
Chapter 2
Minimum-Norm-Based Source Imaging
Algorithms

2.1 Introduction

In this chapter, we describe the minimum-norm and related methods, which are
classic algorithms for electromagnetic brain imaging [1, 2]. In this chapter, the
minimum-normmethod is first formulated based on the maximum-likelihood princi-
ple, and the properties of the minimum-norm solution are discussed. This discussion
leads to the necessity of regularization when implementing the minimum-norm
method. We discuss two different representative regularization methods: the
L2-norm regularization and the L1-norm regularization. Theminimum-normmethod
is, then, formulated based on Bayesian inference—Bayesian formulation providing
a form of the minimum-norm method where the regularization is already embedded.

2.2 Definitions

In electromagnetic brain imaging, we use an array of sensors to obtain
bioelectromagnetic measurements. We define the output of the mth sensor at time
t as ym(t), and the column vector containing outputs from all sensors, such that

y(t) =

⎡
⎢⎢⎢⎣

y1(t)
y2(t)

...

yM (t)

⎤
⎥⎥⎥⎦ , (2.1)

where M is the total number of sensors. This columnvector y(t) expresses the outputs
of the sensor array, and it may be called the data vector or array measurement.
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10 2 Minimum-Norm-Based Source Imaging Algorithms

A spatial location is represented by a three-dimensional vector r: r = (x, y, z).
A source vector is defined as a three-dimensional column vector s(r, t):

s(r, t) =
⎡
⎣

sx (r, t)
sy(r, t)
sz(r, t)

⎤
⎦ , (2.2)

where sx (r, t), sy(r, t), and sz(r, t) are the x , y, and z components. The physical
nature of the source vector is the electromotive force generated by neuronal activities
in the brain. Additional discussion regarding the nature of the sources is presented
in Sect.A.1 in the Appendix. The magnitude of the source vector is denoted as a
scalar s(r, t), and the orientation of the source is denoted as a three-dimensional unit
vector η(r) = [ηx (r), ηy(r), ηz(r)]T , where the superscript T indicates the matrix
transpose. Then, the relationship

s(r, t) = s(r, t)η(r) = s(r, t)

⎡
⎣

ηx (r)
ηy(r)
ηz(r)

⎤
⎦ (2.3)

holds.

2.3 Sensor Lead Field

We assume that a unit-magnitude source exists at r . We denote the output of the mth
sensor due to this unit-magnitude source as lx

m(r), l y
m(r), and lz

m(r) when the unit-
magnitude source is directed in the x , y, and z directions, respectively. The column
vectors l x (r), l y(r), and l z(r) are defined as

l x (r) = [lx
1 (r), lx

2 (r), . . . , lx
M (r)]T ,

l y(r) = [l y
1 (r), l y

2 (r), . . . , l y
M (r)]T ,

l z(r) = [lz
1(r), lz

2(r), . . . , lz
M (r)]T .

These vectors express the sensor array sensitivity for a source located at r and directed
in the x , y, and z directions. Using these column vectors, the sensitivity of the whole
sensor array for a source at r is expressed using an M × 3 matrix:

L(r) = [l x (r), l y(r), l z(r)]. (2.4)

This matrix L(r) is called the lead-field matrix. We also define the lead-field vector,
l(r), that expresses the sensitivity of the sensor array in a particular source direction
η(r), such that

l(r) = L(r)η(r). (2.5)
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Theproblemof estimating the sensor leadfield is referred to as the bioelectromagnetic
forward problem. Arguments on how to compute the sensor lead field are presented
in Appendix A.

2.4 Voxel Source Model and Tomographic Source
Reconstruction

Using the lead-field matrix in Eq. (2.4), the relationship between the sensor data,
y(t), and the source vector, s(r, t), is expressed as

y(t) =
∫

Ω

L(r)s(r, t) d r. (2.6)

Here, d r indicates the volume element, and the integral is performed over a volume
where sources are assumed to exist. This volume is called the source space, which
is denoted Ω . Equation (2.6) expresses the relationship between the sensor outputs
y(t) and the source distribution s(r, t).

The bioelectromagnetic inverse problem is the problem of estimating the source-
vector spatial distribution, s(r, t), from the measurements, y(t). Here, we assume
that we know the sensor lead field L(r), although our knowledge of the sensor lead
field is to some degree imperfect because it must be estimated using an analytical
model or numerical computations.

