual element with the ID “train-t” (t refers to the second argument
of the leave events) will be moved 50 pixels to right by setting the transform
attribute to the value translate(50, 0). Thus, the observer for leaving a track is
defined as follows:

{ "exp": "{leave.j.t | j <- {0..3}, t <- {Train1,Train2}}",

"actions": [{ "selector":"#train-{{a2}}",

"attr":"transform", "value":"translate(50,0)" }] }

Note that the leave observer does not fire its actions when an event leave.4.t
is executed since in our visualisation the respective box “train-t” is intended to
be moved on the left site of track segment 1 when the event enter.0.t is executed.

An Approach for Creating Domain Specific Visualisations of CSP Models 31

We decided to define the observers in this way because after entering the outside
world (track segment 0) and leaving at last track segment 4, the same train can
enter the crossing gate segments once again.

For the overall visualisation we defined four different observers. The other
two observers are responsible for simulating the up and down movement of the
barriers in the visualisation after proceeding of the events gate.up and gate.down,
respectively. For this, we created for each of the barriers two visual elements that
illustrate accordingly the two possible states of the appropriate barrier: barrier is
up and barrier is down. This means that we have four visual elements illustrating
the different positions of the barriers. When, for example, the event gate.down
is processed, then the go-down observer executes two actions. The first is to
hide all barrier elements and the second action is to display the visual elements
representing that the barriers are down. The hiding and displaying of the barriers
are realised by setting the “opacity” attribute of the visual elements to 0 and
100, respectively. The go-down observer is given as follows:

{ "exp":"{gate.down}",

"actions": [

{ "selector":"g[id^=gate]", "attr":"opacity", "value":"0" }

{ "selector":"g[id^=gate-go_down]", "attr":"opacity", "value":"100" }]}

Analogously, we defined the go-up observer. The initial state of the specifi-
cation and its visualisation is the state in which both trains are in the “outside
world” track segment and both barriers are up.

5 Application of the Approach

Using validation tools for performing various consistency checks automatically is
a powerful technique for verifying the correctness of the analysed specification.
A failure of a consistency check is mostly reported by producing of a counterex-
ample (very often presented as a trace leading to an error state). However, trying
to understand the failure behaviour of the model by simply examining the trace
can sometimes be difficult as the error trace may, for example, be the result
of the interaction of various components in the specified system. Thus, using a
visualisation in order to facilitate the effort of understanding the error trace can
be very useful.

In this Section we show how the bully algorithm visualisation introduced in
Sect. 4 may, for example, contribute to the better understanding of an erroneous
behaviour in the models.

For example, the trace of the Network process of the bully algorithm model

〈fail.2, fail.3, test.1.3, tock, election.1.3, election.1.2, revive.2, revive.3,
coordinator.3.2, fail.3, test.0.3, tock, coordinator.1.0, leader.2.3〉

represents a sequence of events leading to a state in the network in which the
elected leader is not the living node with the greatest ID. In general, the false

32 L. Ladenberger et al.

test.1.3 tock, election.1.3

election.1.2

revive.3, revive.2coordinator.3.2

fail.3

test.0.3

leader.2.3

fail.2, fail.3

tock, coordinator.1.0

Fig. 6. A stepwise visualisation of a trace of the bully algorithm model

behaviour that is explicitly discussed in [13] illustrates a problem occurring by
a certain combination of node failures and mixing up various elections.

While examining the given error trace, it is hard for the user to reproduce
and to see the actual problem. In contrast, Fig. 6 shows a stepwise graphical
representation of the error trace. The user can see at a glance the erroneous
behaviour that is shown in the last step of the trace (after performing leader.2.3)
in the graphical representation.

6 Conclusion

In this paper, we presented an approach for creating domain specific visualisa-
tions of CSP-M models and an implementation based on BMotion Studio. In
particular, we extended BMotion Studio and the built-in graphical editor with
a new observer type (CSP event observer) that implements the algorithm pre-
sented in Sect. 2.

An Approach for Creating Domain Specific Visualisations of CSP Models 33

The difference between our contribution and the primary approach of BMo-
tion Studio (the domain specific visualisation of Event-B models) is imposed by
the question of what is to be visualised of a model. On the one hand, in CSP each
trace is mapped to a particular visualisation. On the other hand, in Event-B the
information to be visualised is given by the states (e.g. the values of variables)
of an Event-B model, where each state is mapped to an individual visualisation.

We tested our approach by creating visualisations of various CSP-M models.
A demonstration of our approach is given by visualising the bully algorithm
specification from [13] and the level crossing gate specification from [14]. We
also have shown how our approach could be of use in the process of analysing
and validating CSP specifications.

