
Detection of Heap-Spraying Attacks
Using String Trace Graph

Jaehyeok Song, Jonghyuk Song, and Jong Kim(B)

Department of CSE, POSTECH, Pohang, Republic of Korea
{the13,freestar,jkim}@postech.ac.kr

Abstract. Heap-spraying is an attack technique that exploits memory
corruptions in web browsers. A realtime detection of heap-spraying is
difficult because of dynamic nature of JavaScript and monitoring over-
heads. In this paper, we propose a runtime detector of heap-spraying
attacks in web browsers. We build a string trace graph by tracing all
string objects and string operations in JavaScript. The graph is used for
detecting abnormal behaviors of JavaScript. We detect heap-spraying
attacks with low false positive rate and overheads.

1 Introduction

In recent years, a drive-by-download attack becomes one of the most common
methods to spread malware. Attackers tempt a victim to visit a website that
contains a malicious code. The malicious code exploits vulnerabilities of a web
browser to compromise a victim’s computer. Compromised computers are used
as components of botnets and conduct various attacks, such as spamming and
distributed denial-of-service attack (DDoS). Various techniques are used in order
to load shellcode into the memory and execute it.

Heap-spraying is the most common technique to compromise web browsers.
Heap-spraying increases the possibility of successful attacks because attackers
do not need to know exact heap addresses. Heap-spraying is carried out in two
phases. The first phase is building a code block that contains a large chunk of
CPU instructions. The code block consists of two parts: NOP-sled and shellcode.
NOP-sled contains meaningless CPU instructions that induce execution to a
malicious shellcode. In the second phase, the malicious code makes many copies
of the code block. Heap-spraying tries to insert the code block as many as possible
to increase the possibility of the attack. Therefore, heap-spraying technique uses
a large amount of memory. In the real world, malicious JavaScript that uses
heap-spraying usually allocates more than 100 MB of memory. In addition, heap-
spraying should use only string objects of JavaScript to build the code block.
The string object is the only object that controls each byte of memory, so heap-
spraying uses JavaScript string objects.

In this paper, we propose a heap-spraying detection method based on a
string trace graph. Our method builds a graph by tracing all string operations
in JavaScript. We propose three features from a string trace graph and train

c© Springer International Publishing Switzerland 2015
K.-H. Rhee and J.H. Yi (Eds.): WISA 2014, LNCS 8909, pp. 17–26, 2015.
DOI: 10.1007/978-3-319-15087-1 2



18 J. Song et al.

classifiers using the features to classify heap-spraying codes. We evaluate our
method by using real-world data and evaluation results show that our method
has low false positive and overheads.

We organize the remainder of this paper as follows. In Sect. 2, we introduce
previous heap-spraying detection methods and malicious JavaScript detection
methods. Section 3 explains background knowledge to understand our method.
In Sect. 4, we explain our detection method in detail. In Sect. 5, we describe
evaluation results. Finally, Sect. 6 concludes the paper and presents future work.

2 Related Work

2.1 Heap-Spraying Detection

Previous studies [6,13,14] have proposed to detect heap-spraying by finding
sequences of x86 instructions. The heap blocks used in a typical heap-spraying
attack contain a shellcode and the remainder of the heap block contains NOP-
sleds. Previous studies focus on identifying large chunks of NOP-sleds. Nozzle
[14] disassembles given a heap object with possible x86 instructions by building a
control flow graph (CFG). However, Ding et al. [9] proved that Nozzle is broken
by manipulating heap behaviors. Nozzle has too high overhead because it scans
the contents of all allocated heap memory. We propose a method that has lower
overhead than Nozzle because we do not check the contents of the memory. We
simply check whether a memory is allocated and also get the size of allocated
memory.

Several researches [6,12,16] have proposed to detect executable codes in pay-
loads of network packets, but they have high false positives.

2.2 Malicious JavaScript Detection

There are researches to detect other malicious JavaScript codes, such as obfus-
cation, exploit or fingerprint. A number of server-side approaches [7,10] have
been proposed to identify malicious code on the web. These approaches extract
features of each webpage in run-time using an emulated browser. Cova et al. [7]
propose a method to detect malicious JavaScript codes, but it takes too much
time to analyze each page (about 10 s per page). In addition, the server-side
approaches always suffer from IP based filtering and also have a lot of false
positives.

A proxy approach [15] also has been proposed. It detects obfuscation and
exploit code by dynamic and static analysis in the emulated environment at
proxy level.