When estimating s(r, t) from y(t), s(r, t) is continuous in space, while y(t) is
discrete in space.A common strategy here is to introduce voxel discretization over the
source space. Let us define the number of voxels as N , and the locations of the voxels
are denoted as r1, r2, . . . , r N . Then, the discrete form of Eq. (2.6) is expressed as:

y(t) =
N∑

j=1

L(r j )s(r j , t) =
N∑

j=1

L(r j )s j (t). (2.7)

where the source vector at the j th voxel, s(r j , t), is denoted s j (t) for simplicity. We
introduce the augmented lead-field matrix over all voxel locations as

F = [L(r1), L(r2), . . . , L(r N )], (2.8)

which is an M ×3N matrix.We define a 3N ×1 column vector containing the source
vectors at all voxel locations, x(t), such that

x(t) =

⎡
⎢⎢⎢⎣

s1(t)
s2(t)

...

sN (t)

⎤
⎥⎥⎥⎦ . (2.9)
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Equation (2.7) is then rewritten as

y(t) = [L(r1), L(r2), . . . , L(r N )]

⎡
⎢⎢⎢⎣

s1(t)
s2(t)

...

sN (t)

⎤
⎥⎥⎥⎦ = Fx(t). (2.10)

Here, since the augmented lead-fieldmatrix F is a known quantity, the only unknown
quantity is the 3N ×1 column vector, x(t). This vector x(t) is called the voxel source
vector.

The spatial distribution of the source orientation, η(r), may be a known quantity
if accurate subject anatomical information (such as high-precision subject MRI) can
be obtained with accurate co-registration between theMRI coordinate and the sensor
coordinate. In this case, the inverse problem is the problem of estimating the source
magnitude, s(r, t), instead of the source vector, s(r, t). Let us consider a situation
in which the source orientations at all voxel locations are predetermined. Defining
the orientation of a source at the j th voxel as η j , the lead field at the j th voxel is
expressed as the column vector l j , which is obtained as l j = L(r j )η j , according to
Eq. (2.5). Thus, the augmented lead field is expressed as an M × N matrix H defined
such that

H = [L(r1)η1, L(r2)η2, . . . , L(r N )ηN ] = [l1, l2, . . . , l N ], (2.11)

whereby Eq. (2.10) can be reduced as follows:

y(t) = [L(r1), L(r2), . . . , L(r N )]

⎡
⎢⎢⎢⎣

s1(t)
s2(t)

...

sN (t)

⎤
⎥⎥⎥⎦

= [L(r1), L(r2), . . . , L(r N )]

⎡
⎢⎢⎢⎢⎣

η1 0 · · · 0

0 η2 · ...
... · . . . 0
0 · · · 0 ηN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

s1(t)
s2(t)

...

sN (t)

⎤
⎥⎥⎥⎦

= [L(r1)η1, L(r2)η2, . . . , L(r N )ηN ]

⎡
⎢⎢⎢⎣

s1(t)
s2(t)

...

sN (t)

⎤
⎥⎥⎥⎦ = H x(t). (2.12)



2.4 Voxel Source Model and Tomographic Source Reconstruction 13

Thus, the voxel source vector x(t), in this case, is an N × 1 column vector,

x(t) =

⎡
⎢⎢⎢⎣

s1(t)
s2(t)

...

sN (t)

⎤
⎥⎥⎥⎦ , (2.13)

in which the j th component of x(t) is s j (t), which is the scalar intensity at the j th
voxel. In this book, the same notation x(t) is used to indicate either the 3N ×1 vector
in Eq. (2.9) or the N × 1 vector in Eq. (2.13), unless any confusion arises.

In summary, denoting the additive noise in the sensor data ε, the relationship
between the sensor data y(t) and the voxel source vector x(t) is expressed as

y(t) = Fx(t) + ε, (2.14)

where x(t) is a 3N ×1 column vector in Eq. (2.9). When voxels have predetermined
orientations, using the augmented lead field matrix H in Eq. (2.11), the relationship
between y(t) and x(t) is expressed as

y(t) = H x(t) + ε, (2.15)

where x(t) is an N × 1 column vector in Eq. (2.13).

2.5 Maximum Likelihood Principle and the Least-Squares
Method

When estimating the unknown quantity x from the sensor data y, the basic principle
is to interpret the data y as a realization of most probable events. That is, the sensor
data y is considered the result of the most likely events. We call this the maximum
likelihood principle. In this chapter, we first derive the maximum likelihood solution
of the unknown source vector x.

We assume that the noise distribution is Gaussian, i.e.,

ε ∼ N (ε|0,σ2 I).

