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Abstract. We consider the problem of iterates in some spaces of ultradiffer-
entiable classes in the sense of Braun, Meise and Taylor. In particular, we
obtain a microlocal version, in this setting of functions, of the “Theorem of
the iterates of Kotake and Narasimhan”.
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1. Introduction and notation

Let us first recall some classical results. Let {Ln}n∈N be an increasing sequence of
positive numbers such that L0 = 1, N ≤ LN and LN+1 ≤ cLN for some c > 0 and
for every N ∈ N. As in [H], for an open subset Ω ⊆ Rn we denote by CL(Ω) the
set of all u ∈ C∞(Ω) such that for every compact set K ⊂ Ω, there is a constant
C > 0 with

|Dαu(x)| ≤ C|α|+1L
|α|
|α| ∀x ∈ K, α ∈ Nn

0 , (1)

where N0 := N ∪ {0}.
When LN = N + 1 this is the space A(Ω) of real analytic functions in Ω;

when LN = (N + 1)s for some s > 1, then CL(Ω) is the space Gs(Ω) of Gevrey
functions of order s in Ω.

The problem of substituting in (1) the derivatives of u by the iterates PN of
a fixed linear partial differential operator P , is known as the “problem of iterates”.

It was first solved by Komatsu in [K] in the analytic class A(Ω), for a generic
elliptic operator P (D) of order m with constant coefficients, proving that u ∈
C∞(Ω) is real analytic in Ω if and only if for every compact set K ⊂ Ω there is a
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constant C > 0 such that

‖PNu‖L2(K) ≤ CN+1NNm ∀N ∈ N.

Then Kotake and Narasimhan extended, in [KN], this result to the case of
an elliptic operator P (x,D) with real analytic coefficients in Ω: this is well known
as the “Theorem of the iterates of Kotake and Narasimhan”.

Then Newberger and Zielezny considered in [NZ] the Gevrey case, for a hy-
poelliptic operator P (D) with constant coefficients. The case of Denjoy–Carleman
classes was considered by Lions and Magenes in [LM].

Later Bolley, Camus, Mattera and Rodino looked for a microlocal version of
the problem of iterates in [BCM], [BC], [BCR]. More precisely, they considered,
for s ∈ R and P (x,D) a linear partial differential operator of order m with real
analytic coefficients in Ω, the space CL

s (Ω;P ) of all distributions u ∈ D′(Ω) such
that for every compact set K ⊂ Ω there exists a constant C > 0 with

‖PNu‖Hs(K) ≤ CN+1LmN
mN ∀N ∈ N0.

They define then CL(Ω;P ) :=
⋃

s∈R
CL

s (Ω;P ) and prove that u ∈ CL(V ;P ) for
a neighborhood V of x0 if and only if there exists a neighborhood U of x0 and a
sequence {fN}N∈N ⊂ E ′(Ω) such that

fN = PNu in U

|f̂N(ξ)| ≤ CN+1LmN
mN (1 + |ξ|)M ∀N ∈ N, ξ ∈ Rn,

for some C > 0 and M ∈ R, where f̂N is the Fourier transform of fN .
Starting from this result they could define the wave front set WFL(u;P )

of u ∈ D′(Ω) with respect to the iterates of P as the complement of all points
(x0, ξ0) ∈ Ω × (Rn \ {0}) such that there are a neighborhood U of x0, an open
conic neighborhood Γ of ξ0 and a sequence {fN}N∈N ⊂ E ′(Ω) with

fN = PNu in U

|f̂N (ξ)| ≤ CN+1(LmN + |ξ|)mN+M ∀N ∈ N, ξ ∈ Rn,

|f̂N (ξ)| ≤ CN+1LmN
mN(1 + |ξ|)M ∀N ∈ N, ξ ∈ Γ,

for some C > 0 and M ∈ R.
Then

WFL(u;P ) ⊂ WFL(Pu) ⊂ WFL(u) ⊂ WFL(u;P ) ∪ Σ, (2)

where WFL(u) is the classical wave front set as defined by Hörmander in [H], and
Σ is the characteristic set of P defined by

Σ := {(x, ξ) ∈ Ω× (Rn \ {0}) : Pm(x, ξ) = 0} (3)

for Pm the principal part of P .

