Resource-Dependent Algebraic Effects

Edwin Brady®™)

University of St Andrews, St Andrews KY16 95X, Scotland, UK
ecblO@st-andrews.ac.uk

Abstract. There has been significant interest in recent months in find-
ing new ways to implement composable and modular effectful programs
using handlers of algebraic effects. In my own previous work, I have
shown how an algebraic effect system (called effects) can be embedded
directly in a dependently typed host language. Using dependent types
ought to allow precise reasoning about programs; however, the reasoning
capabilities of effects have been limited to simple state transitions
which are known at compile-time. In this paper, I show how effects
can be extended to support reasoning in the presence of run-time state
transitions, where the result may depend on run-time information about
resource usage (e.g. whether opening a file succeeded). I show how this
can be used to build expressive APIs, and to specify and verify the
behaviour of interactive, stateful programs. I illustrate the technique
using a file handling API, and an interactive game.

1 Introduction

Pure functional languages with dependent types such as IDRIS [3] support rea-
soning about programs directly in the type system, promising that we can know
a program will run correctly (i.e. according to the specification in its type) sim-
ply because it compiles. However, things are not always so simple: programs
have to interact with the outside world, with user input, input from a network
or mutable state. Such operations are outside the control of a language, and may
fail.

In previous work [4], I showed how IDRIS could be used to manage stateful and
side-effecting programs in an Embedded Domain Specific Language (EDSL) called
effects, built around an implementation of algebraic effects and handlers [2,16].
Informally, an algebraic effect is an algebraic datatype describing a collection of
permitted operations. For example, the STDIO effect for Console I/O supports the
operations getStr and putStr and the EXCEPTION effect supports the opera-
tion raise. The effects EDSL allows us to compose effects in one program, as
illustrated in Listing 1. This program reads a name from the console, and prints a
different message depending on whether the user’s name is recognised or not. The
effects STDIO and EXCEPTION String are given in the type to express that the
program supports Console I/O and exceptions which carry strings, respectively.
Effectful programs are executed with the run function, e.g.:

main : IO ()
main = run (readName ["Alice", "Bob"])

© Springer International Publishing Switzerland 2015
J. Hage and J. McCarthy (Eds.): TFP 2014, LNCS 8843, pp. 18-33, 2015.
DOI: 10.1007/978-3-319-14675-1_2

Resource-Dependent Algebraic Effects 19

Listing 1. Composing Effects

readName : List String ->
{ [STDIO, EXCEPTION String] } Eff ()
readName known
= do putStr "Name: "
X <- getStr
if (trim x ‘elem' known)
then putStr $ "Hello " ++ x ++ "\n"
else raise "Name not recognised"

Being implemented in a dependently typed language, effects supports rea-
soning about dynamic state transitions. The previous implementation [4] was,
however, seriously limited in that only known compile-time transitions could be
expressed. Opening a file, for example, was assumed to always succeed with any
failure being dealt with in an exception handler. Realistically, any interaction
with the outside world is likely to fail: files may not open, network transmissions
may fail, users may input invalid data. We would like to be able to state pre-
cisely how effectful operations may affect the state of the outside world, what
failures might occur, and guarantee that they are all handled appropriately, ide-
ally without imposing significant proof burden on a progammer.

1.1 Contributions

In the rest of this paper I describe, by example, a more sophisticated implemen-
tation of ef fects which supports reasoning about state transitions which are
not known until run-time, e.g. whether opening a file was successful, overcoming
the previous limitations. I make the following specific contributions:

— I'show how parameterising algebraic effects over resources leads to the ability
to reason about stateful, side-effecting programs.

— I show how effects, when extended to support parameterised effects, can
support precise run-time dependent APIs for stateful libraries.

— I give a concrete example of a stateful program, a mystery word guessing
game, which is specified as a resource-dependent algebraic effect.

2 Effectful Programming in Idris
In this section, I give a brief introduction to programming with side-effects in

IDRIS. A complete tutorial' and details of the implementation [4] are given else-
where.