Namely, the noise in the sensor data is the identically and independently distributed
Gaussian noise with a mean of zero, and the same variance σ2. According to (C.1)
in the Appendix, the explicit form of the noise probability distribution is given by

p(ε) = 1

(2πσ2)M/2 exp

[
− 1

2σ2 ‖ε‖2
]

. (2.16)
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Since the linear relationship in Eq. (2.14) holds, the probability distribution of the
sensor data y(t) is expressed as

p( y) = 1

(2πσ2)M/2 exp

[
− 1

2σ2 ‖ y − Fx‖2
]

, (2.17)

where the explicit time notation (t) is omitted from the vector notations x(t) and
y(t) for simplicity.1

This p( y) as a function of the unknown parameter x is called the likelihood
function, and the maximum likelihood estimate x̂ is obtained such that2

x̂ = argmax
x

log p( y), (2.18)

where log p( y) is called the log-likelihood function. Using the probability distribu-
tion in Eq. (2.17), the log-likelihood function log p( y) is expressed as

log p( y) = − 1

2σ2 ‖ y − Fx‖2 + C, (2.19)

where C expresses terms that do not contain x. Therefore, the x that maximizes
log p( y) is equal to the one that minimizes F(x) defined such that

F(x) = ‖ y − Fx‖2. (2.20)

That is, the maximum likelihood solution x̂ is obtained using

x̂ = argmin
x

F(x) : where F = ‖ y − Fx‖2. (2.21)

This F(x) in Eq. (2.20) is referred to as the least-squares cost function, and the
method that estimates x through the minimization of the least-squares cost function
is the method of least-squares.

2.6 Derivation of the Minimum-Norm Solution

In the bioelectromagnetic inverse problem, the number of voxels N , in general, is
much greater than the number of sensors M . Thus, the estimation of the source vector
x is an ill-posed problem. When applying the least-squares method to such an ill-
posed problem, the problem arises that an infinite number of x could make the cost

1 For the rest of this chapter, the explicit time notation is omitted from these vector notations, unless
otherwise noted.
2 The notation argmax indicates the value of x that maximizes log p( y)which is an implicit function
of x.
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function equal to zero. Therefore, we cannot obtain an optimum solution of x based
only on the least-squares method.

A general strategy for overcoming this problem is to integrate a “desired property”
of the unknown parameter x into the estimation problem. That is, we choose x so as
to maximize this “desired property,” and also satisfy y = Fx. Quite often, a small
norm of the solution vector is used as this “desired property,” and in this case, the
optimum estimate x̂ is obtained using

x̂ = argmin
x

‖x‖2 subject to y = Fx. (2.22)

In the optimization above, the notation of “subject to” indicates a constraint,
(i.e., the above optimization requires that the estimate x̂ be chosen such that x
minimizes ‖x‖2 as well as satisfies y = Fx.) To solve the constraint optimization
problem in Eq. (2.22), we use the method of Lagrange multipliers that can convert a
constrained optimization problem to an unconstrained optimization problem. In this
method, using an M × 1 column vector c as the Lagrange multipliers, we define a
function called the Lagrangian L(x, c) such that

L(x, c) = ‖x‖2 + cT ( y − Fx) . (2.23)

The solution x̂ is obtained by minimizing L(x, c) above with respect to x and
c—the solution x̂ being equal to x̂ obtained by solving the constrained optimization
in Eq. (2.22).

To derive an x that minimizes Eq. (2.23), we compute the derivatives of L(x, c)
with respect to x and c, and set them to be zero, giving

∂L(x, c)
∂x

= 2x − FT c = 0, (2.24)

∂L(x, c)
∂c

= y − Fx = 0. (2.25)

Using the equations above, we can derive

x̂ = FT
(

F FT
)−1

y. (2.26)

The solution in Eq. (2.26) is called theminimum-norm solution, which is well known
as a solution for the ill-posed linear inverse problem.

2.7 Properties of the Minimum-Norm Solution

The minimum-norm solution is expressed as

x̂ = FT (F FT )−1(Fx + ε) = FT (F FT )−1Fx + FT (F FT )−1ε. (2.27)
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The first term on the right-hand side is expressed as E (̂x), which indicates the
expectation of x̂. This term represents how the solution deviates from its true value
even in the noiseless cases . The second term indicates the influence of the noise ε.
The first term is rewritten as

E (̂x) = FT (F FT )−1Fx = Qx, (2.28)

where

Q = FT (F FT )−1F. (2.29)

Apparently, the first term is not equal to the true value x, and the matrix Q in
Eq. (2.29) expresses the relationship between the true value x and the estimated
value E (̂x).

