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Abstract. Multimodal face recognition systems usually provide better recog-
nition performance compared to systems based on a single modality. To exploit
this advantage, in this paper, an image fusion method which integrates region
segmentation and pulse coupled neural network (PCNN) is used to obtain fused
images by using visible (VIS) images and infrared (IR) images. Then, client
specific image gradient orientation (CSIGO) is proposed which is inspired by
the successful application of client specific technique and image gradient ori-
entations technique. As most of the traditional appearance-based subspace
learning algorithms are not robust to illumination changes, to remedy this
problem to some extent, we adopt the image gradient orientations method.
Moreover, to better describe the discrepancies between different classes, client
specific is introduced to derive one dimensional Fisher face per client. Thus
CS-IGO-LDA and improved CS-IGO-LDA are proposed in this paper, which
combine the merits of IGO and client specific technique. Experimental results
obtained on publicly available databases indicate the effectiveness of the pro-
posed methods on unimodal and multimodal face recognition.

Keywords: Image fusion � PCNN � Client specific � Image gradient orienta-
tions � Multimodal face recognition

1 Introduction

Face recognition (FR) remains one of the most challenging research topics in computer
vision, machine learning and biometrics. In face recognition, face representation plays
a vital part. The most widely investigated methods for face representation are linear
subspace learning approaches. Principal Component Analysis (PCA) is a typical feature
extraction technique widely used in the field of pattern recognition. Based on PCA, the
well-known Eigenfaces [1] method for face recognition was developed. In order to use
the discriminatory information between different classes, approaches based on Linear
Discriminant Analysis (LDA) were studied [2–4]. However, both PCA and LDA fail to
discover the nonlinear structure in facial images. Since the important information may
be contained in higher order relationships among image pixels of the face pattern [5, 6],
the study of kernel principal component analysis (KPCA) [7] and kernel discriminant
analysis (KDA) [8] have been attractive topics in pattern recognition.
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Visible face image is easily affected by illumination changes which can introduce
adverse effect to the performance of face recognition. Thermal infrared image is robust
to changes in illumination; however, it is sensitive to temperature changes in the
surrounding environment. To exploit the complementary information in the visible and
infrared images, we present a method to fuse visible and infrared images based on
region segmentation and PCNN. Experimental results show that recognition accuracy
on the fused images is better than that on visible images or infrared images.

Conventional subspace learning approaches and their variants are based on a global
representation of all the training samples. Departing from this paradigm, Kittler et al.
[9] proposed a client specific Fisher face representation in which the client enrollment
is insulated from the enrollment of other clients and there is only one Fisher face per
client. An improved model of client specific linear discriminant analysis (CSLDA)
method was developed by Wu et al. [10]. To incorporate various dimensionality
reduction methods with client specific subspace, Sun et al. [11] proposed a framework
called the hybrid client specific discriminant analysis.

In addition, most traditional subspace learning methods are based on pixel inten-
sities. However, in practical applications, since the distribution of noise in images is
substantially different from Gaussian, classical feature extraction methods from pixel
intensities always fail to reliably estimate the low-dimensional subspace of a given data
population. To tackle this problem, subspace learning from image gradient orientations
(IGO) is proposed in [12], which replaces pixel intensities with gradient orientations.

In order to obtain a more robust face representation and better describe the
discrepancies between different classes, in this paper, we present two methods,
CS-IGO-LDA and improved CS-IGO-LDA. Experimental results obtained on three
publicly available databases demonstrate the effectiveness of our proposed methods for
unimodal and multimodal face recognition.

The rest of the paper is organized as follows. IGO and image fusion method are
reviewed in Sect. 2. Section 3 presents the proposed CS-IGO-LDA and improved
CS-IGO-LDA methods respectively. Experiments on publicly available databases are
conducted in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Related Works

2.1 An Overview of Image Gradient Orientations

A set of face image samples Zif g i ¼ 1; 2; . . .; Nð Þ, where N is the number of training
samples and Zi 2 R

m�n: It is assumed that each image belongs to one of the C classes
denoted by wj; j ¼ 1; 2; . . .; C. And the number of samples of the jth class is Nj.

Let I x; yð Þ be the image intensities at pixel coordinates x; yð Þ of sample Zi, we can
denote the corresponding horizontal and vertical gradients respectively as:

Gi;x ¼ hx � I x; yð Þ
Gi;y ¼ hy � I x; yð Þ ð1Þ
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where � is convolution operator, hx and hy are filters used to approximate the ideal
differentiation operator along the image horizontal and vertical directions respectively.