Zozzle [8] uses nearly-static approach to detect malicious JavaScript. When
a JavaScript engine evaluates a source code, Zozzle analyzes the source code
statically. Similar to our method, Zozzle uses a machine learning technique to
classify malicious JavaScript. Zozzle trains the name of variables and functions
as a feature but an attacker simply changes a variable name in source code or
uses a JavaScript optimization compiler [2] to avoid Zozzle.



Detection of Heap-Spraying Attacks Using String Trace Graph 19

3 Background

3.1 A String Object in JavaScript

In JavaScript, a string object has unique characteristics distinguished from other
languages. First, a value of string is immutable. This means that once a string
is initialized, the value of the string will not be changed. Every string operation
create a new string variable instead of modifying the original value [10].

Fig. 1. An example code of a typical heap-spraying in JavaScript

Second, a string is the only object to manipulate a memory in JavaScript. To
succeed code injection attack, an attacker has to load a malicious code on the
memory. Since the code consists of a sequence of CPU instructions, each byte of
the code has to be accessible. In JavaScript, a string object is the only candidate
to have that functionality among user controllable objects.

From the above characteristics, we can know that attackers exploit string
objects in JavaScript to manipulate the memory.

3.2 Heap-Spraying

There are two types in code injection attacks which are stack-based and heap-
based. Stack-based attacks are on the decline because numerous methods have
been introduced to prevent the stack-based attacks. Therefore, attackers mainly



20 J. Song et al.

Fig. 2. An example code to explain the string trace graph

3 3

16

55 5 5 5

117

18

Fig. 3. An example graph of string trace graph

use heap-based attack to compromise victims. Heap-based attack is more diffi-
cult than stack-based attack because the addresses in heap memory are unpre-
dictable. To overcome this trouble, attackers should adopt several strategies such
as heap-spraying.

Figure 1 is an example code of a heap-spraying in JavaScript. Lines 1–2 indi-
cates that allocating shellcode and NOP-sled into strings. Lines 4–7 build NOP-
sleds to spray. In the first while loop, the NOP-sled is expanded by concatenating
itself. When the NOP-sled is expanded, the NOP-sled is sliced to fit into the size
of heap memory chunk. Although the NOP-sled size is different from a target of
browsers and platforms, it has large size of memory than the memory page size,
typically from 128 kB to 524 kB. Lines 9–12 codes are responsible for combining
the NOP-sled with the shellcode. In this step, the code makes many copies for
the effectiveness of the attack.



Detection of Heap-Spraying Attacks Using String Trace Graph 21

In our observation of heap-spraying analysis, we found out three features
of heap-spraying. First, NOP-sled is generated from the small number of short
strings because an exploit should be performed in a short time. If the exploit
takes long time, a victim stops navigating the site.

Second, heap-spraying uses abnormally long strings. Attackers insert NOP-
sleds as much as possible to increase the possibility that a jump instruction lands
on the NOP sled. If a jump instruction lands on the NOP-sled, the execution is
reached to a shellcode. Therefore, heap-spraying needs a large size of the NOP-
sled string to increase effectiveness of the attack.

Third, heap-spraying makes many copies of a block that contains NOP-sleds
and a shellcode. Increasing the number of the block that contains the attack
codes is another way to increase the probability of the attack. Therefore, the
block is copied the hundreds of times.

4 Heap-Spraying Detection Based on a String
Trace Graph

We detect heap-spraying based on a string trace graph. We trace all string opera-
tions in JavaScript, such as concatenation, replacement and substring. Therefore,
we can get an execution history of string operations by generating a string trace
graph.

A string trace graph G consists of nodes V and directed edges E . Each node V
represents a string object and it has a length of the string as an attribute. There
are two node types which are a leaf node VLeaf and an internal node VInternal.
A leaf node VLeaf has no incoming edges but an internal node VInternal has
incoming edges. Initial strings are represented as leaf nodes and output strings
of string operations are represented as internal nodes. Directed edges represent
execution flows of string operations.

Figures 2 and 3 show how we create graphs from JavaScript codes. Each node
represents a string object and the number means the length of the string. Each
edge represents a flow of a string operation. By analyzing the graph in Fig. 3, we
can know that there are four initial strings and a string operation is performed
repeatedly in the last part of the graph.

4.1 Features

We propose three features to detect heap-spraying attacks: ratio of leaf nodes,
length of a string and degree of the nodes. First, our method uses a ratio of leaf
nodes as a feature to detect heap-spraying. A ratio of leaf nodes LeafRG of a
string trace graph G is computed as follows.

