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Abstract. Analysis of flows such as human movement can help spatial planners 
better understand territorial patterns in urban environments. In this paper, we 
describe FlowSampler, an interactive visual interface designed for spatial plan-
ners to gather, extract and analyse human flows in geolocated social media data. 
Our system adopts a graph-based approach to infer movement pathways from 
spatial point type data and expresses the resulting information through multiple 
linked multiple visualisations to support data exploration. We describe two use 
cases to demonstrate the functionality of our system and characterise how spa-
tial planners utilise it to address analytical task. 
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1 Introduction 

Urban (or inter-urban) flow analysis is a particularly important subject in spatial plan-
ning that identifies territorial patterns in human movement to inform policymaking. 
Although many techniques have been devised to carryout such analysis [1-3], the 
growing volume of geolocated social media data presents spatial planners with new 
opportunities to formulate evidence based policies that could lead to improvements in 
the urban environment. A key component in analysing human movement is the notion 
of trajectory. A trajectory provides information about the position of a person through 
space and time. By analysing patterns in aggregated trajectories, spatial planners aim 
to identify pathways where important movement or flows occur. The insights that 
they gain from analysis are used to conceptualise territorial structures, such as func-
tional urban areas [4], that ultimately determine where and how policies are enacted. 

Geolocated social media data is a source of publicly accessible data that contains 
information, which may be extracted to study urban flows. Since such data typically 
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contain a timestamp and can be referenced to specific user identifiers, it is reasonable 
to construct a social media user’s trajectory based on a chronologically ordered set of 
geolocated data records. While this task may appear to be outwardly trivial, it can be 
rather challenging for spatial planners to accomplish with generic GIS software, as the 
data tend to be large and ill structured.  

We present FlowSampler, a visual analytics system designed for spatial planners to 
gather and analyse urban flows in geolocated social media data. This work was moti-
vated by the need for an interactive visual interface that would extract trajectories out 
of geolocated social media data and summarise them in a flow map [5]. The strength 
of this system is that it enables spatial planners to formulate and subsequently verify 
research questions by reconfiguring the interface for analysis at various spatial and 
temporal granularities. The interactions are carried out through a series of integrated 
control widgets that allows the spatial planners to directly manipulate the visualisa-
tion. We make three contributions in this paper: First, we propose a graph-based  
approach to construct a flow map from the trajectories extracted from a geolocated 
social media dataset. Then, we describe a visual analytics procedure to identify path-
ways with significant movement between sets of locations. Finally, we demonstrate 
the functionality and scalability of our system with two use cases that characterise the 
task this system addresses at different spatial and temporal granularities. 

2 Data 

Recent growth in smart phones usage [6] and emergence of location aware services 
has enabled large-scale data collection [7] through participatory sensor networks [8]. 
A key feature that makes such systems particularly relevant for urban informatics [9] 
is the ubiquity of the sensors, and the existence of infrastructures that enable sensing. 
Twitter is an example of a participatory sensor network. It is a microblogging service 
that allows people to share events and news or have conversations in real time [10]. 
Empirical studies have shown that people generally use Twitter to describe what they 
are doing or express how they are feeling [11]. Apart from text content, each tweet is 
accompanied by a range of meta data such as timestamp and geographic location. We 
refer to geographically referenced tweets as geolocated tweets. Geographic referenc-
ing is not exclusive to Twitter but has been a popular concept, implemented in many 
other social media services. Depending on individual preferences, Twitter users may 
decide to publically share their activities on other social media. When they do so, the 
information posted on those services are also publicised on Twitter. Foursquare, an 
online service for users to share their whereabouts is an example of such a network. 
Because Twitter offers a relatively simple protocol to access such information, other 
studies in literature [12, 13] have also collected geolocated data from other social 
media through Twitter. For these reasons, we developed our system based on 
geolocated twitter data. Yet, the concepts we describe can be generalizable to a wider 
class of geolocated social media data with similar characteristics. 