Then the gradient orientation of the pixel location x; yð Þ is:

Ui x; yð Þ ¼ arctan
Gi;y

Gi;x
; i ¼ 1; 2; . . .;N ð2Þ

Let /i be the 1D representation of Ui. Referring to [13], we also define the mapping
from ½0; 2pÞK K ¼ m� nð Þ onto a subset of complex sphere with radius

ffiffiffiffi
K

p

ti /ið Þ ¼ ej/i ð3Þ

where ej/i ¼ ej/ið1Þ; ej/ið2Þ; . . .; ej/iðKÞ
� �T

, and ejh is Euler form, i.e. ejh ¼ coshþ j sinh.
By applying the procedure of conventional PCA and LDA to ti, we can obtain

projection matrices UP for IGO-PCA and UL for IGO-LDA, respectively.

2.2 Image Fusion

The aim of image fusion is to integrate complementary and redundant information from
multiple images to create a composite that contains a better description of the scene
than any of the individual source images [14]. This fused image should increase the
performance of the subsequent processing tasks. Conventional image fusion methods
usually employ pixel-based approaches which is sensitive to misregistration. Further-
more, we are not interested in individual pixels but rather in the objects and regions
they represent. It therefore seems reasonable to incorporate object and region infor-
mation into the fusion process. In this paper, we adopt a new feature level image fusion
method which integrates region segmentation and PCNN [15]. First, the fuzzy c-means
clustering algorithm is used to segment the image in the feature space formed by multi-
channel Gabor filters and then multi-scale wavelet decomposition is performed on the
image. Second, the low frequency coefficients are fused with edge intensity and
the high frequency coefficients are fused with PCNN for all regions. Finally, the fused
image is obtained by taking the inverse wavelet transform. Figure 1 shows some visible
and infrared images from the OTCBVS database [16] and their corresponding fused
images obtained by our method.

Fig. 1. Visible images (the left two images), infrared images (the middle two images) and the
corresponding fused images (the right two images)
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3 Client Specific Image Gradient Orientations (CSIGO)

Traditional face representation approaches are based on a global representation of all
the training samples. Client specific Fisherfaces can derive only one Fisher face per
client. In this paper, to further improve the performance of client specific methods, we
combine the advantages of client specific technique and image gradient orientations.
Therefore, CS-IGO-LDA and improved CS-IGO-LDA are presented. The proposed
methods for multimodal face recognition consist of four steps. Firstly, visible images
and infrared images are fused to obtain the corresponding fused images. Secondly,
IGO-methods are utilized to reduce the dimensionality of facial images. Then a single
Fisher face per subject is obtained via client specific approach. Finally, classification is
conducted accordingly. Flowchart of the proposed methods is illustrated in Fig. 2.

3.1 CS-IGO-LDA

Let ti represent the transformed data in Sect. 2 (i.e. vector representation of training
samples in Fig. 2), the total mean of ti is denoted by m0,

m0 ¼ 1
N

XN

i¼1
ti ð4Þ

In Fig. 2, when we obtain the orthonormal bases UP by using IGO-PCA, then the
projected samples are:

pi ¼ UH
P ðti � m0Þ ð5Þ

Let us denote the mixture covariance matrix of the projected vectors by S, i.e.

S ¼ 1
N

XN

i¼1
pip

H
i ð6Þ

Fig. 2. Flowchart of the proposed methods on multimodal face recognition
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The mean of the jth class wj can be obtained as

lj ¼
1
Nj

XNj

i¼1
pi pi 2 wj ð7Þ

In [10], Wu utilized an equivalent Fisher criterion function defined as

JðmÞ ¼ mHBjm
mHSm

ð8Þ

where Bj is the between class scatter matrix.
The optimal solution to the client specific discriminant problem (8) can be found as

mj ¼ S�1lj ð9Þ

After client specific technique is performed to the projected samples in Fig. 2, client
specific Fisher face for each class can be derived as

aj ¼ Upmj ð10Þ

Readers can refer to [10] for more details about the improved client specific dis-
criminant analysis algorithm.

3.2 Improved CS-IGO-LDA

In the previous section, orthonormal bases of IGO-PCA are used for dimensionality
reduction prior to client specific technique. To fully utilize the label information in the
training samples, orthonormal bases of IGO-LDA can also be exploited to reduce
the dimensionality of transformed data ti. Procedures of the improved CS-IGO-LDA
are summarized as follows.