Remark 1.1. If P is elliptic then Σ = ∅ and (2) gives a microlocal version of the
“Theorem of the iterates of Kotake and Narasimhan”: WFL(u;P ) = WFL(u).
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Recently, the problem of iterates and the wave front set with respect to the
iterates have been considered, in [J1], [J2] and [BJJ], also in some classes of non-
quasianalytic ultradifferentiable functions in the sense of Braun, Meise and Taylor
[BMT]. To be more precise, we recall from [BMT]:

Definition 1.2. A weight function is a continuous increasing function ω : [0,+∞) →
[0,+∞) with the following properties:

(α) ∃L > 0 s.t. ω(2t) ≤ L(ω(t) + 1) ∀t ≥ 0;
(γ) log t = o(ω(t)) as t → +∞;
(δ) ϕ : t �→ ω(et) is convex.

We say that ω is non-quasianalytic if it also satisfies:

(β)

∫ +∞

1

ω(t)

t2
dt < +∞.

Assuming, without any loss of generality, that ω|[0,1] ≡ 0, the Young conjugate
ϕ∗ : [0,+∞) → [0,+∞) of ϕ is then defined by

ϕ∗(s) := sup
t≥0

{st− ϕ(t)}.

It is a convex function and ϕ∗(s)/s is increasing and tends to infinity as s → +∞.
The space of ω-ultradifferentiable functions of Roumieu type is defined by

E{ω}(Ω) :=
{
u ∈ C∞(Ω) : ∀K ⊂⊂ Ω ∃k ∈ N, c > 0 s.t.

sup
K

|Dαu| ≤ ce
1
kϕ∗(|α|k) ∀α ∈ Nn

0

}
.

The space of ω-ultradifferentiable functions of Beurling type is defined by

E(ω)(Ω) :=
{
u ∈ C∞(Ω) : ∀K ⊂⊂ Ω, ∀k ∈ N ∃ck > 0 s.t.

sup
K

|Dαu| ≤ cke
kϕ∗( |α|

k ) ∀α ∈ Nn
0

}
.

For a linear partial differential operator P (D) with constant coefficients, we
defined in [BJJ] (see also [J1]) the spaces

EP
{ω}(Ω) :=

{
u ∈ C∞(Ω) : ∀K ⊂⊂ Ω ∃k ∈ N, c > 0 s.t.

‖P (D)Nu‖L2(K) ≤ ce
1
kϕ∗(mkN) ∀N ∈ N0

}
and

EP
(ω)(Ω) :=

{
u ∈ C∞(Ω) : ∀K ⊂⊂ Ω, ∀k ∈ N ∃ck > 0 s.t.

‖P (D)Nu‖L2(K) ≤ cke
kϕ∗(mN

k ) ∀N ∈ N0

}
.

Assuming that P is hypoelliptic we proved in [BJJ]:

Proposition 1.3. Let Ω be an open subset of Rn, ω a non-quasianalytic weight
function and P (D) a hypoelliptic linear partial differential operator of order m with
constant coefficients. Then, for u ∈ D′(Ω) and x0 ∈ Ω, we have that u ∈ EP

{ω}(V )

(resp. u ∈ EP
(ω)(V )) for some neighborhood V of x0 if and only if there exist a
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neighborhood U of x0 and a sequence {fN}N∈N ⊂ E ′(Ω) such that the following
conditions (i) and (ii) (resp. (i) and (iii)) hold:

(i) fN = P (D)Nu in U ;
(ii) (Roumieu) ∃k ∈ N s.t. ∀M ∈ R ∃CM > 0:

|f̂N (ξ)| ≤ CMe
1
kϕ∗(kNm)(1 + |ξ|)M ∀N ∈ N, ξ ∈ Rn. (4)

(iii) (Beurling) ∀k ∈ N, M ∈ R ∃ Ck,M > 0:

|f̂N(ξ)| ≤ Ck,Mekϕ
∗(Nm/k)(1 + |ξ|)M ∀N ∈ N, ξ ∈ Rn. (5)

This led to the following:

