Chapter 2
Distributed Compressed Sensing

This chapter first introduces CS in the conventional setting where one device acquires
one signal and sends it to a receiver, and then extends it to the distributed framework
in which multiple devices acquire multiple signals. In particular, we focus on two
key problems related to the distributed setting. The former is the definition of spar-
sity models for an ensemble of signals, as opposed to just one signal. The second is
the structure of the corresponding recovery algorithm, which can be centralized or
distributed; each solution entails specific advantages and drawbacks that are prelim-
inarily discussed in this chapter, whereas a detailed description of the corresponding
recovery algorithms is given in Chaps.4 and 5.

2.1 Compressed Sensing for Single Sources

Before starting, we define some notations. We denote column vectors with small
letters, and matrices with capital letters. Given a matrix A, AT denotes its transpose.
We consider R" as an Euclidean space endowed with the following norms:

n 1/p
Ixll, = (Z |xl-|P)
i=1

with p = 1, 2. Given x € R", we denote the £ pseudo-norm as

n
0
Ixllo = D 1xi .

i=1

where we use the convention 0° = 0. For a rectangular matrix M € R"™*"  we
consider the Frobenius norm, which is defined as follows:
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m

DN

M| F =
i=1 j=1
and the operator norm
IMzll2
Ml = sup :
20 llzll2
We denote the sign function as
I ifx>0

sgn(x) =30 ifx=0

—1 otherwise.

If x is a vector in R”, sgn(x) is intended as a function to be applied elementwise.

2.1.1 Sensing Model

The basic CS problem can be stated as follows. An unknown signal represented by a
column vector x € R” is sensed by taking a number m of its linear projections, i.e.,

y=®x, 2.1

where @ € R™*" is a given sensing matrix, and y € R™, with m < n, is the
measurements vector. According to this process, x is repeatedly sensed by taking
its scalar product with every row of @, yielding a measurements vector y. Since
m < n, the signal representation provided by y is more “compact” than the original
representation x, hence the term compressed sensing.

The CS reconstruction problem can be stated as follows: given y and @, one wishes
to reconstruct the original signal x. With m < n, this is clearly an underdetermined
problem that may have infinitely many valid solutions satisfying y = @x. As is the
case of most regularization problems, in order to recover x, it is therefore necessary
to add some prior knowledge about the signal in order to constrain the solution set
of (2.1). In CS, this is done using the concept of sparsity. In plain terms, a signal
is said to be sparse if it has a low number of nonzero entries with respect to its
length. In particular, x is said to be k-sparse if it has at most k nonzero entries, or
equivalently ||x|lo < k. The set of all k-sparse signals in R” is denoted as X, i.e.,
T ={x eR"lxllo < k}.
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2.1.2 Sparse Recovery

Armed with the notion of sparsity, one can attempt to recover x solving the following
problem, which aims at finding the sparsest possible signal that satisfies the sensing
equation (2.1):

X = argmin ||x|lo such that y = ®x. 2.2)
X

Problem (2.2) has very strong guarantees of success. In [1, Chap. 1] it is shown
that, under some mild conditions on the independence of the columns of @, if m > 2k,
i.e., the number of linear measurements is at least twice as the sparsity of x, then
there exists at most one signal x € X; such that y = @x, and (2.2) will yield
the correct solution for any x € Xj. However, despite its attractiveness, solving
(2.2) is not a viable way to recover x, because this problem has combinatorial com-
plexity. The so-called “oracle” receiver simply assumes to know in advance the set
< = supp(x) = {i € {1, ..., n}|x; # 0} identifying the indexes of the nonzero
entries of x. Given .¥, one can construct the reduced matrix @ » which is obtained
removing from @ the columns ¢; whose index does not belong to .. Then, the
nonzero components of x are readily obtained as x » = QD; y, where AT denotes the
pseudoinverse of A, i.e., AT = (ATA)_IAT. The oracle receiver is very useful to
derive theoretical properties of CS systems. In practice, however, .7 is not known,
so that in order to solve (2.2) one should consider all possible sets of k out of n index
positions, i.e., the sparsity supports of x, and test each of them for correctness. This
is an NP-hard problem that is computationally infeasible even for small values of n.