Input: A set of training sample Zi; i ¼ 1; 2; � � �N for C classes, a test sample y.

Step 1. Compute orientation images for Zi and y, denoted by Ui and Uy, respectively.

Step 2. Transform Ui and Uy into 1D representation, expressed by /i and /y.

Step 3. Compute ti /ið Þ ¼ ej/i and ty /y

� � ¼ ej/y .

Step 4. Perform IGO-LDA on the mapped data X ¼ t1; t2; . . .tN½ �, obtain the set of
orthonormal bases UL.

Step 5. Project mapped data X onto UL, then obtain the client specific Fisher face
ak; k ¼ 1; 2; � � � ;C.
Step 6. Project X and ty onto ak, then classify y according to the minimum distance
classifier.

Output: Identity of y.

CSIGO for Unimodal and Multimodal Face Representation 19



4 Experimental Results and Analysis

In order to evaluate the performance of the proposed methods in this paper, first Yale
and Extended Yale B [17] are used for unimodal face recognition, then the OTCBVS
database is chosen for unimodal and multimodal face recognition. For Yale and
Extended Yale B databases, we used images of size 32 × 32. In order to tackle the
singular problem of LDA-based approaches, PCA-based methods were utilized for
dimensionality reduction. For example, for Fisherfaces and IGO-LDA we used PCA to
preserve N � C dimensions, and for CS-IGO-LDA we used PCA to preserve 45
dimensions. Experiments on all three databases were repeated 10 times and the average
recognition accuracy was recorded. CS-IGO-LDA1 represents the CS-IGO-LDA
algorithm and CS-IGO-LDA2 denotes the improved CS-IGO-LDA approach.

4.1 Face Recognition on the Yale Database

The Yale database contains images from 15 individuals, each providing 11 different
images. All images are gray-scale and normalized to a resolution of 160 × 121 pixels.
We randomly selected 5 images from each subject for training, whereas the remaining
were used for testing. It should be noted that LDA-based methods are different from the
other features because the maximal number of valid features is C � 1, C is the number
of classes. Recognition accuracy of different methods are shown in Table 1 and the
corresponding curves are illustrated in Fig. 3.

4.2 Face Recognition on the Extended Yale B Database

The Extended Yale B database contains 16,128 images of 38 subjects under nine poses
and 64 illumination conditions. We used a subset which consists of 64 near frontal
images for each subject. For training, we randomly selected a subset with 31 images
per subject. For testing, we used the remaining images. Finally, we performed 10
different random realizations of the training/test sets. Table 2 shows the obtained
results.

Table 1. Recognition accuracy on the Yale database.

Dimension 3 7 11 14 30 40

Eigenfaces 60.44 72.89 78.22 78.00 83.33 83.56
Fisherfaces 69.11 80.44 84.44 88.22 N/A N/A
CS-LDA 60.89 83.11 88.89 92.00 N/A N/A
IGO-PCA 60.89 74.44 78.07 80.44 86.44 87.56
IGO-LDA 78.00 86.67 90.22 91.56 N/A N/A
CS-IGO-LDA1 67.56 78.00 84.44 86.44 92.22 93.33
CS-IGO-LDA2 79.33 89.33 92.22 92.98 N/A N/A
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4.3 Face Recognition on the OTCBVS Database

OTCBVS database contains 4228 pairs of visible and IR thermal images under variable
illuminations, expressions, and poses. Image size is 320 × 240 pixels. There are 30
subjects in the database, with 176–250 images per person. Illumination conditions are
Lon (left light on), Ron (right light on), 2on (both lights on), dark (dark room), off (left
and right lights off). In our experiments, we selected face images from 14 different
subjects and each subject provides 8 pairs of thermal infrared and visible images, which
contain 4 types of illumination: Lon, Ron, 2on and off. There are 2 pose images for
each illumination condition.

Out of the 8 images per subject, we randomly selected 4 images per person for
training and the remaining for test. All the images were cropped and resized to 64 × 64
pixels. Nearest neighbor classifier (NNC) with cosine distance was employed to
classify test samples. Recognition accuracy on the visible images, infrared images and
fused images are shown in Tables 3, 4 and 5, respectively. In order to give a vivid
illustration of our proposed methods on the fused images, Fig. 4 is plotted which shows
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Fig. 3. Curves of recognition accuracy by CS-IGO-LDA and improved CS-IGO-LDA and their
competing methods versus feature dimensionality on the Yale database

Table 2. Recognition accuracy on the Extended Yale B database.