! http://eb.host.cs.st-andrews.ac.uk/drafts/eff-tutorial. pdf

http://eb.host.cs.st-andrews.ac.uk/drafts/eff-tutorial.pdf

20 E. Brady

An effectful program f has a type of the following form:

f : (x1 : al) -> (x2 : a2) -> ... ->
{ eff ==> {result} effs’ } Eff t

That is, the return type gives the effects that £ supports (effs, of type List
EFFECT), the effects available after running £ (effs’) which may be calculated
using the result of the operation result of type t.

A function which does not update its available effects has a type of the
following form:

f @ (x1 : al) -> (x2 : a2) -> ... -> { eff } Eff t

In fact, the notation { eff } is itself syntactic sugar, in order to make Ef £
types more readable. In full, the type of Eff is:

Eff : (x : Type) ->
List EFFECT -> (x -> List EFFECT) -> Type

That is, it is indexed over the type of the computation, the list of input
effects and a function which computes the output effects from the result. IDRIS
supports a notation for extending syntax, which allows us to create syntactic
sugar for Eff as described above:

syntax "{" [inst] "}" [eff] = eff inst (\result => inst)
Syntax n{n [inSt] ||::>|| ||{|| {b} n}u [Outst] ll}ll [eff]

= eff inst (\b => outst)
syntax "{" [inst] "==>" [outst] "}" [eff]

= eff inst (\result => outst)

In this notation, [t] indicates a metavariable t standing for a term, and {b} a
metavariable b standing for a binder.

2.1 Example Effectful Programs

A program which carries a state and outputs it to the console would have the
following type:

writeState : Show a => { [STATE a, STDIO] } Eff ()

That is, it can read and write a state of type a and it can perform Console I/0.
Each effect in the given list carries a corresponding resource which is used when
executing an effectful program. STATE a for example carries a resource of type
a. If there are multiple effects of the same type (for example, multiple states),
they can be disambiguated by labelling, although we will not require this in the
present paper.

More generally, a function can update the available effects, depending on its
output. For example, a program which attempts to open a file in a particular
mode (Read or Write) has the following type:

open : String -> (m : Mode) ->
{ [FILE_IO ()] ==>

Resource-Dependent Algebraic Effects 21

{ok} [FILE_IO (if ok then OpenFile m else ())] }
Eff Bool

The FILE_TO effect carries the current state of a file handle. It begins as the unit
type (i.e. no file handle is carried in its resource). If opening the file is successful
(i.e., open returns True and hence ok is True) then a file handle is available,
otherwise it is not.

If a file is available which is open for reading, we can use readFile to
retrieve its contents:

readFile : { [FILE_IO (OpenFile Read)] }
Eff (List String)

Using this, we can write a program which opens a file, reads it, then displays the
contents and closes it, correctly following a resource usage protocol (where the
!-notation, directly applying an effectful operation, is explained further below):

dumpFile : String -> { [FILE_IO (), STDIO] } Eff ()
dumpFile name = case ! (open name Read) of
True => do putStrLn (show !readFile)
close
False => putStrLn ("Error!")

The type of dumpFile, with FILE_ IO () in its effect list, indicates that any
use of the file resource will follow the protocol correctly (i.e. it both begins and
ends with an empty resource). If we fail to follow the protocol correctly (perhaps
by forgetting to close the file, failing to check that open succeeded, or opening
the file for writing) then we will get a compile-time error.