Definition 1.4 (Roumieu). Let Ω, u and P (D) as in Proposition 1.3. We say that

a point (x0, ξ0) ∈ Ω× (Rn \ {0}) is not in the {ω}-wave front set WFP
{ω}(u) with

respect to the iterates of P , if there are a neighborhood U of x0, an open conic
neighborhood Γ of ξ0 and a sequence {fN}N∈N ⊂ E ′(Ω) such that fN = P (D)Nu
in U and satisfies:

(i) There are constants k ∈ N, M > 0 and C > 0, such that

|f̂N(ξ)| ≤ CN
(
e

1
Nmkϕ

∗(Nmk) + |ξ|)Nm
(1 + |ξ|)M , ∀N ∈ N, ξ ∈ Rn;

(ii) There is a constant k ∈ N such that for all � ∈ N0, there is C� > 0 with the
property

|f̂N(ξ)| ≤ C�e
1
kϕ∗(kNm)(1 + |ξ|)−�, ∀N ∈ N, ξ ∈ Γ.

Definition 1.5 (Beurling). Let Ω, u and P (D) as in Proposition 1.3. We say that

a point (x0, ξ0) ∈ Ω × (Rn \ {0}) is not in the (ω)-wave front set WFP
(ω)(u) with

respect to the iterates of P , if there are a neighborhood U of x0, an open conic
neighborhood Γ of ξ0 and a sequence {fN}N∈N ⊂ E ′(Ω) such that fN = P (D)Nu
in U and satisfies:

(i) There are M,C > 0 such that for all k ∈ N there is Ck > 0:

|f̂N(ξ)| ≤ CkC
N
(
e

k
Nmϕ∗(Nm

k ) + |ξ|)Nm
(1 + |ξ|)M , ∀N ∈ N, ξ ∈ Rn;

(ii) For all � ∈ N0 and k ∈ N there is Ck,� > 0 such that

|f̂N (ξ)| ≤ Ck,�e
kϕ∗(Nm/k)(1 + |ξ|)−�, ∀N ∈ N, ξ ∈ Γ.

Denoting by E∗(Ω), EP
∗ (Ω) and WFP

∗ (u) the above-defined spaces and wave
front sets, where ∗ can be replaced either by {ω} or (ω), we proved in [BJJ,
Proposition 9 and Theorem 13]:

Theorem 1.6. Let Ω be an open subset of Rn, ω a non-quasianalytic weight function
and P (D) a hypoelliptic linear partial differential operator of order m with constant
coefficients. Then, for u ∈ D′(Ω):

WFP
∗ (u) ⊂ WF∗(u) ⊂ WFP

∗ (u) ∪ Σ, (6)

where Σ is the characteristic set of P defined by (3) and WF∗(u) is the ∗-wave
front set in the class E∗(Ω) defined as in [AJO, Definition 3.4].
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For the sake of completeness, we recall here the above-mentioned [AJO, Def-
inition 3.4]:

Definition 1.7. Let Ω be an open subset of Rn and u ∈ D′(Ω). The {ω}-wave
front set WF{ω}(u) (resp. (ω)-wave front set WF(ω)(u)) of u is the complement in
Ω×(Rn\0) of the set of points (x0, ξ0) such that there exist an open neighborhood
U of x0, a conic neighborhood Γ of ξ0 and a bounded sequence uN ∈ E ′(Ω) equal
to u in U which satisfies that there are k ∈ N and C > 0 with the property

|ξ|N |ûN (ξ)| ≤ Ce
1
kϕ∗(kN), ∀N ∈ N, ξ ∈ Γ. (7)

(resp. which satisfies that for every k ∈ N there is Ck > 0 with the property

|ξ|N |ûN (ξ)| ≤ Cke
kϕ∗(N/k), ∀N ∈ N, ξ ∈ Γ). (8)

Remark 1.8. If P is elliptic then Σ = ∅ and (6) implies that WFP
∗ (u) = WF∗(u).

