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Abstract. Deformation fields obtained from image registration are com-
monly used for deriving measurements of morphological changes between
reference and follow-up images. As the underlying image matching prob-
lem is ill-posed, the exact shape of these deformation fields is often
dependent on the regularization method. In longitudinal and cross-
sectional studies this effect is amplified if time between acquisitions
varies and smoothness between serial deformations is neglected. Existing
solutions suffer from high computational costs, strong modeling assump-
tions and the bias towards a single reference image. In this paper, we
propose a computationally efficient solution to this problem via a tem-
poral smoothing formulation in the one-parameter subgroup of diffeo-
morphisms parametrized by stationary velocity fields. When applied to
modeling fetal brain development, the proposed regularization results in
smooth deformation fields over time and high data fidelity.

1 Introduction

Accurately estimating the deformation of an anatomical structure as a function
of time or age from a set of examples is central to the analysis of developmental
[1] and degenerative processes [2]. Finding a temporal deformation field that rep-
resents the underlying process well, and at the same time captures the variability
in the training population requires regularization.

Modelling fetal brain development [3,4] is particularly challenging. The reg-
ularization method has substantial impact on the resulting deformation due
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to substantial morphological differences during short periods of time, partially
homogeneous image regions, and smooth surfaces that lack gradient information.
This limits the applicability of established motion estimation methods [5] and
uniform priors during regularization. In this paper we propose a locally linear
regularization that allows for spatial weighting of the temporal smoothing of
resulting deformations.

The availability of a number of consecutive observations enables various solu-
tions to the aperture problem. The rich mathematical formalism of diffeomor-
phism groups [6] provides a basis for many of these. For example, a theory of
linear least-squares geodesic regression using the initial-momentum representa-
tion of diffeomorphisms [7] has been proposed in [8–10]. The authors in [11]
use a vector momenta formulation to the same aim, while optimization of an
acceleration-based model has been proposed in [12] in order to obtain smooth
deformations between consecutive observations. The time-varying velocity field
representation of diffeomorphisms [13] has been used for higher-order formula-
tions such as spline interpolation [14] and kernel regression [15,16]. Adding a
temporal component to the registration problem by smoothing the deformations
to an explicit [17,18] or implicit [19] common reference frame has also been
proposed. Due to their efficient computation and useful mathematical proper-
ties, diffeomorphisms generated by Stationary Velocity Fields (SVF) [20] are
commonly used in this setting. With the notable exception of [21], previously
proposed regression and smoothing approaches rely on defining a common ref-
erence space for their operation. This can become increasingly difficult in the
presence of large deformations, where regularization necessary to render the reg-
istrations tractable further shapes the resulting deformation fields. Also, the
assumption of linearity can prove too strong in these cases. While theoretically
established in a general sense [22], computation of higher-order models has so
far only been applied to lower-dimensional shape representations such currents
[23], which require a-priori segmentation of the structures of interst.

In [24], Lorenzi et al. proposed a method for estimating smooth longitudi-
nal deformations using regression of pair-wise registrations encoded using SVFs.
This requires a common reference space for all deformations and thus registra-
tion of a baseline to all later time-points. Instead, we propose to only consider a
local temporal neighborhood for the temporal smoothing of the resulting defor-
mations. This also enables us to increase the performance of our method by
defining a local weighting of the temporal smoothing.

We briefly review the foundations of image registration in the log-euclidean
framework for diffeomorphisms [20] in Section 2. We then show how its mathe-
matical properties can be used to construct a spatially adaptive smoothing prior
for serial image registration. We evaluate our method on a simplified synthetic
model of cortical folding and a publicly available data set of fetal brain develop-
ment [25] in Section 3.
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2 Method

Let Stn(x) be a set of N observations of a continuous process affecting the shape
of the observation space Ω at time points tn with n = 1, . . . , N . As the group
of diffeomorphisms is closed under composition, we can obtain a diffeomorphic
model of the overall deformation between time-points t1 and tN by concatenat-
ing pair-wise diffeomorphic registrations φn, so that Stn(φn(x)) ≈ Stn+1(x). A
mapping from any image Si to another Sj with j > i can be expressed as a
concatenation of transforms Φij = φi ◦ · · · ◦ φj (Figure 1). Each φj is calculated
based on an image pair and a prior on the deformation field that acts as regular-
ization. Our aim is to find a spatio-temporal regularization prior that accurately
models the deformation over time.