Denoting the (i, j)th element of Q as Qi, j , the j th element of E (̂x), E (̂x j ), is
expressed as

E (̂x j ) =
N∑

k=1

Q j,k xk . (2.30)

The above equation shows how each element of the true vector x affects the value of
E (̂x j ). That is, Q j,k expresses the amount of leakage of xk into x̂ j when j �= k. If
the weight Q j,1, . . . , Q j,N has a sharp peak at j , x̂ j may be close to the true value
x j . If the weight has no clear peak or if the weight has a peak at j ′ that is different
from j , x̂ j may be very different from x j . Because of such properties, the matrix Q
is called the resolution matrix.

We next examine the second term, which expresses the noise influence. The noise
influence is related to the singular values of F. The singular value decomposition of
F is defined as

F =
M∑

j=1

γ j u jv
T
j , (2.31)

where we assume that M < N , and the singular values are numbered in decreasing
order. Using

FT (F FT )−1 =
N∑

j=1

1

γ j
v j uT

j , (2.32)

we can express the second term in Eq. (2.27) as

N∑
j=1

(uT
j ε)

γ j
v j . (2.33)

The equation above shows that the denominator contains the singular values. Thus,
if higher order singular values are very small and close to zero, the terms containing
such small singular values amplify the noise influence, resulting in a situation where
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Fig. 2.1 Typical plot of the singular values of the lead field matrix F. We assume the 275-channel
CTFOmegawhole-headMEG sensor system (VMSMedTech Ltd., BC, Canada). A typical location
of the subject head relative to the whole head sensor array is assumed. An 8× 8× 10 cm region is
also assumed as the source space within the subject’s head. The spherical homogeneous conductor
model is used for computing the sensor lead field. The singular values are normalized with the
maximum (i.e., the first) singular value

the second term is dominated in Eq. (2.27), and the minimum norm solution would
contain large errors due to the noise.

A plot of a typical singular-value spectrum of the lead field matrix F is shown
in Fig. 2.1. To obtain the plot, we used the sensor array of the 275-channel CTF
Omega whole-head MEG sensor system (VMS MedTech Ltd., BC, Canada) and
spherical homogeneous conductor model to compute the sensor lead field [3].3 The
plot shows that higher order singular values of the lead field matrix are very small.
In Fig. 2.1, the ratio of the maximum and minimum singular values reaches the order
of 10−7. Therefore, the minimum-norm method in Eq. (2.26) generally produces
results highly susceptible to the noise in the sensor data.

2.8 L2-Regularized Minimum-Norm Solution

When a large amount of noise is overlapped onto the sensor data y, if we seek a
solution that satisfies y = Fx, the resultant solution x would be severely affected
by the noise. In other words, when noise exists in the sensor data, it is more or less

3 Computing the lead field using the spherical homogeneous conductor model is explained in
Sect.A.2.4 in the Appendix.
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meaningless to impose the constraint y = Fx, so, instead of using the optimization
in Eq. (2.22), we should use

x̂ = argmin
x

‖x‖2 subject to ‖ y − Fx‖2 ≤ d, (2.34)

where d is a positive constant. In Eq. (2.34), the condition ‖ y − Fx‖2 ≤ d does not
require Fx to be exactly equal to y, but allow Fx to be different from y within a
certain range specified by d. Therefore, the solution x̂ is expected to be less affected
by the noise in the sensor data y.

Unfortunately, there is no closed-form solution for the optimization problem in
Eq. (2.34), because of the inequality constraint. Although we can solve Eq. (2.34)
numerically, we proceed in solving it by replacing the inequality constraint with
the equality constraint. This is possible because the solution of Eq. (2.34) generally
exists on the border of the constraint. Thus, we can change the optimization problem
in Eq. (2.34) to

x̂ = argmin
x

‖x‖2 subject to ‖ y − Fx‖2 = d. (2.35)

Since this is an equality-constraint problem, we can use the method of Lagrange
multipliers. Using the Lagrange multiplier λ, the Lagrangian is defined as

L(x, c) = ‖x‖2 + λ
(
‖ y − Fx‖2 − d

)
. (2.36)

Thus, the solution x̂ is given as

x̂ = argmin
x

L(x, c) = argmin
x

[
‖x‖2 + λ‖ y − Fx‖2

]
. (2.37)

In the above expression, we disregard the term−λd, which does not affect the results
of the minimization. Also, we can see that the multiplier λ works as a balancer
between the L2-norm4 term ‖x‖2 and the squared error term ‖ y − Fx‖2.