2. Wave front set for non-hypoelliptic operators

In this paper we want to remove the assumption of hypoellipticity on P (and also
of non-quasianalyticity on ω). To this aim we need to change the space where we
work; following the ideas of [BCM] we define:

Definition 2.1. Let Ω be an open subset of Rn, ω a weight function and P (D) a
linear partial differential operator of order m with constant coefficients. Then, for
s ∈ R,

a) (Roumieu) we denote by C
{ω}
s (Ω;P ) the set of all u ∈ D′(Ω) such that for

every compact set K ⊂ Ω there exist k ∈ N and c > 0 with

‖P (D)Nu‖Hs(K) ≤ ce
1
kϕ∗(mNk) ∀N ∈ N0;

b) (Beurling) we denote by C
(ω)
s (Ω;P ) the set of all u ∈ D′(Ω) such that for

every compact set K ⊂ Ω and for every k ∈ N there exists ck > 0 with

‖P (D)Nu‖Hs(K) ≤ cke
kϕ∗(mN

k ) ∀N ∈ N0.

Finally, for ∗ = {ω} or (ω), we define

C∗(Ω;P ) =
⋃

s∈R
C∗

s (Ω;P ). (9)

We can then prove the following:

Theorem 2.2. Let Ω be an open subset of Rn, ω a weight function and P (D) a
linear partial differential operator of order m with constant coefficients. Then, for
u ∈ D′(Ω), we have that u ∈ C{ω}(V ;P ) (resp. u ∈ C(ω)(V ;P )) for a neighbor-
hood V of x0 ∈ Ω if and only if there exist a neighborhood U of x0 and a sequence
{fN}N∈N ⊂ E ′(Ω) that satisfies the following two conditions (i) and (ii) (resp. (i)
and (iii)):
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(i) fN = P (D)Nu in U ;
(ii) Roumieu: there exist M, c > 0, k ∈ N such that

|f̂N(ξ)| ≤ ce
1
kϕ∗(kNm)(1 + |ξ|)M ∀N ∈ N, ξ ∈ Rn;

(iii) Beurling: there exists M > 0 such that for all k ∈ N there is ck > 0 with

|f̂N(ξ)| ≤ cke
kϕ∗(mN

k )(1 + |ξ|)M ∀N ∈ N, ξ ∈ Rn.

Proof. Necessity. Roumieu case. Let u ∈ C{ω}(V ;P ) for some neighborhood V of
x0 and let s ∈ R. Following the same ideas as in [BC], we choose ϕ, ψ ∈ D(V ) with
ψϕ = ϕ and ϕ ≡ 1 in a neighborhood U ⊂ V of x0. Setting fN = ϕP (D)Nu, we

have that fN ∈ E ′(V ), fN = P (D)Nu in U and, denoting by f̂ = F(f) the Fourier
transform of f :

|f̂N (ξ)| =
∣∣∣∣∫

Rn

ϕ(x)ψ(x)P (D)Nu(x)e−i〈x,ξ〉dx
∣∣∣∣

= |F(ϕ · ψP (D)Nu)| = (2π)−n|ϕ̂ ∗ F(ψP (D)Nu)|

=
1

(2π)n

∣∣∣∣∫
Rn

ϕ̂(ξ − η)F(ψP (D)Nu)(η)dη

∣∣∣∣
=

1

(2π)n

∣∣∣∣∫
Rn

(1 + |η|)−sϕ̂(ξ − η)(1 + |η|)sF(ψP (D)Nu)(η)dη

∣∣∣∣
≤ ‖ψP (D)Nu‖Hs(Rn)

(∫
Rn

(1 + |η|)−2s|ϕ̂(ξ − η)|2dη
)1/2

≤ c‖P (D)Nu‖Hs(suppψ)(1 + |ξ|)−s

(∫
Rn

(1 + |ξ − η|)2|s||ϕ̂(ξ − η)|2dη
)1/2

≤ c′e
1
kϕ∗(mNk)(1 + |ξ|)−s‖ϕ‖H|s|(Rn)

≤ c′′e
1
kϕ∗(mNk)(1 + |ξ|)M

for some c, c′, c′′ > 0, proving condition (ii).

The Beurling case is similar.

Sufficiency. Roumieu case.

Let {fN}N∈N ⊂ E ′(Ω) satisfying (i) in some neighborhood U of x0 and (ii)
for some M > 0.