Fig. 1. Sketch of a continuous deformation and an intermediate shape between t2 and
t3 computed from three possible registrations φ2

The properties of the SVF parametrization of diffeomorphisms can be
exploited to formulate a prior on temporal smoothness in a chain of pairwise
image registrations. Also, it enables to use the model residual as a weighting
function that reduces the influence of the prior in regions where the assumption
of constant deformation does not hold.

2.1 Pair-Wise LogDemons Registration

We calculate diffeomorphic mappings φn between images using the LogDemons
algorithm [26]. The algorithm computes a diffeomorphism φ(x) defined on x ∈
Ω ⊂ R

d, d ∈ {2, 3} and parametrized by an SVF v via the ODE

dφ (x, τ)
dτ

= v (φ(x, τ)) , φ(x, 0) = id (1)

Equation (1) represents a geodesic curve between a source image S(x) and a
target image T ≈ S(φ(x, 1)) in the one-parameter subgroup generated by SVF
of the Lie group of diffeomorphisms D. The velocity field v is an element of
the tangent space at the identity TidD and the flow φ(x, 1) is defined as the
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Lie group exponential φ(x, 1) = exp(v). Due to the Baker-Campbell-Hausdorff
(BCH) formula [27], v can be computed directly in the log-domain by minizing
the energy functional

E(v,vu) =
‖T − S ◦ exp(vu)‖2L2

σ2
i

+
‖v − vu‖V

σ2
x

+
‖∇v‖2V

σ2
s

(2)

where σi, σx and σs are parameters related to image noise, matching uncer-
tainty and spatial smoothness respecitely, whereas exp(vu) is an unregularized
correspondence field between T and S1.

2.2 Enforcing Temporal Consistency with Limited Image
Information

Lack of image information between time-points in homogeneous regions and
tangentially to image gradients can lead to spurious deformations that adversly
affect the overall optimality of the resulting deformation Φ1N = φ1◦φ2◦· · ·◦φN−1.
We propose a solution to this problem by means of a temporal smoothing prior
defined locally in time. This enables us to define a spatial weighting of the prior
based on the local model residual, thereby retaining important deformation cues
from the underlying images.

Temporal Smoothing Prior. A velocity field v̄ can be used as a prior to
control regularization in the LogDemons registration [24] by replacing the update
field vu in the regularization of Eq. (2) by

σ2
xvu + σ2

t v̄
σ2
x + σ2

t

, (3)

where σt defines the weight of the prior. In [24], the prior field v̄ was obtained
from a series of registrations between observations Stn(x), n = 2, . . . , N to the
baseline S1(x) by fitting a linear model over t to the sequence velocity fields
vt(x) at every x.

When considering quickly changing morphologies, registration of all images to
a common reference can be difficult and a linear model might be too restrictive.
Instead, we enforce temporal smoothness by transporting the SVF vt−1 betwen
St−1 and St to the space of St as ṽt(x′) = vt−1(φt−1(x)), x′ = φt−1(x). This
corresponds to imposing constant velocity/no acceleration prior at every point
of the deformation field.

Spatially Adaptive Prior. The update step (3) assumes the same amount of
temporal consistency over the whole image domain Ω. However, this assumption
is often violated due to the complex nature of biological processes. We therefore
propose to weigh the influence of the temporal smoothness prior depending on
the registration error at the previous time-step.
1 Without loss of generality, the intensities of all images are assumed to be scaled to

[0, 1].
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The residual at time-point t between measured image St and expected image
S̃t = St−1(φt−1) stems from the fact that the necessary spatial regularization
during optimization of (2) outweighs the available image information. Mismatch-
ing regions lack the information that could drive an image-based deformation
model. They should thus be subjected to stronger temporal consistency. This
leads us to propose the spatially adaptive temporal smoothing prior

pt =
σ2
x

(
1 − ‖St − S̃t‖

)
vu + σ2

t ‖St − S̃t‖ṽt

σ2
x + σ2

t

(4)

Figure 2 gives an illustration of the proposed adaptive regulartization.