LeafRG =
nleafG

(nleafG + ninternalG )
, (1)

where nleafG is the number of leaf nodes in G and ninternalG is the number of
internal nodes in G. Heap-spraying has a few leaf nodes because it begins from



22 J. Song et al.

(a) Ratio of leaf node (b) Length

(c) Degree

Fig. 4. Comparison of the features for google.com and a published exploit 24017 in
exploit-db.com. x axis for the number of generated strings and y axis for each feature.

a small number of initial strings. In general, JavaScript codes in the normal
websites have a lot of initial strings to represent texts.

Second, our method uses the length of strings to detect heap-spraying. Heap-
spraying exploits long strings because it makes many NOP-sleds to increase
possibility of the attack. Each node of the string trace graph contains the length
of string objects, so we can detect abnormally long strings.

Third features is the degree of a node that is the number of outgoing edges
of the node. The degree of a node represents how many string operations are
performed with the node. Heap-spraying performs string operations many times
to copy an object that contains NOP-sleds and a shellcode to increase the pos-
sibility of attacks. If string operations are performed many times, there is a
node having an unusually larger number of outgoing edges. If there is a nodes
that has a larger degree than a threshold, our method decides that there is a
heap-spraying attack.

We train well-known classification algorithms with these three features. The
trained classification algorithms classify whether a JavaScript contains heap-
spraying codes.

5 Evaluation

We implement our method on JavaScriptCore (JSC) which is a default JavaScript
engine of an open-source web engine Webkit [5]. The release version that we mod-
ify is r128399. We modify JavaScript String class to trace every constructor and
destructor. Our code is written in 600 lines of code.

http://google.com
http://exploit-db.com


Detection of Heap-Spraying Attacks Using String Trace Graph 23

Fig. 5. Comparison of false positive rate for 10 benign web sites

We begin our evaluation by measuring the effects of each three feature men-
tioned in Sect. 4.1. Figure 4 shows the results on a benign website (google.com)
and a site that contains a published heap-spraying attack code. Figure 4(a) shows
the ratio of leaf nodes. The ratio of leaf nodes in the heap-spraying is much
lower than that of the benign. In general, normal websites contain many ini-
tial strings to represent text but a heap-spraying code only uses a few initial
strings for setting up attack blocks. Figure 4(b) shows the result of the length
feature. The length of strings in the heap-spraying is much longer than that of
benign because the heap-spraying uses abnormally long strings to increase the
possibility of the attack. Figure 4(c) shows the result of the degree feature. The
maximum degree of benign is 80 but the degree of heap-spraying is much higher
than that. From this result, we can know that the heap-spraying code performs
string operations much more than a benign website.

Overall, three features are very useful to distinguish between a malicious site
that contains a heap-spraying code and a benign site.

5.1 False Positive Rate and False Negative Rate

In this section, we compute false positive rate and false negative rate. We crawl
the front pages of Alexa top 500 sites [1] as a benign data set. We set up a mali-
cious data set with 50 web sites in malwaredomainlist.com [4] and a published
heap-spraying sample in exploit-db.com [3].

Weka [11] is used for classifications. We use 66 % of our data set for training
and the remainder is used for validation. Four classifiers are trained: decision tree,
logistic regression, naive Bayes and SVM. Table 1 shows the results of the four

http://google.com
http://malwaredomainlist.com
http://exploit-db.com


24 J. Song et al.

Table 1. False positive and false negative of classifiers trained by four algorithms;
decision tree, logistic regression, Naive Bayes and SVM.

Algorithms False positive rate (%) False negative rate (%)

Decision tree 0.00 0.00

Logistic regression 0.03 0.98

Naive Bayes 4.00 0.67

SVM 18.50 0.00

Table 2. Benign web sites that we used in experiments

Sites Document (kB) JavaScript (kB)

google.com 98 787

facebook.com 80 389

youtube.com 99 352

yahoo.com 316 651

twitter.com 52 306

amazon.com 227 316

ebay.com 75 272

cnn.com 110 1232

economist.com 150 610

maps.google.com 205 797

classifiers. Decision tree and logistic regression classifiers achieve outstanding
performance. The others also have low false positive rate and false negative rate.

To examine the results of false positive rate in detail, we select the results
of 10 popular sites (Table 2) that are classified with two classifiers which are
decision tree and logistic regression. We visit not only the front page but also
up to 20 internal pages of the sites. Figure 5 shows the result. Overall, logistic
regression performs with low false positive rates and decision tree performs with
almost zero false positive rates. In facebook.com case, logistic regression has the
highest false positive rate because facebook.com has many copy operations. False
positives are mainly caused from some benign sites implemented with obfuscated
codes or many string operations.