To derive the solution of x that minimizes L(x, c), we compute the derivative of
L(x, c) with respect to x and set it to zero, i.e.,

L(x, c)
∂x

= 1

∂x

(
yT y − xT FT y − yT Fx + xT FT Fx + ξxT x

)

= −2FT y + 2
(

FT F + ξ I
)

x = 0, (2.38)

where we use 1/λ = ξ. We can then derive

x̂ =
(

FT F + ξ I
)−1

FT y. (2.39)

4 A brief summary of the norm of vectors is presented in Sect.C.4 in the Appendix.
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Using the matrix inversion lemma in Eq. (C.92), we obtain

x̂ = FT
(

F FT + ξ I
)−1

y. (2.40)

The solution inEq. (2.40) is called the L2-norm-regularizedminimum-norm solution,
or simply L2-regularized minimum-norm solution.

Let us compute the noise influence term for the L2-regularized minimum-norm
solution. Using Eq. (2.31), we have

FT
(

F FT + ξ I
)−1 =

N∑
j=1

γ j

γ2
j + ξ

v j uT
j , (2.41)

and the L2-regularized minimum-norm solution is expressed as

x̂ = FT
(

F FT + ξ I
)−1

(H x + ε)

= FT
(

F FT + ξ I
)−1

H x +
N∑

j=1

γ j

γ2
j + ξ

v j uT
j ε. (2.42)

The second term, expressing the influence of noise, is

N∑
j=1

γ j (uT
j ε)

γ2
j + ξ

v j . (2.43)

In the expression above, the denominator contains the positive constant ξ, and it is
easy to see that this ξ prevents the terms with smaller singular values from being
amplified.

One problem here is how to choose an appropriate value for ξ. Our argument
above only suggests that if the noise is large, we need a large ξ, but if small, a smaller
ξ can be used. However, the arguments above do not lead to the derivation of an
appropriate ξ. We will return to this problem in Sect. 2.10.2 where L2-regularized
minimum-norm solution is re-derived based on a Bayesian formulation, in which
deriving the optimum ξ is embedded.

2.9 L1-Regularized Minimum-Norm Solution

2.9.1 L1-Norm Constraint

In the preceding section, we derived a solution that minimizes the L2-norm of the
solution vector x. In this section, we argue for a solution that minimizes the L1-norm
of x, which is defined in Eq. (C.64). The L1-norm-regularized solution is obtained
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using [4–6]

x̂ = argmin
x

N∑
j=1

|x j | subject to ‖ y − Fx‖2 = d. (2.44)

The only difference between the equation above and Eq. (2.35) is to minimize either
L2 norm ‖x‖2 in Eq. (2.35) or L1 norm, ‖x‖1 = ∑

j |x j | in Eq. (2.44). Although it
may look as if there is no significant difference between the two methods, the results
of source estimation are significantly different. The L1-norm regularization gives a
“so-called” sparse solution, in which only few x j have nonzero values and a majority
of other x j have values close to zero.

Using the method of Lagrange multipliers and following exactly the same argu-
ments as in Sect. 2.8, the L1-norm solution can be obtained by minimizing the cost
function F , i.e.,

x̂ = argmin
x

F : F = ‖ y − Fx‖2 + ξ

N∑
j=1

|x j |, (2.45)

where again ξ is a positive constant that controls the balance between the first and the
second terms in the cost function above. Unfortunately, the minimization problem
in Eq. (2.45) does not have a closed-form solution, so numerical methods are used
here to obtain the solution x̂.

2.9.2 Intuitive Explanation for Sparsity

Actually, it is not easy to provide an intuitive explanation regarding why the opti-
mization in Eq. (2.44) or (2.45) causes a sparse solution. The straightforward (and
intuitively clear) formulation to obtain a sparse solution should use the L0-norm
minimization, such that

x̂ = argmin
x

N∑
j=1

T (x j) subject to ‖ y − H x‖2 = d, (2.46)

where the function T (x) is defined in Eq. (C.65). In the above formulation, since∑N
j=1 T (x j) indicates the number of nonzero x j, x̂ is the solution that has the smallest

number of nonzero x j and still satisfies ‖ y − H x‖2 = d. The optimization prob-
lem in Eq. (2.46) is known to require impractically long computational time. The
optimization for the L1-norm cost function in Eq. (2.44) approximates this L0-norm
optimization in Eq. (2.46) so as to obtain a sparse solution within a reasonable range
of computational time [7].
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The regularization methods mentioned above can be summarized to have a form
of the cost functions expressed as

F = ‖ y − H x‖2 + ξφ(x). (2.47)

The first term is the data-fitting term, and the second term φ(x) expresses the con-
straint, which has the following form for general L p-norm cases (0 ≤ p ≤ 1):

φ(x) =
N∑

j=1

T (x j) for L0-norm, (2.48)

φ(x) =
N∑

j=1

|x j | for L1-norm, (2.49)