2.2 l-notation

Just as with monadic programming in Haskell, we can use do-notation to
sequence effectful operations. However, do-notation can make programs unnec-
essarily verbose, particularly in cases where the value bound is used once, imme-
diately. Consider the following program:

stateLength : { [STATE String] } Eff Nat
stateLength = do x <- get
pure (length x)

Here, pure injects a pure value into an effectful program (like return in
Haskell). IDRIS provides !-notation to allow a more direct style:

stateLength : { [STATE String] } Eff Nat
stateLength = pure (length !get)

The notation !expr means that the expression expr should be evaluated then
bound. Conceptually, we can consider ! a prefix function as follows:

(') : { xs } Eff a -> a

22 E. Brady

Note, however, that it is syntazx, not a function. Indeed, such a function would
be impossible to implement in general. On encountering a subexpression ! expr,
IDrIs will lift expr out as far as possible within its current scope, bind it to a
fresh name x, and replace !expr with x. Expressions are lifted depth first, left
to right. For example, the expression. ..

let v = 42 in f ! (g ! (print vy) !x)
...1s lifted to:

let v = 42 in do printy’ <- print y

X' <- X
g’ <- g printy’ x’
f g’

In principle, it would even be possible to omit the ! and program in a direct
style, since the type of an effectful operation indicates that a bind is necessary.
However, the ! gives a useful notational clue to the reader.

2.3 Pattern Matching Bind

It might seem that having to test each potentially failing operation with a case
clause could lead to ugly code, with lots of nested case blocks. Many languages
support exceptions to improve this, but unfortunately exceptions may not allow
completely clean resource management. For example, guaranteeing that any suc-
cessful open has a corresponding close becomes difficult when an exception
could be thrown between the operations.

IDRIS supports pattern-matching bindings, such as the following:

dumpFile : String -> { [FILE_IO (), STDIO] } Eff ()
dumpFile name = do True <- open name Read

putStrLn (show !readFile)

close

This also has a problem: we are no longer dealing with the case where opening a
file failed! The IDRIS solution is to extend the pattern-matching binding syntax
to give clauses for failing matches. Here, for example, we could write:

dumpFile : String -> { [FILE_IO (), STDIO] } Eff ()
dumpFile name = do True <- open name Read
| False => putStrLn "Error"
putStrLn (show !readFile)
close

This is exactly equivalent to the definition with the explicit case. In general,
in a do-block, the syntax. ..

do pat <- val | <alternatives>
b

...1s desugared to. ..

Resource-Dependent Algebraic Effects 23

do x <- val
case x of
pat => p
<alternatives>

3 Implementing Resource-Dependent Effects

In this section, I show how effects can be implemented to model resource usage
protocols, using STATE as an illustrative example of simple effects, and extending
this to resource-dependent effects with error handling, using FILE_TO.

3.1 State

Effects are described by algebraic data types with constructors describing the
operations of a free algebraic theory. That is, the constructors give the opera-
tions supported by the effect, and there are no equations describing relationships
between operations. Stateful operations are described as follows:

data State : Effect where
Get : { a} State a
Put : b -> { a ==> b } State ()

Each effect is associated with a resource, the type of which is given with the
notation { x ==> x’ }. This notation gives the resource type expected by
each operation, and how it updates when the operation is run. Here, it means:

— Get takes no arguments. It has a resource of type a, which is not updated,
and running the Get operation returns something of type a.

— Put takes a b as an argument. It has a resource of type a on input, which
is updated to a resource of type b. Running the Put operation returns ().

Effect itself is a type synonym. In IDRIS, type synonyms are simply functions,
since functions can compute types. It is declared as follows:

Effect : Type
Effect = (result : Type) -> (in_resource : Type) ->
(out_resource : result -> Type) -> Type

That is, an effectful operation returns something of type result, has an input
resource of type input_resource, and a function output_resource which
computes the output resource type from the result. We use the same syntactic
sugar as with Eff to make effect declarations more readable, and specifically to
make the state transition clear.