Dimension 10 30 37 60 100 140

Eigenfaces 22.11 50.54 54.75 62.32 66.58 68.57
Fisherfaces 61.53 74.57 76.84 N/A N/A N/A
CS-LDA 73.77 89.56 90.12 N/A N/A N/A
IGO-PCA 81.73 95.81 96.13 96.71 96.83 96.91
IGO-LDA 96.12 97.01 97.02 N/A N/A N/A
CS-IGO-LDA1 90.61 96.94 97.11 97.12 97.19 97.19
CS-IGO-LDA2 96.96 97.29 97.25 N/A N/A N/A
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the recognition accuracy of CS-IGO-LDA and the improved CS-IGO-LDA obtained on
visible images, infrared images and fused images, respectively.

Based on the above experimental results on the Yale database, Extended Yale B
database and the OTCBVS database, we can have the following observations:

1. In most cases, recognition accuracy of CSLDA is higher than that of Fisherfaces,
this indicates Fisher faces obtained by client specific method have more discrimi-
native information than traditional LDA method whose feature space is shared by
all classes.

Table 3. Recognition accuracy on the visible images from the OTCBVS database.

Dimension 5 10 13 20 30

Eigenfaces 65.54 81.25 83.93 86.07 87.86
Fisherfaces 59.64 64.29 64.64 N/A N/A
CS-LDA 79.46 84.46 85.71 N/A N/A
IGO-PCA 69.64 80.18 80.89 83.57 84.29
IGO-LDA 75.18 82.50 84.82 N/A N/A
CS-IGO-LDA1 67.14 81.36 83.50 84.50 85.64
CS-IGO-LDA2 71.25 83.21 84.64 N/A N/A

Table 4. Recognition accuracy on the infrared images from the OTCBVS database.

Dimension 5 10 13 20 30

Eigenfaces 51.61 71.96 76.61 81.79 83.21
Fisherfaces 69.11 75.00 75.18 N/A N/A
CS-LDA 65.00 81.61 83.93 N/A N/A
IGO-PCA 64.11 78.93 81.96 82.50 85.00
IGO-LDA 75.18 81.07 83.75 N/A N/A
CS-IGO-LDA1 66.43 78.57 83.29 84.54 85.25
CS-IGO-LDA2 74.82 82.82 84.25 N/A N/A

Table 5. Recognition accuracy on the fused images.

Dimension 5 10 13 20 30

Eigenfaces 56.61 76.07 79.82 85.71 87.86
Fisherfaces 69.11 75.00 75.54 N/A N/A
CS-LDA 70.18 83.93 85.89 N/A N/A
IGO-PCA 67.14 83.93 84.64 86.79 87.50
IGO-LDA 78.04 84.46 86.07 N/A N/A
CS-IGO-LDA1 72.86 85.04 86.46 88.39 88.29
CS-IGO-LDA2 82.86 85.93 87.29 N/A N/A
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2. Recognition accuracy of PCA and LDA based on IGO are better than that of their
intensity-based counterparts, i.e. Eigenfaces and Fisherfaces, this demonstrates that
features extracted from image gradient orientations can handle illumination changes
to some degree.

3. As expected, by combining the merits of client specific and image gradient orien-
tations, performance of the IGO-based methods is improved. In addition, using the
fused images is superior to the visible and infrared images, this indicates that our
proposed CS-IGO-LDA and its improved version are feasible and effective for
multimodal face recognition.

5 Conclusions

Face recognition on visible image is easily affected by illumination changes. In contrast
to visible image, infrared image is robust to illumination changes but it is sensitive to
temperature changes in the surrounding environment. To fully exploit the comple-
mentary information in visible image and infrared image, an image fusion method
which integrates region segmentation and PCNN is adopted. Moreover, in order to
improve the performance of IGO methods, CS-IGO-based methods are proposed by
combining the advantages of client specific technique and IGO. Experimental results
obtained on three publicly available databases not only verify the effectiveness of our
proposed methods for unimodal face recognition, but also demonstrate that our pro-
posed methods can achieve better performance on the fused images than that on visible
images or infrared images.