Our tool comes with a graphical editor that can be used to create easily
visualisations. The developer of a visualisation remains in the CSP domain. This
means that only CSP expressions and jQuery selectors (see Sect. 3) are required
for establishing the link between a visualisation and the CSP model. Moreover,
a modification of the CSP model is not necessary to create a visualisation for it.

A domain specific visualisation of a CSP model can be useful in various ways.
For example, the graphical representation of the behaviour of the CSP processes
can be helpful for discussing the specification with non-formal method experts
and for the further development of the specification.

We also believe that our approach may be of use to identify inconsistencies or
unexpected behaviours within the specification. Indeed, in the process of exam-
ining the various case studies, the visualisation helped us to better understand
some of the unexpected behaviours (error traces) discovered by validating the
corresponding specification (see Sect. 5).

Finally, we believe that our approach may be useful for teaching formal meth-
ods, as the execution of a specification with a graphical representation may give
a better idea and overview of the system being modelled. For instance, we used
our approach successfully in our lectures as a way to present formal models to
students and to motivate them to write their own formal models.

Related Work. BMotion Studio was initially developed for creating domain
specific visualisations of Event-B models [8]. Our approach extends BMotion
Studio to permit users to also create visualisations for CSP-M.

The tools presented in [4,16] support the creation of domain specific visuali-
sations for Classical-B. In contrast to our approach, both tools require the user
to set up scripts in order to link the visualisation to the model.

Our approach uses ProB [10] to execute a CSP-M specification. ProB and
other CSP tools [18,19] are capable of displaying graphs of processes and coun-
terexamples. Whereas, the purpose of our work is to provide a tool that allows
the user to create custom visualisations that are specific to a domain.

A central goal of our work is to gain a better understanding of CSP models
by creating domain specific visualisations. A different approach has been taken
by [11], which presents a tool for visualising CSP in UML.

34 L. Ladenberger et al.

References

1. ADVANCE Deliverable D4.2 (Issue 2). Methods and tools for simulation and test-
ing I, March 2013

2. ECMA-404 The JSON Data Interchange Standard. Ecma International, October
2013

3. Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

4. Bendisposto, J., Leuschel, M.: A generic flash-based animation engine for ProB.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 266–269.
Springer, Heidelberg (2006)

5. Formal Systems (Europe) Ltd., Process Behaviour Explorer (ProBE User Manual,
version 1.30). http://www.fsel.com/probe manual.html

6. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 66–79. Springer,
Heidelberg (2014)

7. Hansen, D., Leuschel, M.: Translating TLA+ to B for validation with ProB. In:
Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321,
pp. 24–38. Springer, Heidelberg (2012)

8. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising event-B models with
B-motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009.
LNCS, vol. 5825, pp. 202–204. Springer, Heidelberg (2009)

9. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

10. Leuschel, M., Fontaine, M.: Probing the depths of CSP-M: a new fdr-compliant
validation tool. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
278–297. Springer, Heidelberg (2008)

11. Ng, M.Y., Butler, M.: Tool support for visualizing CSP in UML. In: George, C.W.,
Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 287–298. Springer, Heidelberg
(2002)

12. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator
and model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591,
pp. 480–500. Springer, Heidelberg (2007)

13. Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer-Verlag New York
Inc., New York (2010)

14. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River (1997)

15. Scattergood, B., Armstrong, P.: CSP-M: A Reference Manual (2011)
16. Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand,

J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer,
Heidelberg (2006)

17. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for
system modeling and verification. In: Chin, W.-N., Qin, S. (eds.) Proceedings TASE
2009, pp. 127–135. IEEE Computer Society (2009)

18. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 709–714. Springer, Heidelberg (2009)

http://www.fsel.com/probe_manual.html

An Approach for Creating Domain Specific Visualisations of CSP Models 35

19. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

20. W3C CSS Working Group. Cascading Style Sheets (CSS) Snapshot 2010. http://
www.w3.org/TR/css-2010/, May 2011

21. W3C SVG Working Group. Scalable Vector Graphics (SVG) 1.1 (Second Edition),
August 2011. http://www.w3.org/TR/SVG11/

http://www.w3.org/TR/css-2010/
http://www.w3.org/TR/css-2010/
http://www.w3.org/TR/SVG11/

http://www.springer.com/978-3-319-15200-4

	An Approach for Creating Domain Specific Visualisations of CSP Models
	1 Introduction and Motivation
	2 The Method
	3 Tool Support
	4 Case Studies
	4.1 The Bully Algorithm
	4.2 Level Crossing Gate

	5 Application of the Approach
	6 Conclusion
	References