φ(x) =
⎡
⎣

N∑
j=1

x p
j

⎤
⎦
1/p

for L p-norm. (2.50)

The plots of φ(x) with respect to the x j axis are shown in Fig. 2.2. In this figure, the
four kinds of plots of φ(x) = ‖x‖p when p = 0, p = 0.3, p = 0.7, and p = 1
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Fig. 2.2 Plots of objective function φ(x) defined in Eqs. (2.48)–(2.50) with respect to the x j axis.
The four cases of p = 0, p = 0.3, p = 0.7, and p = 1 are shown. The cases of p = 0, and p = 1
correspond to the L0 and L1 norm constraints (A brief summary of the norm of vectors is presented
in Sect.C.4 in the Appendix.)
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are shown. It can be seen in this figure that the L0-norm constraint is approximated
by the L p-norm constraint, and as p becomes closer to 0, the L p-norm provides a
better approximation.

Let us see how the L p-norm regularization causes sparse solutions when 0 ≤
p ≤ 1. To do so, we consider a simplest estimation problem in which only two
voxels exist and the voxels have source intensity of x1 and x2. We assume a noiseless
measurement using a single-sensor; the sensor data being represented by a scalar y.
The optimization for the L1-norm solution is expressed in this case as

x̂ = argmin
x

(|x1| + |x2|) subject to y = h1x1 + h2x2, (2.51)

where x̂ = (̂x1, x̂2)T , and h1 and h2 are the sensor lead field. For the sake of
comparison, we also argue the L2-norm regularization whose optimization is given
as follows:

x̂ = argmin
x

(
x21 + x22

)1/2
subject to y = h1x1 + h2x2. (2.52)

The optimization process is depicted in Fig. 2.3. In Fig. 2.3a, the tetragon at the
center represents the L1-norm objective function, |x1|+|x2| = constant. The broken
line represents the x1 and x2 that satisfy the measurement equation y = h1x1+h2x2.
Thus, as a result of the optimization in Eq. (2.51), the x1 and x2 on the broken line that
minimize |x1|+|x2| should be chosen as the solution, i.e., the point (x1, x2) at which
the tetragon touches the broken line is chosen as the solution for the optimization.
Such solution is indicated by the small filled circle in Fig. 2.3a. In this solution, x2
has a nonzero value but x1 is zero, i.e., a sparse solution is obtained. It can be seen
in this figure that in most cases, the point at which the tetragon touches the broken

x1

x2(a)

x1

x2(b)

x1

x2(c)

Fig. 2.3 The optimization process is depicted for the simple case in which a single sensor and
two voxels exist. Source magnitudes at the voxels are represented by x1 and x2. The broken lines
represent the x1 and x2 that satisfy the measurement equation, y = h1x1 + h2x2. The filled black
circles indicate an example of the solution for each case. a L1-norm regularization in Eq. (2.51).
The tetragon at the center represents the L1-norm objective function |x1| + |x2| = constant.
b L2-norm regularization in Eq. (2.52). The circle at the center represents the L2-norm objec-
tive function x21 + x22 = constant. c L p-norm regularization where 0 < p < 1
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line is likely to be located at one of its vertices, so a sparse solution is likely to be
obtained.

Figure2.3b shows the case of the L2-norm minimization in Eq. (2.52). In this
figure, the broken line again represents the x1 and x2 that satisfy the measurement
equation y = h1x1 + h2x2, and the circle represents the L2-norm objective function
x21 + x22 = constant. In this case, the x1 and x2 on the broken line that minimizes

x21 + x22 should be chosen, and the resultant solution is (x1, x2) at which the circle
touches the broken line. An example of such solution is indicated by the small filled
circle. In this case, both x1 and x2 have nonzero values, and a non-sparse solution is
likely to be obtained using L2-norm regularization.

Finally, Fig. 2.3c shows a case of the general L p normminimization (0 < p < 1).
An example of such solution is indicated by the small, filled circle. Using the general
L p norm regularization, the solution is more likely to be sparse than the case of the
L1-normminimization. However, the computational burden for the general L p norm
minimization is so high that it is seldom used in practical applications.

2.9.3 Problem with Source Orientation Estimation

When applying the L1-norm regularization to the bioelectromagnetic source localiza-
tion, it has been known that themethod fails in estimating correct source orientations.
The reason for this is described as follows: The components of the solution vector x
is denoted explicitly as

x =
[
sx
1 , sy

1 , sz
1, . . . , sx

j , sy
j , sz

j , . . . , sx
N , sy

N , sz
N

]T
,

where sx
j , sy

j , sz
j are the x , y, and z components of the source at the j th voxel. When

the j th voxel has a source activity, it is generally true that sx
j , sy

j , sz
j have nonzero

values. However, when using the L1 regularization, only one of sx
j , sy

j , sz
j tends to

have nonzero value, and others tend to be close to zero because of the nature of a
sparse solution. As a result, the source orientation may be erroneously estimated.