3 Experiments

We perform two sets of experiments to validate the proposed method: first on
two sets of simplified synthetic models of cortical folding and secondly on a
publicly available dataset of human brain development. We show that the pro-
posed method is capable of accurately representing the deformation in all cases
and results in smoother deformation fields than simple pairwise registration.
We further show that using a spatio-temporal prior results in deformation mod-
els that faithfully model continuous developmental processes by evaluating its
reconstruction error on unseen data.

In all experiments, the parameters of (2) and (4) are set to σi, σx, σs = 1,
σt = .5.

3.1 Synthetic Cortical Folding

We generate two sets of synthetic cortical folding sequences from two parametric
models containing gray and white matter (Figure 3). The models represent the
formation of a single respectively two sulci. We generate 20 such sequences of

Fig. 2. Sketch of the computation of the spatially adaptive prior p2. The residual
between S̃t3 (orange) and St3 is indicated in gray.
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Fig. 3. Synthetic cortical folding sequences

Fig. 4. Endpoints of anisotropic synthetic cortical folding sequences

dimension consisting of 20 images of dimension 128 × 128 each, starting from
a common reference shape with varying symmetry of the gyrification, the end-
points of which are shown in Figure 4.

Accuracy and Shape of Deformations. In order to assess the accuracy of
our method, we compute the residual between the observed St(x), t ∈ (1 . . . 20)
and the images S1(φ1◦· · ·◦φt(x)) obtained by deforming S1 to the corresponding
time-point. We compare concatenation of independent pair-wise registrations3 to
those obtained using the proposed uniform (3) and locally adaptive (4) temporal
consistency priors.

In all synthetic experiments, nearest neighbour interpolation is used to com-
pute the deformed images S(φt(x)). The registration error is thus given as count
of mislabeled pixels. Results for the single-sulcus and two-sulci experiments are
shown in Figure 5 as box-plots over all anisotropic gyrification sequences and
summarized as averages over all experiments in Table 1.

In both the single-sulcus (Figure 5a) and two-sulci (Figure 5b) experiments,
both simple temporal smoothing and the spatially adaptive prior outperform
the naive pair-wise registration. The adaptive method outperforms the uniform
prior in the first frames of the simulated sequences, whereas the performance of
the uniform prior is better overall.

We use the norm of the gradients of the Jacobi Determinant of the velocity
fields ‖∇det(vt(x))‖, x ∈ C in order to assess spurious motion of the obtained
deformations. Figure 6 shows the results for the two sets of synthetic experi-
ments. Surprisingly, the spatially adaptive methods gives the smoothest overall
deformation in both cases. The effect of accounting for temporal coherence in
the serial registrations is noticeable, especially in the second half of the pairwise
sulcification experiment by the strong reduction of outliers in motion complex-
ity. The spatially uniform temporal regularization on the other hand does not
reduce the overall motion complexity.
3 In practice, direct use of the composition of registrations computed from consecu-

tive images lead to the propagation of matching errors resulting from finite image
resolution and optimization time. We therefore initialize every registration between
S1(φ1 ◦ φ2 ◦ · · · ◦ φt−1) and St with that between St−1 and St. Note that this does
not correspond to registering all St to S1.
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Table 1. Results of the proposed and reference methods when registering two full
synthetic time-series (Dense Sampling) and reconstructing unseen time-points from
sparsely sampled time-seris (Interpolation)

Dense Sampling Interpolation
pair-wise uniform adaptive pair-wise uniform adaptive

Single Sulcus
Mean Error 23.83 19.25 22.95 86.64 134.14 84.94
Smoothness 40.06 41.27 28.56 68.35 71.56 55.34

Two Sulci
Mean Error 40.45 23.13 37.56 128.92 130.90 108.30
Smoothness 57.05 42.64 39.69 119.73 111.94 111.33
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Fig. 5. Registration error using full image data (orange: no, blue: uniform, green:
spatially adaptive temporal smoothing)
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Fig. 6. Smoothness of deformation ‖∇det(vt(x))‖, x ∈ C (orange: no, blue: uniform,
green: spatially adaptive temporal smoothing)
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Time-Point Interpolation. We evaluate the capacity of the deformations
computed using the proposed models to interpolate between time-points. For
this, we remove every second time-point from the synthetic series before com-
puting the serial registrations. We then scale each velocity field vt by a factor
1
2 to account for the larger gaps between observations and compute the residual
to the complete series. The resulting registration errors are shown in Figure 7.
Interpolated time-points are indicated on the x-axis.
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Fig. 7. Registration Error using half the image data (orange: no, blue: uniform, green:
spatially adaptive temporal smoothing)