To address this issue, it is possible to solve a slightly different problem where the
function to be minimized is convex, namely

X = argmin ||x||; such that y = ®x. (2.3)
X

Replacing the £( with the £; norm makes the problem convex, and essentially reduces
it to a linear program that can be solved using convex optimization tools, e.g.,
quadratic programming [2], such as interior-point methods.

The complexity is polynomial and depends on the specific solver employed for (2.3),
e.g., O (n3). The algorithm in (2.3), also known as basis pursuit (BP), has very good
performance in terms of success of reconstruction, since the £1 norm tends to promote
a sparse solution. Moreover, it also has some interesting performance guarantees,
which are easily described via the Restricted Isometry Property (RIP, see e.g., [3]).
In particular, a matrix @ satisfies the RIP of order k if there exists § € [0, 1) such
that the following relation holds for all x € ¥j:

(1 =8 x)3 < 1DxI3 < (1+8)|IxII3. (2.4)
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We define the RIP-constant §; := inf{é € [0, 1): & satisfies the RIP of order k}.
Basically, the RIP ensures that the columns of @ are nearly orthonormal, at least
when operating on sparse vectors. Moreover, @ is an approximately norm-preserving
(and hence distance-preserving) mapping for k-sparse signals, all the more so as Jy
approaches zero. It can be shown (see [4]) that, if x is k-sparse and @ satisfies the
RIP of order 2k with RIP-constant 8»; < +/2 — 1, then the solution to (2.3) is the
same as the solution to (2.2).

Verifying whether a given matrix @ satisfies the RIP of order & is also an NP-hard
problem. However, it has been shown [5] that some classes of random matrices with
m = O(klog %), and particularly those with independent and identically distributed
(i.i.d.) entries drawn from a sub-Gaussian distribution, satisfy the RIP with very high
probability. This is the main reason behind the popularity of random sensing matrices
with Gaussian, Bernoulli or Rademacher distributions, so that it is also common to
refer to linear measurements as “random projections.”

In practice, in most cases the sparsity model describes well the signal in a trans-
formed domain, rather than in its natural domain. The formulation above can be
easily modified to accommodate this. In particular, we let x = W6, with & € R"*",
Matrix ¥ represents the linear inverse transform of a representation 6 that is indeed
sparse. Putting this definition into (2.1) yields y = ®x = @W6H = A6, where
A = @V and 6 is a sparse vector. This new problem can be solved in exactly the
same way as the original one, solving for 6 and considering A as the new “sensing”
matrix, and eventually recovering x = V6.

Another limitation of the sensing model (2.1) lies in the fact that the acquired
linear measurements are typically affected by noise, leading to the following more
accurate model:

y=®x +e, (2.5)

where e is some unknown perturbation bounded by |le||2 < €.
Under certain assumptions on the sensing matrix and for a sufficiently low level
of the signal sparsity [6], robust signal recovery is achieved by solving

X = argmin ||x]jo s.t. ||y — ®x|2 <e. (2.6)
X

This means that the solution X of (2.6) obeys ||x — x|| < k& where « is a positive
constant. Alternatively, an estimation can be provided by the following estimator

% =argmin|ly — ®x|5 st x € . (2.7)
X

As in the noise-free scenario, (2.6) and (2.7) are known to be NP-hard problems.
However, an attractive alternative is given by considering (2.7) and taking the convex
relaxation of the £o pseudonorm. This problem is also known as basis pursuit with
denoise (BPDN) and consists in selecting the element x with residual norm below
the tolerance & which has minimal £;-norm:
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X =argmin |[x|; st |y — ®x|2 <e, (2.8)
X

It can be shown (see [4]) that, if x is k-sparse and @ satisfies the RIP of order 2k
with RIP-constant 82; < ~/2 — 1, then the solution to (2.8) is such that |x — x|| < ce
where c is a positive constant.