Fix s ≤ −M − (n+ 1)/2. Then, for every compact set K ⊂ U we have that

‖P (D)Nu‖Hs(K) = ‖fN‖Hs(K) ≤ ‖fN‖Hs(Rn)

=

(∫
Rn

(1 + |ξ|)2s|f̂N (ξ)|2dξ
)1/2

≤
(∫

Rn

(1 + |ξ|)2sc2e 2
kϕ∗(mNk)(1 + |ξ|)2Mdξ

)1/2
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≤ ce
1
kϕ∗(mNk)

(∫
Rn

(1 + |ξ|)2(s+M)dξ

)1/2

≤ c′e
1
kϕ∗(mNk)

for some c′ > 0, because of the choice of s.
The Beurling case is similar. �

The above theorem lets us define the wave front set with respect to the
iterates of an operator in the classes C∗(Ω;P ):

Definition 2.3. Let Ω be an open subset of Rn, u ∈ D′(Ω), ω a weight function and
P (D) a linear partial differential operator of orderm with constant coefficients. We
say that a point (x0, ξ0) ∈ Ω× (Rn \ {0}) is not in the wave front set WF{ω}(u;P )
(resp. WF(ω)(u;P )) with respect to the iterates of P , if there are a neighborhood
U of x0, an open conic neighborhood Γ of ξ0 and a sequence {fN}N∈N ⊂ E ′(Ω)
that satisfies the following conditions (i) and (ii) (resp. (i) and (iii)):

(i) fN = P (D)Nu in U ;
(ii) Roumieu: There are constants M,C > 0, k ∈ N such that

(a) |f̂N (ξ)| ≤ Ce
1
kϕ∗(kNm)(1 + |ξ|)M+Nm, ∀N ∈ N, ξ ∈ Rn;

(b) |f̂N (ξ)| ≤ Ce
1
kϕ∗(kNm)(1 + |ξ|)M . ∀N ∈ N, ξ ∈ Γ.

(iii) Beurling: There is M > 0 such that ∀k ∈ N ∃Ck > 0 with

(a) |f̂N (ξ)| ≤ Cke
kϕ∗(Nm/k)(1 + |ξ|)M+Nm, ∀N ∈ N, ξ ∈ Rn;

(b) |f̂N (ξ)| ≤ Cke
kϕ∗(Nm/k)(1 + |ξ|)M . ∀N ∈ N, ξ ∈ Γ.

Comparing the last definition with the one of WF∗(u) (for ∗ = {ω} or (ω))
as in Definition 1.7, we have that the new wave front set gives more precise infor-
mation about the propagation of singularities of a distribution, as the following
Theorem shows:

Theorem 2.4. Let Ω be an open subset of Rn, u ∈ D′(Ω), ω a weight function and
P (D) a linear partial differential operator of order m with constant coefficients.
Then, the following inclusion holds:

WF{ω}(u;P ) ⊂ WF{ω}(u).

Moreover, if ω(t) = o(t) as t tends to infinity, we have that

WF(ω)(u;P ) ⊂ WF(ω)(u).

Proof. Roumieu case. Let (x0, ξ0) /∈ WF{ω} u. Then, by Definition 1.7, there exist
a neighborhood U of x0, an open conic neighborhood F of ξ0 and a bounded
sequence {uN}N∈N ⊂ E ′(Ω) such that uN = u in U and, for some c > 0 and k ∈ N,

|ξ|N |ûN (ξ)| ≤ ce
1
kϕ∗(kN), ∀N ∈ N, ξ ∈ F. (10)

By [H, Lemma 2.2] we can find a sequence χN ∈ D(U) such that χN = 1 in
a neighborhood of x0 and

|Dα+βχN | ≤ Cα(CαN)|β|, ∀α, β ∈ Nn
0 , |β| ≤ N. (11)
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Set then fN = χNmP (D)NuNm. We want to prove (i) and (ii) of Definition 2.3.
Condition (i) is trivial by the choice of χN , since uNm = u in U . To prove (ii)(a)
we first remark that, since {uN}N∈N ⊂ E ′(Ω) is a bounded sequence, there exist
c1,M > 0 such that |ûN (ξ)| ≤ c1(1 + |ξ|)M for all N ∈ N and ξ ∈ Rn. Moreover,
by [AJO, Lemma 3.5],

|χ̂Nm(η)| ≤ cN+1
2

e
1
kϕ∗(Nmk)

(|η| + e
1

kNmϕ∗(Nmk))Nm
(1 + |η|)−n−1−M , (12)

for some c2 > 0. Also

|P (ξ − η)|N ≤ c3|ξ − η|Nm ≤ c3(1 + |ξ|)Nm(1 + |η|)Nm

for some c3 > 0.