Compared with conventional subspace learning approaches and face recognition
techniques, our contributions are as follows: (1) image fusion is adopted to integrate
information from different domains. (2) IGO and CS technique are combined with
LDA method, leading to two new algorithms of face representation.
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Although our proposed methods obtain superior results to previous approaches,
some additional works are necessary to meet the demands of real-word applications.
Thus in future, we will investigate a more robust method for face recognition and
authentication.

Acknowledgments. This work was supported by National Natural Science Foundation (NNSF)
of China (61373055), Key Grant Project of Chinese Ministry of Education (311024), Innovation
Project of Graduate Education of Jiangsu Province (KYLX_1123) and Project of Jiangsu Pro-
vincial Department of Science and Technology (Grant No. BY2012059).

References

1. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
2. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: Eigenfaces vs fisherfaces recognition using

class specific linear projection. IEEE PAMI 9(7), 711–720 (1997)
3. Chen, X., Yang, J., Zhang, D., Liang, J.: Complete large margin linear discriminant analysis

using mathematical programming approach. Pattern Recognit. 46(6), 1579–1594 (2013)
4. Yao, C., Lu, Z., Li, J., Xu, Y., Han, J.: A subset method for improving linear discriminant

analysis. Neurocomputing 138, 310–315 (2014)
5. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.

Science 290(5500), 2323–2326 (2000)
6. Zhang, C., Wang, J., Zhao, N., Zhang, D.: Reconstruction and analysis of multi-pose face

images based on nonlinear dimensionality reduction. Pattern Recognit. 37(2), 325–336
(2004)

7. Wen, Y., He, L., Shi, P.: Face recognition using difference vector plus KPCA. Digit. Signal
Proc. 22(1), 140–146 (2012)

8. Li, H.M., Zhou, D.M., Nie, R.C., Li, X., Deng, H.Y.: Face recognition using KPCA and
KFDA. Appl. Mech. Mater. 380, 3850–3853 (2013)

9. Kittler, J., Li, Y.P., Matas, J.: Face authentication using client specific fisherfaces. In: The
Statistics of Directions, Shapes and Images, pp. 63–66 (1999)

10. Wu, X.-j., Josef, K., Yang, J.-y., Kieron, M., Wang, S., Lu, J.: On dimensionality reduction
for client specific discriminant analysis with application to face verification. In: Li, S.Z., Lai,
J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338,
pp. 305–312. Springer, Heidelberg (2004)

11. Sun, X., Wu, X.J., Sun, J., Montesinos, P.: Hybrid client specific discriminant analysis and
its application to face verification. In: Hatzilygeroudis, I., Palade, V. (eds.) Combinations of
Intelligent Methods and Applications, vol. 23, pp. 137–156. Springer, Heidelberg (2013)

12. Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Principal component analysis of image gradient
orientations for face recognition. In: Proceedings of International Conference on Automatic
Face & Gesture Recognition and Workshops, pp. 553–558 (2011)

13. Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Subspace learning from image gradient
orientations. IEEE PAMI 34(12), 2454–2466 (2012)

14. Piella, G.: A general framework for multiresolution image fusion: from pixels to regions. Inf.
Fusion 4(4), 259–280 (2003)

15. Wu, T., Wu, X.J., Liu, X., Luo, Q.: New method using feature level image fusion and
entropy component analysis for multimodal human face recognition. Procedia Eng.
29, 3991–3995 (2012)

24 H.-F. Yin et al.



16. Oklahoma State University. IRIS Thermal/Visible Face Database. http://www.vcipl.okstate.
edu/otcbvs/bench/. Accessed 2014

17. Lee, K.C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under
variable lighting. IEEE PAMI 27(5), 684–698 (2005)

CSIGO for Unimodal and Multimodal Face Representation 25

http://www.vcipl.okstate.edu/otcbvs/bench/
http://www.vcipl.okstate.edu/otcbvs/bench/


http://www.springer.com/978-3-319-14898-4


	Client Specific Image Gradient Orientation for Unimodal and Multimodal Face Representation
	Abstract
	1 Introduction
	2 Related Works
	2.1 An Overview of Image Gradient Orientations
	2.2 Image Fusion

	3 Client Specific Image Gradient Orientations (CSIGO)
	3.1 CS-IGO-LDA
	3.2 Improved CS-IGO-LDA

	4 Experimental Results and Analysis
	4.1 Face Recognition on the Yale Database
	4.2 Face Recognition on the Extended Yale B Database
	4.3 Face Recognition on the OTCBVS Database

	5 Conclusions
	Acknowledgments
	References