Another take on the same problem is the least-absolute shrinkage and selection
operator (Lasso) [7], which recasts the problem (2.8) using an unconstrained formu-
lation:

A .1
& = argmin 3 [y = @x13 + 21x11 (2.9)

where the parameter A > 0 weights the sparsity term of the cost function. It is well
known that for problems in which the number of variables n exceeds the number of
observations m the cost function in (2.9) is not strictly convex, and hence it may not
have a unique minimum. Sufficient conditions guaranteeing the uniqueness of the
solution of (2.9) are derived in [8]. The solution x7 455, provides an approximation
of (2.6) with a bounded error, which is controlled by A (see [9, 10]).

2.1.3 Iterative Thresholding Algorithms

Despite their provably good performance, however, solvers of BPDN and Lasso
problems have a rather high computational complexity, which may be excessive for
certain applications, especially when the signal length 7 is large. Therefore, alongside
these solvers, the literature describes a large number of algorithms for sparse recovery.
The main approaches can be classified as optimization-based methods [11], pursuit
strategies [12—15], coding-theoretic tools [16, 17], and Bayesian methods (see [18]
and reference therein).

For example, the orthogonal matching pursuit algorithm [13] is a very popular
solution; this algorithm attempts to estimate the k nonzero components one by one,
starting from the strongest one. At the same time, iterative hard thresholding (IHT)
[19, 20], and iterative soft thresholding (IST) algorithms [21] have been proposed.
These algorithms have lower computational complexity per iteration and lower stor-
age requirements than interior-point methods, and are amenable to a theoretical
performance analysis. We briefly review IHT and IST, which will also be employed
in later sections of this book. They approximate the solution to (2.6) and (2.9).

The solution is obtained through an iterative technique that alternatively applies a
gradient descent step to minimize ||y — @x ||%, followed by a scalar thresholding step
that enforces sparse estimations. The procedure is iterated until a stopping criterion
is met. Generally, if the algorithm is analytically proved to converge, one can stop it
when numerical convergence is achieved, that is, when the relative distance between
the estimates of two successive iterates is below a fixed threshold. Alternatively, one
can fix a maximum number of iterations.
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The thresholding operators can be hard or soft and are defined as follows:

ox[x] = argmin ||x — z]|> (2.10)
7€YL

and

) (2.11)
0 otherwise.

{sgn(x)(|x| — ) if x| > A
mlx] =

It should be noticed that the hard thresholding operator takes a best-k term approx-
imation for some value of k. This is equivalent to selecting a certain number of
components that have the largest magnitude and sets the remaining ones to zero at
each iteration. The soft thresholding operator is also called the “proximity operator”
of the £1-norm, and it acts component-wise by taking the components with magnitude
above a certain threshold and shrinks remaining ones. IHT and IST are described in
Algorithm 1 and in Algorithm 2, respectively.

Algorithm 1 [HT

Input: Sensing matrix @, measurement y, sparsity level k
Set x(@ = 0, iterate
for + = 1 to Stoplter do
xO — o [xD 4 T (y — DxtD)y)
end for

Algorithm 2 IST

Input: Sensing matrix @, measurement y, sparsity parameter A
Set x(@ = 0, iterate
for + = 1 to Stoplter do
_x(t) « n)\[x(f—l) + djT(y _ ¢x(1—l))]
end for

The convergence of these algorithms was proved under the assumption that
||<I>||% < 1in [21] (for ISTA) and [20] (for IHTA). A dissertation about the con-
vergence results can be found in [11].

2.2 Compressed Sensing for Distributed Systems

The problem addressed in the previous section refers to the sensing and reconstruction
process of a single signal. In many cases, however, it is of interest to consider a set of
signals sensed by independent nodes. The sensing setup can be extended accordingly,
and suitable recovery algorithms can be derived.
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2.2.1 Distributed Setup

In the following, we refer to a scenario where CS is applied to a distributed system in
which several nodes independently sense a signal according to (2.5), as in Fig.2.1,
where each black dot represents a node and dashed lines represent available com-
munication links between pairs of nodes. Let ¥ be the set of sensor nodes of size
J = |7|. The vth node acquires a signal x, € R” via linear measurements of the
form y, = ®&,x, + e,. According to this model, each node senses a different signal
Xy, using an individual sensing matrix @,, the sensing process being affected by an
individual noise signal e,. Nodes are represented as vertexes of a graph & where the
set & of edges between pairs of nodes identify the communications links, so that
(¢4, 7, &) defines the network structure.