Therefore

|f̂N (ξ)| =
∣∣∣∣ 1

(2π)n
F(χNm) ∗ F(P (D)NuNm)(ξ)

∣∣∣∣
≤

∫
|χ̂Nm(η)P (ξ − η)N ûNm(ξ − η)|dη (13)

≤ cN+1
2 c3c1

∫
Rn

e
1
kϕ∗(Nmk)

(|η|+ 1)Nm+n+1+M
(1 + |ξ|)Nm(1 + |η|)Nm

· (1 + |ξ|)M (1 + |η|)Mdη

≤ cN+1
4 e

1
kϕ∗(Nmk)(1 + |ξ|)Nm+M

for some c4 > 0.

To prove (ii)(b) we split the integral (13) into the sum of J1(ξ) + J2(ξ), with

J1(ξ) :=

∫
|η|≤c|ξ|

|χ̂Nm(η)||P (ξ − η)|N |ûNm(ξ − η)|dη

J2(ξ) :=

∫
|η|≥c|ξ|

|χ̂Nm(η)||P (ξ − η)|N |ûNm(ξ − η)|dη,

for some 0 < c < 1 such that, if Γ is a conic neighborhood of ξ0 with Γ ⊂ F , then
for ξ ∈ Γ and |ξ − ζ| ≤ c|ξ| we have ζ ∈ F .

From (12) we have that ‖χ̂Nm‖L1 ≤ AN for some A > 0 and hence, from (10):

|J1(ξ)| ≤ ‖χ̂Nm‖L1 · sup
|ξ−ζ|≤c|ξ|

|P (ζ)|N |ûNm(ζ)|

≤ cN+1
5 e

1
kϕ∗(Nmk) ∀ξ ∈ Γ (14)

for some c5 > 0.
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Moreover, from (12) and

|ûNm(ξ − η)| ≤ c1(1 + |ξ − η|)M
≤ c1(1 + |η|+ c−1|η|)M , for |η| ≥ c|ξ|,

we have that

|J2(ξ)| ≤ cN+1
6 e

1
kϕ∗(Nmk)

∫
1

(1 + |η|)Nm+n+1+M
(1 + |η|)Nm+Mdη

≤ cN+1
7 e

1
kϕ∗(Nmk) ∀ξ ∈ Rn (15)

for some c6, c7 > 0.
Substituting (14) and (15) in (13), that we write as

|f̂N(ξ)| ≤ J1(ξ) + J2(ξ),

we finally have (ii)(b) of Definition 2.3.
Beurling case. We argue similarly as in the Roumieu case. By Definition 1.7,

if (x0, ξ0) /∈ WF(ω) u, then there exist a neighborhood U of x0, an open conic
neighborhood F of ξ0 and a bounded sequence {uN}N∈N ⊂ E ′(Ω) such that uN = u
in U for every N ∈ N and for every k ∈ N there is Ck > 0, with

|ξ|N |ûN (ξ)| ≤ Cke
kϕ∗(N/k), ∀N ∈ N, ξ ∈ F. (16)

We take now χN and fN as in the Roumieu case. Since ω(t) = o(t) by assumption,
from [AJO, Remark 2.4] for every k ∈ N there is ck > 0 such that

N ≤ cke
k
N ϕ∗(N/k). (17)

Then (11) can be substituted by

|Dα+βχN | ≤ Cα

(
Cαcke

k
N ϕ∗(N/k)

)|β|
∀α, β ∈ Nn

0 , |β| ≤ N

and hence (12) by (see also [AJO, Lemma 3.5]):

|χ̂Nm(η)| ≤ CN+1
k

ekϕ
∗(Nm/k)

(|η|+ e
k

Nmϕ∗(Nm/k))Nm
(1 + |η|)−n−1−M , (18)

for some Ck > 0.
From (16) and (18) we can proceed exactly as in the Roumieu case to obtain