Prior to the availability of geolocated social media data, large-scale studies of mo-
bility were mainly based on cellular activity logs [14-17] that track the spatial position 
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of people at different moments in time. To analyse movement in cellular datasets, 
analyst rely on techniques that partition a given territory into subspaces based on the 
locations of cellular base stations. The position of a cell phone is then approximated 
to the location of the base station responsible for routing its signal. An estimated tra-
jectory can then be constructed by chronologically ordering the locations of the base 
stations that served the cell phone. While this approach has revealed valuable insights 
about human mobility [14, 15], the spatial resolution in which studies can be  
conducted depends on the physical geometry of the infrastructure. In comparison to 
geolocated social media datasets that offer spatial information of up to street level 
precision, the space partitioning technique implies that studies conducted in territories 
with sparsely distributed base stations will be limited to relatively low resolution spa-
tial analysis. Moreover, cellular dataset are proprietary in nature. In most cases,  
obtaining such data tend to require a long time to accomplish due to complicated pro-
cedures and long discussions with stakeholders. 

3 Related Work 

There are many examples that take advantage of the fine spatial granularity offered by 
geolocated social media data to study cities in greater detail. In popular culture, such 
datasets have been used to create casual visualisations [18] to engage the lay audience 
[19]. Several prominent examples include maps that show key paths in transport in-
frastructure [20], track the use of different languages in cities [21, 22] and reveal the 
distribution of urban wealth [23]. Previous work in literature have also made use of 
geolocated datasets for a multitude of purposes such as studying or developing tech-
nologies to support land use analysis, crisis management and mobility. 

Land Use Analysis. Applications that use geolocated social media data for land use 
analysis are generally concerned with identifying the type of activities that are most 
common in specific urban areas. Frias-Martinez et al described a straightforward 
procedure that combines a space partitioning technique with human deduction to iden-
tify changes in land use over time [24]. Livehoods, a project by Cranshaw et al [12] 
addresses the same issue but adopts an automatic technique to draw alternative neigh-
bourhood boundaries by clustering nearby locations with similar social activities. 
Their approach illustrates how the fine spatial resolution offered by geolocated tweets 
can be used to reveal social-spatial divisions in cities. Kling and Pozdnoukhov [13] 
developed a more sophisticated system that addresses the same issue. However, their 
work differs from the former in that they extract a chronologically ordered set of 
keywords to provide analysts with time stamped contextual information of activity on 
the ground. 

Crisis Management Systems. Apart from land use analysis, geolocated social media 
data also serve as a source of information in crisis management systems. The task 
addressed by analyst in this domain involves extracting information to monitor situa-
tions and explain how they evolve. Studies such as De Longueville et al’s analysis of 
a forest fire near Marseille [25], and Prasetyo et al’s investigation of how a severe 
haze affected the residents of Singapore [26], act as some instances to characterise 
how such data can be used as a quantifiable source of information in times of crisis. 
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Mobility Analysis. While there exists a diverse range of work that made use of social 
media data for land use analysis and crisis monitoring, relatively little has been done 
to tap its potential for understanding human mobility. Traffic and navigation is one 
application area where such data have been exploited for mobility analysis. Wei et al 
describes an approach for constructing routes that navigate popular landmarks in  
cities [27]. Likewise, Pan et al address the problem of detecting and describing traffic 
anomalies by monitoring changes in mobility behaviour [28]. Pan’s approach howev-
er, does not infer routing information from geolocated social media data but analyses 
it for contextual information that may be useful to describe events occurring on the 
ground. Character profiling is another application area where geolocated social media 
data has been applied. Fuchs et al presents an analytical approach to extract 
knowledge about personal behaviour from geolocated social media data by classifying  
profiles based on movement trajectories [29]. Andrienko et al addresses a similar 
challenge but classifies profiles based on venues instead [30]. A similarity between 
the existing works that make use of geolocated social media data to derive mobility 
information is that they focus on very precise patterns. Our work differs from existing 
applications in that we are more concerned with identifying general flow pathways 
between locations in a territory rather than the actual transit route or specific points of 
interest. In this respect, recent work by Gabrielli et al [31] addresses a similar topic as 
us yet their intent was to identify semantic rather than spatial patterns. 