The distributed setup poses particular challenges for the sensing and reconstruc-
tion process.

e If the signals x, are independent, then the reconstruction problem is essentially
equivalent to J individual problems, one at each node. In other terms, each node
will have to acquire a number of linear measurements that is sufficiently large
to enable reconstruction of y, from x, and @,.. No collaboration among nodes is
needed or useful at all, because a node does not have any information that may
help in reconstructing the signal measured by another node.

e The more interesting case is when the signals x,, are correlated among each other.
This typically occurs when the nodes sense a physical phenomenon that exhibits
a spatially smooth behavior, e.g., a temperature or pressure field. In this sce-
nario, there are two types of sparsity to be exploited. Namely, intranode sparsity
describes the degree of dependency among samples of the same signal at different
time instants, while internode sparsity describes the dependency among samples
acquired by different nodes at the same time instant. Internode sparsity is a specific

Fusion center

Fig. 2.1 Distributed system setting
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aspect of distributed systems, which will be addressed in the remaining part of this
chapter and in the next chapters.

e While the nodes individually acquire linear measurements of the signals, two
approaches are available for the reconstruction, namely centralized and distributed.
In the centralized approach, the nodes offload the reconstruction process to a
fusion center, which receives the linear measurements { yv}vj=1 acquired by all
nodes and recovers the corresponding set of signals {xv}jzl. Whether centralized
reconstruction is possible or even useful depends on many aspects, including the
energy cost incurred by transmitting the measurements to the fusion center; this
latter also depends on several factors, including distance and the existence and
willingness of neighboring nodes to serve as relays. Moreover, the nodes do not
get to know the reconstructed signal x,,, which is known only at the fusion center,
unless it is transmitted back to each node.

e In the distributed approach, the network does away with a fusion center. This has
many advantages, as it avoids the need to transfer all the data to the fusion cen-
ter, thereby saving a lot of energy. Moreover, the network can function even in
the case that the fusion center suddenly becomes unavailable, e.g., because of a
hardware failure. In addition, the information does not travel long distances, avoid-
ing the danger of eavesdropping or other security threats. Conversely, distributed
reconstruction is based on local short-range communications of each node with its
neighbors. Short-range communications are very convenient in terms of privacy
and energy consumption, and the failure of few nodes will generally not break
down the operation of the whole network. On the other hand, local communica-
tions decrease the speed at which the information spreads through the network,
calling for iterative reconstruction techniques to allow time for each node to con-
tribute to the reconstruction of all other nodes in the network. Since each iteration
has an energy cost, the design of a distributed reconstruction algorithm must be
done carefully, in order to avoid that too many iterations outweigh the energy
benefits of local communications.

2.3 Joint Sparsity Models

This section extends the signal model for one source to the case of distributed signals.
Several joint sparsity models are considered, in which all or parts of the signal model
are assumed to be sparse. Joint sparsity models entail signals having a twofold source
of correlation:

e Intracorrelation, denoting how samples of the same signal are correlated to each
other (typically, correlation in time).

e Intercorrelation, denoting how samples of different signals are correlated to each
other at the same time instant (correlation in space).
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These models represent a good fit for physical signals acquired during time by a
sensor network in different points of space. In particular, the original signal sensed
by the vth node can be written as

Xy =xc+ Xy, (2.12)
and node v acquires linear projections of this signal as
yy = Dyx, = D, (xC + xLV) . (2.13)

According to this model, each signal is composed of a common part xg, which is
the same for all sensors and is referred to as the common component, and an individual
part x| ,, called innovation component, which is specific to each individual sensor.
We also assume that x¢ has k¢ nonzero entries, and each x) ,, has k| , nonzero entries,
so that x, has at most k, = k¢ + ki, nonzero entries. If each node had to recover x,
from y, without receiving help from other nodes, it should acquire a number of linear
measurements m, proportionally larger than k,, i.e., m, >~ Ck,, with C sufficiently
large depending on the recovery algorithm employed. If each node acted like this,
the total number of measurements acquired by the network would be equal to

ZCkV = CZ(/(C +k|,v) = C(Jk(; +Zk|’v) .