(i) and (iii) of Definition 2.3. �

For the opposite inclusion of Theorem 2.4 we get:

Theorem 2.5. Let Ω be an open subset of Rn and u ∈ D′(Ω). Let P (D) be a
linear partial differential operator of order m with constant coefficients and Σ its
characteristic set defined by (3). Let ∗ denote {ω} or (ω), for a weight function ω
with ω(t) = o(t) for t that tends to infinity. Then

WF∗(u) ⊂ WF∗(u;P ) ∪ Σ.
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Proof. The proof is quite similar to that of Theorem 1.6 as in [BJJ, Theorem 13].
We take (x0, ξ0) /∈ WF∗(u;P ) with Pm(ξ0) �= 0; there are then a neighborhood
U of x0, a conic neighborhood Γ of ξ0 and a sequence {fN}N∈N ⊂ E ′(Ω) that
verifies (i), and (ii) (Roumieu case) or (iii) (Beurling case) of Definition 2.3. We
take F ⊂ Γ such that Pm(ξ) �= 0 for all ξ ∈ F , a compact neighborhood K ⊂ U of
x0 and a sequence {χN}N∈N ⊂ D(U) satisfying (11) with χN = 1 on K. Then we
set uN = χ3m2Nu.

As in [BJJ, Theorem 13] (cf. also [BCM]), we have that

ûN (ξ) =

∫
e−i〈x,ξ〉eN (x, ξ)u(x)dx +

∫
e−i〈x,ξ〉P−N

m (ξ)wN (x, ξ)P (D)Nu(x)dx

=: H1(ξ) +H2(ξ) (19)

where

eN :=

N∑
h=1

mN∑
j=mN+1−h

(
N

h

)(−N

j

)
(−1)h+j+1Rh+jχ3m2N

and

wN :=

mN∑
j=0

(−N

j

)
(−1)jRjχ3m2N

for R = R1 + · · · + Rm, with Rj = Rj(ξ,D) a differential operator of order ≤ j,
which depends on the parameter ξ, such that Rj |ξ|j is homogeneous of order 0.

As is [BJJ, Theorem 13],

|H1(ξ)| ≤ cN (1 + |ξ|)MNN+M |ξ|−N , ∀|ξ| > N, (20)

for some c,M > 0 and for every N ∈ N. Moreover

H2(ξ) = P−N
m (ξ) · 1

(2π)n

∫
Rn

ŵN (η)f̂N (ξ − η)dη := S1(ξ) + S2(ξ), (21)

where S1(ξ) is the integral on |η| ≤ c|ξ| and S2(ξ) on |η| ≥ c|ξ|, with c > 0 to be
chosen.

Let us separate now the Roumieu and the Beurling cases.
Roumieu case. From [BJJ, formula (90)] we have that

|Dβ
xwN | ≤ AN (mN)|β|, |β| ≤ 2m2N, |ξ| ≥ mN, (22)

for some A > 0. Moreover, from condition (ii)(a) of Definition 2.3, we have that

|f̂N(ξ)| ≤ C′2Nm
(
e

1
kNmϕ∗(kNm) + |ξ|)Nm

(1 + |ξ|)M ′ ∀N ∈ N, ξ ∈ Rn

for some C′,M ′ > 0 and k ∈ N. From (22) and [AJO, Lemma 3.5] we have that:

|ŵN (η)| ≤ CN+1 e
1
kϕ∗(Nmk)

(|η|+ e
1

Nmkϕ∗(Nmk))Nm
(1 + |η|)−n−1−M ′

, ∀η ∈ Rn, (23)

for some C > 0.
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This implies, since |ξ − η| ≤ (1 + c−1)|η| in S2(ξ), that

|S2(ξ)| ≤ |Pm(ξ)|−N

∫
|η|≥c|ξ|

|ŵN (η)| · |f̂N (ξ − η)|dη

≤ ÃN+12Nme
1
kϕ∗(Nmk)|ξ|−Nm

∫
|η|≥c|ξ|

(1 + |η|)−n−1−M ′
(1 + |η|)M ′

dη

≤ BN+1e
1
k′ ϕ

∗(Nmk′)|ξ|−Nm, ∀N ∈ N, |ξ| > N (24)

for some Ã, B > 0 and k′ ∈ N, since 2Nme
1
kϕ∗(Nmk) ≤ De

1
k′ ϕ

∗(Nmk′) for some
D > 0 and k′ ≥ kL where L is the constant in Definition 1.2 (see proof of Lemma
3.1 in [AJO]).