Visual Analytics. There are two broad approaches to conduct data analysis. Automat-
ic algorithms can be used to address well-defined task with a known set of steps [32] 
while visual analysis is often required to support explorative task that require human 
deduction and reasoning. Visual analysis is not new to spatial planning as the disci-
pline has a tradition of using maps for thinking and reasoning [33, 34]. There are sev-
eral visualisation techniques that are relevant for urban flow analysis. Minard’s map 
of Napoleon’s Russian campaign [35] is one of the earliest attempts at visualising 
flows. The map depicts the size of the French army by the width of a band on the 
map, and depicts the change in its numbers in relation to air temperature throughout 
the duration of the campaign. Tobler [36] provides some early examples of computer 
generated flow maps. Flow maps are maps that show the movement of objects from 
one location to another [37]. The objects that are represented vary by theme. Flow 
maps rely on a node-link type representation where lines of different widths are used 
to represent the direction and quantity of objects being moved. An alternative to the 
node link representation is an origin destination map [38]. Origin destination maps 
comprises of a set of origin destination matrices arranged in geographic order. The 
map is interpreted by tracing a point of origin to a corresponding destination in one of 
the other matrices. While benchmarks [39] have shown that the matrix representation 
outperforms the node-link representation in task such as search and quantity estima-
tion, node-link representations are reported to be more effective at path finding, an 
important task in interpreting the direction and sequence of flows. 
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by default but spatial planners may dynamically switch the display to a logarithmic 
interpolation in the event of a highly skewed distribution. 

5 Use Cases 

5.1 Investigating Daily Routine in Trip Making Behaviour 

One purpose of FlowSampler is to experiment with alternative approaches to identify 
the centres of sub regions in territories based on urban flows. The significance of 
analysing geolocated social media data is that the information extracted may give an 
alternative image of how functional urban areas are shaped in comparison to existing 
techniques that mainly analyse home to work commuting information obtained 
through census data [4]. 

Using 734,494 geolocated tweets collected from 2,786 twitter users in Belgium over 
the duration of a year, we generate a flow map consisting of trajectories belonging to 
2,194 users. We omit 592 users because of insufficient tweeting activity. Figure 5a. 
provides a visual summary of the trips that have occurred over the year. From the map, 
we identify four distinct clusters that reveal a polycentric distribution of movements. 
To obtain a map that illustrates routine trip making, we remove the flow pathways that 
exhibit spontaneous characteristics by filtering flows that fall into the lower percentile 
of the trajectory selection widget and flows that fall into the upper percentile of the 
headcount selection widget (fig. 5b). The resulting map characterises the routine trip 
making behaviour of Twitter users in Belgium. To verify the regularity of the remain-
ing flow pathways, we inspect the frequency of these trips with the time selection  
widget. Through this process, we discovered that majority of the routine movements 
take place around local communities typically in towns and villages. Yet, we also  
observe routine intercity travel across contiguous urban areas between three major 
Belgian cities (fig. 5c). 