To avoid this problem, the source orientation is estimated in advance using some
other method [4] such as the L2-norm minimum-norm method. Then, the L1-norm
method is formulated using the orientation-embedded data model in Eq. (2.15). That
is, we use

x̂ = argmin
x

F : F = ‖ y − H x‖2 + ξ

N∑
j=1

|x j |. (2.53)

In this case, the sparsity is imposed on the source vector magnitude, s1, s2, . . . , sN ,
and only a few of s1, s2, . . . , sN have nonzero values, allowing for the reconstruction
of a sparse source distribution.
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2.10 Bayesian Derivation of the Minimum-Norm Method

2.10.1 Prior Probability Distribution and Cost Function

In this section,wederive theminimum-normmethodbasedonBayesian inference.As
in Eq. (2.16), we assume that the noise ε is independently and identically distributed
Gaussian, i.e.,

ε ∼ N (ε|0,β−1 I), (2.54)

where the precision β is used, which is the inverse of the noise variance, β−1 = σ2.
Thus, using Eq. (2.14), the conditional probability distribution of the sensor data for
a given x, p( y|x) is

p( y|x) =
(

β

2π

)M/2

exp

[
−β

2
‖ y − Fx‖2

]
. (2.55)

This conditional probability p( y|x) is equal to the likelihood p( y) in the arguments
in Sect. 2.5. Since x is a random variable in the Bayesian arguments, we use the
conditional probability p( y|x), instead of p( y).

Let us derive a cost function for estimating x. Taking a logarithm of the Bayes’s
rule in Eq. (B.3) in the Appendix, we have

log p(x| y) = log p( y|x) + log p(x) + C, (2.56)

whereC represents the constant terms.NeglectingC, the cost functionF(x) in general
form is obtained as

F(x) = −2 log p(x| y) = β‖ y − Fx‖2 − 2 log p(x). (2.57)

The first term on the right-hand side is a squared error term, which expresses how
well the solution x fits the sensor data y. The second term−2 log p(x) is a constraint
imposed on the solution. The above equation indicates that the constraint term in the
cost function is given from the prior probability distribution in the Bayesian formu-
lation. The optimum estimate of x is obtained byminimizing the cost function F(x).

2.10.2 L2-Regularized Method

Let us assume the following Gaussian distribution for the prior probability distribu-
tion of x,

p(x) =
( α

2π

)N/2
exp

[
−α

2
‖x‖2

]
. (2.58)
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Substituting Eq. (2.58) into (2.57), we get the cost function

F(x) = β‖ y − Fx‖2 + α‖x‖2. (2.59)

The cost function in Eq. (2.59) is the same as the cost function in Eq. (2.37), assuming
λ = β/α. Thus, the solution obtained byminimizing this cost function is equal to the
solution of the L2-norm regularized minimum-norm method introduced in Sect. 2.8.

To obtain the optimumestimate of x, we should compute the posterior distribution.
In this case, the posterior is known to have a Gaussian distribution because p( y|x)

and p(x) are both Gaussian, and the mean and the precision matrix of this posterior
distribution is derived as in Eqs. (B.24) and (B.25). SubstitutingΦ = αI andΛ = β I
into these equations, we have

Γ = αI + βFT F, (2.60)

x̄(t) =
(

FT F + α

β
I
)−1

FT y(t). (2.61)

The Bayesian solution which minimizes the cost function in Eq. (2.59) is given in
Eq. (2.61). This solution is the same as Eq. (2.39). Comparison between Eqs. (2.61)
and (2.39) shows that the regularization constant is equal toα/β, which is the inverse
of the signal-to-noise ratio of the sensor data. This is in accordancewith the arguments
in Sect. 2.8 that when the sensor data contains larger amounts of noise, a larger
regularization constant must be used.