While the registration error is higher than when using the full series, the
results show that the spatially adaptive temporal smoothing prior enables a more
accurate prediction of the missing images in both experiments. Spatially uniform
smoothing on the other hand leads to worse performance during most of the
single-sulcification and the first half of the pair-wise sulcification experiments.
We attribute this to oversmoothing at the beginning of sulcification, where its
effect is not yet strongly visible (Figure 3). While not completely avoiding it, the
spatially adaptive method however reduces this effect. This yields results that
are comparable to the naive method in the first experiments and a decrease in
registration error in the second. Interestingly, the registration error could also
be reduced for those time-points that have been used for registration.

3.2 Fetal Brain Development

Based on the publicly available atlas [25], we compute a model of brain develop-
ment in the human fetus between Gestational Weeks (GW) 23 and 35. As in the
synthetic case, we evaluate the registration error and smoothness of the result-
ing overall deformation. In order to render the registration robust to intensity
changes during development due to tissue maturation, we optimize the Residual
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Fig. 8. Axial slices of fetal brain development seqencences between 23rd and 35th gesta-
tional week. From top to bottom no smoothing, spatially uniform temporal smoothing
and spatially adaptive temporal smoothing.

Complexity image metric proposed in [28]. As in the synthetic experiments, the
reconstruction errors are reported as Sum of Squared Differences (SSD).

The proposed spatially adaptive temporal smoothing prior yields the most
accurate model in terms of reconstruction error (Table 2). Similar effects as in
the synthetic case can be observed. During the first frames of the sequence,
the uniform prior oversmooths the data, whereas the locally adaptive method
decreases the reconstuction error (Figure 9).
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Fig. 9. Registration Error and Deformation Smoothness on Fetal Data (orange: no,
blue: uniform, green: spatially adaptive temporal smoothing)

Observing the prefrontal cortex in the last frame of the image series in detail
(Figure 10) shows how the pair-wise registration fails in this region. Either tem-
poral smoothing prior alleviates this problem. However, the spatially adaptive
prior is able to account for a more complex growth pattern in the frontal part
of the medial longitudinal fissure.
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Table 2. Registration results on fetal brain development dataset. The proposed method
yields lowest SSD and comparably smooth deformation fields.

pair-wise uniform adaptive

Mean Error 1.36 × 104 1.36 × 104 1.31 × 104

Smoothness 6.12 × 103 6.72 × 103 6.2 × 103

Fig. 10. Detail of (from left to right) target image, no, spatially uniform and spatially
adaptive temporal smoothing. Arrows indicate exemplary regions where oversmoothing
is reduced by spatially adaptive temporal smoothing.

4 Discussion

We have presented a method for temporal smoothing of consecutive image regis-
trations in the framework of diffeomorphisms parametrized by stationary veloc-
ity fields. This has enabled us to define a spatially adaptive temporal smoothing
prior that enables the consideration of image information while at simultaneously
resulting in smoother overall deformations. We have successfully evaluated the
proposed methods on synthetic image sequences of simplified cortical folding.
By building deformation models on subsampled datasets, we were able to show
that the temporal smoothing accurately reflects the underlying deformation. We
could replicate these results on a dataset of fetal brain development, yielding a
decrease in registration error and sharper image detail.

In its simplest formulation presented in this paper, the proposed method
can be employed online with only the additional computational cost of just one
interpolation step compared to sequential pair-wise registrations. In cases where
all imaging time-points are available a-priori, more complex forward-backward
smoothing schemes can be envisioned. However, propagating deformation priors
further than one time-step in either direction require to enforce parallelism in
the construction [29] and lead to an increase in complexity and thus susceptibil-
ity to registration error. Depending on the nature of the observed process, the
selection of an initial time-point for the smoothing is likely to not only yield
further increases in modeling accuracy but also deepen the understanding of the
underlying dynamics. Evaluation of these effects, notably in the context of brain
growth, will be the focus of future work.
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