5.2 Investigating Exceptional Trip Making Behaviour 

To demonstrate the scalability of FlowSampler, we describe an orthogonal use case 
investigating exceptional, short-term transit behaviour that took place over the touris-
tic season in Italy. The dataset we analyse consist of 13,953,814 tweets generated by 
344,660 twitter users over a period of three months. For this study, we are specifically 
interested in identifying movements that converge on, and take place within, Cilento, 
a national park in southern Italy. From this data, we construct trajectories beloinging 
to 78,477 twitter users. We omit 266,183 users due to insufficient tweeting activity. 
The map in figure 6a. illustrates that majority of movement towards Cilento originate 
from three major Italian cities. We refine the spatial granularity of the map to obtain a 
more precise boundary over the park and exclude twitter users who were in fact travel-
ling to nearby cities. This reduces the analysis to 1,214 trajectories that transit Cilento. 
Figure 6b. presents a micro view of the park showing a concentration of twitter users 
along the coastline. This reveals the extent by which the coastal regions are perceived 
as privileged destinations in contrast to the inland regions. Visually inspecting the  
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incoming and outgoing edges of each node reveals an asymmetry in trip making be-
haviour. Whereas coastal regions appear well connected to other locations, trip mak-
ing within the inland regions of Cilento tend to be limited to adjacent localities (fig. 
7). This finding corresponds to the availability of transport infrastructure as well as to 
how the coastline is marketed as a key touristic attraction. Filtering the time selection 
widget further reveals an “inland, coastal, inland” travel pattern between two disjoint 
inland regions showing that the settlements along the coastline serve as important 
hubs for transit between locations. 

6 Limitations, Uncertainty and Bias 

We have described FlowSampler, a visual analytics system that supports the extrac-
tion and exploration of urban flows in geolocated social media data. A key advantage 
of this system is that it enables planners to interactively reconfigure the interface to 
explore and detect patterns in the data at various spatial and temporal granularities. 
Furthermore, our system allows spatial planners to include external geographic infor-
mation in form of base maps to evaluate the significance of patterns that they have 
identified. To show the functionality and scalability of our system, we presented two 
use cases that investigate urban flows at different spatial and temporal scales. We 
identified pathways of routine movement that occur within Flanders, a region in Bel-
gium, over the duration of a year, and traced exceptional transit activity converging 
on and subsequently occur within Cilento, a national park in Italy over the touristic 
season spanning three months. While initial deployment of FlowSampler with the 
spatial planners in our department has resulted in positive feedback, several discus-
sion topics have been raised. 

Skewed Demographic. As existing studies indicate that majority of the online social 
media users are young adults [43], there is concern that the flow patterns we detect 
only represent a partial slice of the actual population on the ground. While we 
acknowledge this limitation, we would like to point out that our approach provides 
equally valuable and alternative insights that are complimentary to the results derived 
from other urban flow analysis techniques. 

Sporadic Activity. We observe a non-linear distribution of tweeting activity in the 
form of a long tail where a handful of highly active users are trailed by a substantially 
larger number of people who tweet sporadically. Because highly active users have 
trajectories that comprise of many more trips than sporadic user, the uneven distribu-
tion implies that certain movement pathways will be over emphasized thus skewing 
the overall representation. We address this challenge by allowing spatial planners  
to interactively modify the flow map to determine which attribute edge thickness 
encodes (i.e. the number of trips or the number of people). This facilitates visual 
comparison between both attributes in order to identify bias in the representation. 
Another feasible solution is to pre-filter overly active users to remove the bias entirely 
from the analysis however this narrows the slice of the population being studied. 
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Privacy. Our system is designed to present information about aggregated movement 
behavior yet we provide functionalities for the information to be disaggregated. While 
we acknowledge that it maybe difficult to prevent the recovery of personal infor-
mation under such circumstances, imposing control measures to displace or distort the 
data maybe counter productive for the spatial planners. 

7 Future Work 

There are several avenues for future work. We plan to conduct a comparative study 
with existing urban flow analysis techniques in order to evaluate and better under-
stand the added value and potential pitfalls that may occur when using geolocated 
social media data to inform spatial planning. To optimise our system, we will experi-
ment with visualisation techniques such as interactive clustering [44-46] to address 
challenges with visual clutter. Finally, feedback from spatial planners suggests that 
contextual data such keywords could be useful for characterising flow patterns. The 
occurrence of special events such as festivals or strikes can be better understood by 
combining what people say with what they do. 
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