The optimumvalues of the hyperparametersα andβ can be obtained using the EM
algorithm, as described in Sect.B.5.6. The update equations for the hyperparameters
are:

α̂−1 = 1

3N

[
1

K

K∑
k=1

x̄T (tk)x̄(tk) + tr
(
Γ −1

)]
, (2.62)

β̂−1 = 1

M

[
1

K

K∑
k=1

‖ y(tk) − Fx̄(tk)‖2 + tr
(

FT FΓ −1
)]

. (2.63)

Here, we assume that multiple K time-point data is available to determine α and β.
The Bayesian minimum-norm method is summarized as follows. First, Γ and

x̄(tk) are computed using Eqs. (2.60) and (2.61) with initial values set to α and β.
Then, the values of α and β are updated using (2.62) and (2.63). Using the updated
α and β, the values of Γ and x̄(tk) are updated using Eqs. (2.60) and (2.61). These
procedures are repeated and the resultant x̄(tk) is the optimum estimate of x(tk).

The EM iteration may be stopped by monitoring the marginal likelihood, which
is obtained using Eq. (B.29) as

log p( y(t1), . . . , y(tK )|α,β) = −1

2
K log |Σ y | − 1

2

K∑
k=1

yT (tk)Σ
−1
y y(tk), (2.64)



26 2 Minimum-Norm-Based Source Imaging Algorithms

where according to Eq. (B.30), Σ y is expressed as

Σ y = β−1 I + α−1F FT . (2.65)

If the increase of the likelihood in Eq. (2.64) with respect to the iteration count
becomes very small, the iteration may be stopped.

2.10.3 L1-Regularized Method

The method of L1-norm regularization can also be derived based on the Bayesian
formulation. To derive the L1-regularization. we use the Laplace distribution as the
prior distribution

p(x) =
N∏

j=1

1

2b
exp

[
−1

b
|x j |

]
. (2.66)

Then, using Eq. (2.57), (and replacing F with H), the cost function is derived as

F(x) = β‖ y − H x‖2 + 2b
N∑

j=1

|x j |, (2.67)

which is exactly equal to Eq. (2.53), if we set ξ = 2b/β.
Another formulation for deriving the L1-regularized method is known. It uses the

framework of the sparseBayesian learning described inChap.4. InChap.4, assuming
the Gaussian prior,

p(x|α) =
N∏

j=1

N (x j |0,α−1
j ) =

N∏
j=1

(α j

2π

)1/2
exp

[
−α j

2
x2j

]
, (2.68)

we derive the marginal likelihood for the hyperparameter α = [α1, . . . ,αN ],
p( y|α), using,

p( y|α) =
∫

p( y|x)p(x|α)dx, (2.69)

and eventually derive the Champagne algorithm. However, instead of implementing
Eq. (2.69), there is another option in which we compute the posterior distribution
p(x| y) using

p(x| y) ∝
∫

p( y|x)p(x|α)p(α)dα = p( y|x)p(x), (2.70)

http://dx.doi.org/10.1007/978-3-319-14947-9_4
http://dx.doi.org/10.1007/978-3-319-14947-9_4
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where

p(x) =
∫

p(x|α)p(α)dα. (2.71)

The estimate x̂ is, then, obtained by

x̂ = argmax
x

p( y|x)p(x).

To compute p(x) using Eq. (2.71), we need to specify the hyperprior p(α).
However, we usually have no such information and may use noninformed prior
p(α) = const. Substituting this flat prior into Eq. (2.71), we have

p(x) ∝
∫

p(x|α)dα.

However, the integral in the above equation is difficult to compute. The formal
procedure to compute p(x) in this case is to first assume the Gamma distribution for
the hyperprior p(α), such that

p(α) =
N∏

j=1

p(α j ) =
N∏

j=1

Γ (a)−1ba(α j )
a−1e−bα j . (2.72)

Then, p(x) in Eq. (2.71) is known to be obtained as Student t-distribution, such
that [8]

p(x j ) =
∫

p(x j |α j )p(α j )dα j

=
∫ (α j

2π

)1/2
exp

(
−α j

2
x2j

) ba

Γ (a)

(
α j

)a−1
e−bα j dα j

= baΓ (a + 1
2 )√

2πΓ (a)

(
b + x2j

2

)−(a+ 1
2 )

. (2.73)

We then assume that a → 0 and b → 0, (which is equivalent to making p(α) a
noninformed prior,) p(x j ) then becomes

p(x j ) → 1

|x j | i.e. p(x) →
N∏

j=1

1

|x j | . (2.74)

Using Eq. (2.57), the cost function, in this case, is derived as

F(x) = β‖ y − Fx‖2 +
N∑

j=1

log |x j |. (2.75)
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This Eq. (2.75) is not exactly equal to the L1-norm cost function, since the constraint
term is not equal to

∑N
j=1 |x j | but has form of

∑N
j=1 log |x j |. Since these constraint

terms have similar properties, the solution obtained by minimizing this cost function
has a property very similar to the L1-norm-regularized minimum-norm solution.
Related arguments are found in Chap.6.
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