On the other hand

|S1(ξ)| ≤ |Pm(ξ)|−N‖ŵN‖L1 · sup|η|≤c|ξ| |f̂N (ξ − η)|. (25)

Choosing c > 0 as in the proof of Theorem 2.4 we have, from condition (ii)(b) of
Definition 2.3, that there is a conic neighborhood Γ′ ⊂ Γ of ξ0 such that

sup
|η|≤c|ξ|

|f̂N (ξ − η)| ≤ De
1
kϕ∗(Nmk)(1 + |ξ|)M ∀ξ ∈ Γ′

for some D > 0.
Substituting in (25), since ‖ŵN‖L1 ≤ EN for some E > 0 because of (23),

we have that

|S1(ξ)| ≤ GN+1e
1
kϕ∗(Nmk)|ξ|M−Nm (26)

for some G > 0.
Substituting (24) and (26) in (21), taking into account (20) and (17), and

substituting in (19) we have, by the convexity of ϕ∗, that

|ûN(ξ)| ≤ cN+1
1 e

1
k′′ ϕ

∗(Nmk′′)|ξ|M−Nm

≤ cN+1
1 e

1
2k′′ ϕ

∗(2Nk′′)+ 1
2k′′ ϕ

∗(2N(m−1)k′′)|ξ|M−Nm

≤ cN+1
1 e

1
2k′′ ϕ

∗(2Nk′′)|ξ|M−N ∀|ξ| ≥ RN (27)

where RN := e
1

2N(m−1)k′′ ϕ
∗(2N(m−1)k′′)

, k′′ ∈ N and c1 > 0.
However, for |ξ| ≤ RN , since {uN}N∈N is bounded in E ′(Ω) and ϕ∗(x)/x is

increasing,

|ûN (ξ)| ≤ c2(1 + |ξ|)M ′

≤ c3
(
e

1
2N(m−1)kϕ∗(2N(m−1)k))M ′+N |ξ|−N

≤ c3
(
e

1
Nk′ ϕ

∗(Nk′))M ′+N |ξ|−N

≤ c3
(
e

1
(N+M′)k′ ϕ

∗((N+M ′)k′))M ′+N |ξ|−N

≤ c4e
1

k′′ ϕ
∗(Nk′′)|ξ|−N ∀|ξ| ≤ RN (28)

for some c2, c3, c4 > 0.
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From (27) and (28) we have (7) and so (x0, ξ0) /∈ WF∗(u).
Beurling case. Since ω(t) = o(t), from (17) we deduce, from (22) and [AJO,

Lemma 3.5], that for every k ∈ N there exists Ck > 0 such that (see also [BJJ,
Theorem 13]):

|ŵN (η)| ≤ CN+1
k

ekϕ
∗(Nm/k)

(|η|+ e
k

Nmϕ∗(Nm/k))Nm
(1 + |η|)−n−1−M ′

, ∀η ∈ Rn. (29)

We can thus proceed as in the Roumieu case obtaining, from (29) and (iii) of
Definition 2.3, via (19), (20) and (21), the desired estimate (8) for ûN . �

Remark 2.6. If P (D) is elliptic and ω(t) = o(t) (for instance if ω is non-quasiana-
lytic), then Theorems 2.4 and 2.5 prove that

WF∗(u) = WF∗(u;P ),

i.e., a microlocal version of the “Theorem of the iterates of Kotake andNarasimhan”
in the classes C∗(Ω;P ).
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C/Camino de Vera, s/n
E-46071 Valencia, Spain
e-mail: djornet@mat.upv.es

mailto:chiara.boiti@unife.it
mailto:djornet@mat.upv.es


http://www.springer.com/978-3-319-14617-1


	The Problem of Iterates in Some Classes of Ultradifferentiable Functions
	1. Introduction and notation
	2. Wave front set for non-hypoelliptic operators
	Acknowledgement

	References