What is clear from this analysis is that, while intrasensor sparsity is exploited at each
node, the common component is measured J times individually. This is a clear waste
of resource that is caused by the lack of exploitation of intersensor sparsity.

The model described in (2.12) can be further detailed according to the structure
of xc and x) ,,. In particular, in [22, 23] the following cases are identified:

e Both the common and innovation components are sparse, namely k¢ < n and
k., < n for all v. This model is also referred to as JSM-1 in [23]. The common
and innovation components need not necessarily be sparse in the same basis. This
is a very general model that encompasses many cases of practical interest. For
example, a physical phenomenon that is spatially smooth over the coverage area of
the sensor network will typically yield a sparse common component that represents
the large-scale behavior of the phenomenon, and an innovation component that
accounts for the local behavior.

e The common and innovation components have the same sparsity support for all
signals (model JSM-2 in [23]). This model is relevant e.g., when a signal described
by few frequency components undergoes a frequency-selective attenuation such
as the multipath effect, whereby each component is multiplied by a different coef-
ficient, but no new component is created.
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e The common component is not sparse, but the innovation components x, ,, are
sparse (model JSM-3). This is a more general version of JSM-1.

Similar sparsity models were proposed in [24], along with respective reconstruc-
tion algorithms.

2.4 Reconstruction for Distributed Systems

It should be noted that, given the number of possible setups, there is no one-size-fits-
all reconstruction algorithm that can be used in all cases. In the next chapters we will
overview a few algorithms which have been developed for specific scenarios, i.e.,
centralized (Chap.4) versus distributed (Chap. 5) reconstruction for a specific joint
sparsity model.

The centralized problem entails that all linear measurements { yv}vj=l are available
at the fusion center, which attempts to take advantage of the correlation among the
signals x,. Early work on this reconstruction problem goes back to the multiple-
measurement vectors problem [25, 26]. Indeed, [25] showed that the availability
of multiple measurements improves recovery performance. Later, [26] extended the
equivalence between £y and £ reconstruction to the multiple-measurement vectors
case. A few practical algorithms have also been proposed, e.g., M-FOCUSS and
M OMP. Typically, these algorlthms are based on a sensing model Y = &X, with

=[y1,....»nl € R X = [x,...,x,] € R and & € R™ " Such
algorithms are convenient extensmns of the corresponding algorithm in the single-
sensor case. However, they have significant limitations. First, the dictionary & must
be the same for all vectors. Second, they work well when all signals x,, have the
same sparsity support, e.g., in the case of model JSM-2. This is because a common
sparsity support leads to an unknown vector X that is row-sparse, facilitating the
recovery task as well as the derivation of theoretical recovery guarantees. In Chap.4
we will show more general application scenarios.

The distributed reconstruction problem is more challenging, because at any stage
no node has a complete knowledge of the measurements sensed by all other nodes.
This information spreads in the network over time, and nodes make greedy decisions
based on limited knowledge of the information circulating in the network. Distributed
reconstruction algorithms raise the following questions.

e Given the design of a specific distributed recovery algorithm, does the algorithm
converge at all?

e Ifit does converge, does it converge to the global or local minimum of some given
cost function?

e Isthis functional a sensible one, e.g., the same functional solved by a corresponding
centralized reconstruction algorithm?

e Do all nodes individually converge to a sensible solution?

As will be seen in Chap. 5, and as is the case of many single-sensor recovery
algorithms, these questions can be answered for some classes of algorithms, but
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sometimes only partial responses can be obtained. In particular, Chap. 5 will describe
a distributed generalization of thresholding algorithms, for which strong guarantees
can be obtained, and some extensions aimed at minimizing communication cost,
which are very interesting from the practical standpoint, but less amenable to a
complete analytical characterization.
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