5.2 Performance

We evaluate the time overhead and the memory usage on the 10 sites (Table 2).
When we measure the performance, we except network and rendering overheads
by executing only JSC with Webkit. The total memory usage is calculated by
counting the number of objects. We conduct the evaluation with decision tree
and logistic regression because these two algorithms have the low false positive
rate and false negative in Sect. 5.1.

http://google.com
http://facebook.com
http://youtube.com
http://yahoo.com
http://twitter.com
http://amazon.com
http://ebay.com
http://cnn.com
http://economist.com
http://maps.google.com
http://facebook.com
http://facebook.com


Detection of Heap-Spraying Attacks Using String Trace Graph 25

Fig. 6. Run-time overhead results

Fig. 7. Memory usage overhead results

Figure 6 shows the results of run-time overhead. Decision tree takes more time
about 11 % and logistic regression takes more time about 12 %. Figure 7 shows
the results of memory usages. On average, our method uses approximately 2.3 %
additional memory. In facebook.com and twitter.com, we consume more time
and memory because they have more string operations than other sites. Google
Map site uses a lot of memory, so the additional memory usage is relatively too
small for the existing memory usage.

6 Conclusions and Future Work

This paper proposed a heap-spraying detection method based on a string trace
graph. We build a graph by tracing all string operations in JavaScript. Our method
is executed in a client browser and checks every web page that a user visits. Eval-
uation results show that the proposed method have low false positive rates and

http://facebook.com
http://twitter.com


26 J. Song et al.

low overheads. As the future work, we plan to apply the string trace graph for
detection of other malicious JavaScript techniques, such as obfuscation. Obfusca-
tion uses a lot of string operations to evaluate string as JavaScript code. String
operations in obfuscation will reveal their pattern by string trace graphs.

Acknowledgements. This work was supported by ICT R&D program of MSIP/IITP.
[14-824-09-013, Resilient Cyber-Physical Systems Research].

References

1. Alexa top 500 global sites. http://www.alexa.com/topsites
2. Closure compiler. https://developers.google.com/closure/compiler/
3. Exploit database. http://exploit-db.com
4. Malware domain list. http://malwaredomainlist.com
5. The webkit open source project. http://www.webkit.org/
6. Akritidis, P., Markatos, E.P., Polychronakis, M., Anagnostakis, K.: STRIDE: Poly-

morphic sled detection through instruction sequence analysis. In: Sasaki, R., Qing,
S., Okamoto, E., Yoshiura, H. (eds.) Security and Privacy in the Age of Ubiquitous
Computing. IFIP, vol. 181, pp. 375–391. Springer, New York (2005)

7. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious javascript code. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 281–290. ACM (2010)

8. Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: low-overhead mostly static
javascript malware detection. In: Proceedings of the Usenix Security Symposium
(2011)

9. Ding, Y., Wei, T., Wang, T., Liang, Z., Zou. W.: Heap taichi: exploiting memory
allocation granularity in heap-spraying attacks. In: Proceedings of the 26th Annual
Computer Security Applications Conference, pp. 327–336. ACM (2010)

10. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-
by downloads: mitigating heap-spraying code injection attacks. In: Flegel, U.,
Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg
(2009)

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1),
10–18 (2009)

12. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network-level polymor-
phic shellcode detection using emulation. In: Büschkes, R., Laskov, P. (eds.)
DIMVA 2006. LNCS, vol. 4064, pp. 54–63. Springer, Heidelberg (2006)

13. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-based detection
of non-self-contained polymorphic shellcode. In: Kruegel, C., Lippmann, R., Clark,
A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

14. Ratanaworabhan, P., Livshits, V.B., Zorn, B.G.: Nozzle: a defense against heap-
spraying code injection attacks. In: USENIX Security Symposium, pp. 169–186
(2009)

15. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of
drive-by-download attacks. In: Proceedings of the 26th Annual Computer Security
Applications Conference, pp. 31–39. ACM (2010)

16. Toth, T., Kruegel, C.: Accurate buffer overflow detection via abstract pay load
execution. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516,
pp. 274–291. Springer, Heidelberg (2002)

http://www.alexa.com/topsites
https://developers.google.com/closure/compiler/
http://exploit-db.com
http://malwaredomainlist.com
http://www.webkit.org/


http://www.springer.com/978-3-319-15086-4


	Detection of Heap-Spraying Attacks Using String Trace Graph
	1 Introduction
	2 Related Work
	2.1 Heap-Spraying Detection
	2.2 Malicious JavaScript Detection

	3 Background
	3.1 A String Object in JavaScript
	3.2 Heap-Spraying

	4 Heap-Spraying Detection Based on a String Trace Graph
	4.1 Features

	5 Evaluation
	5.1 False Positive Rate and False Negative Rate
	5.2 Performance

	6 Conclusions and Future Work
	References