In order to convert State (of type Effect) into something usable in an
effects list, of type EFFECT, we write the following:

STATE : Type -> EFFECT
STATE t = MkKEff t State

24 E. Brady

MKEff constructs an EFFECT by taking the resource type (here, the t which
parameterises STATE) and the effect signature (here, State). For reference,
EFFECT is declared as follows:

data EFFECT : Type where
MkEff : Type -> Effect -> EFFECT

To be able to run an effectful program in Eff, we must explain how it is
executed. Programs are run in some computation contert which supports the
underlying effects (e.g. console I/O runs under I0). Instances of the following
class describe how an effect is executed in a particular context:

class Handler (e : Effect) (m : Type -> Type) where
handle : res -> (eff : e t res res’) ->
((x : £t) -—> res’ x -> m a) ->m a

An instance of Handler e m means that the effect declared with signature e
can be run in computation context m. The name m is suggestive of a monad,
although there is no requirement for it to be so. For example, the identity func-
tion id would allow effects to run in a pure context. The handle function
takes:

— The resource res on input (so, the current value of the state for State)

— The effectful operation (either Get or Put x for State)

— A continuation, which we conventionally call k, and should be passed the
result value of the operation, and an updated resource.

A Handler for State simply passes on the value of the state, in the case of
Get, or passes on a new state, in the case of Put:

instance Handler State m where
handle st Get k = k st st
handle st (Put n) k =k () n

This gives enough information for Get and Put to be used directly in Eff
programs. It is tidy, however, to define top level functions in Ef £, as follows:

get : { [STATE x] } Eff x
get = call Get

put : x -> { [STATE x] } Eff ()
put val = call (Put wval)

putM : y -> { [STATE x]

==> [STATE y] } Eff ()
putM val = call (Put wval)

The call function converts an Ef fect to a function in Ef £, given a proof that
the effect is available. This proof can be constructed automatically by IDRIS,
since it is essentially an index into a statically known list of effects:

Resource-Dependent Algebraic Effects 25

call : {e : Effect} ->
(eff : e t a b) -> {auto prf : EffElem e a xs} ->
Eff t xs (\v => updateResTy v xs prf eff)

3.2 File Management

Result-dependent effects are, in general, no different from non-dependent effects
in the way they are implemented, other than the transitions being made explicit
in the declaration. The FILE_TO effect, for example, is declared as in Listing 2.

Listing 2. File I/O effect

data FileIO : Effect where
Open : String -> (m : Mode) ->
{() ==> {ok} if ok
then OpenFile m
else ()} FileIO Bool

Close : {OpenFile m ==> ()} FileIO ()

ReadLine : {OpenFile Read} FileIO String
WriteLine : String -> {OpenFile Write} FileIO ()

EOF : {OpenFile Read} FileIO Bool

The syntax for state transitions { x ==> {res} x’ }, where the result
state x’ is computed from the result of the operation res, follows that for
the equivalent Eff programs. The distinctive operation declared in this effect
signature is Open, the type of which captures the possibility of failure.

Before executing Open, the resource state must be empty (i.e. there is no
file handle). After executing Open, we either have a file handle, open for the
appropriate mode (if ok is True) or no file. This can be made into a function
in Eff as follows (we have already seen the type of open in Section 2.1):

open : String -> (m : Mode) ->

{ [FILE_IO ()] ==>
{ok} [FILE_IO (if ok then OpenFile m else ())] }
Eff Bool

open £f m = Open £ m

This type illustrates the extension provided by resource-dependent effects.
Namely, the output effects are computed for a result which will become known
only at run-time. As a result, the only way for a program using the open oper-
ation to be well-typed is for it to check the result at run-time:

dumpFile : String -> { [FILE_IO (), STDIO] } Eff ()
dumpFile name = case ! (open name Read) of
True => do putStrLn (show !readFile)
close
False => putStrLn ("Error!")

26 E. Brady

By performing case analysis on the result of open name Read, the type of the
resource in each branch is specialised according to whether the result is True or
False, meaning that the if. . .then. . .else construct in the output resource
can be reduced further. The Handler for FileIO is written as in Listing 3 (the
WriteLine and EOF cases are omitted, but correspond to the ReadLine case).

Listing 3. File I/O handler

instance Handler FileIO IO where
handle () (Open fname m) k
= do h <- openFile fname m
if ! (validFile h) then k True (FH h)
else k False ()
handle (FH h) Close k
= do closeFile h
kO 0
handle (FH h) ReadLine k = do str <- fread h
k str (FH h)

Note that in the handler for Open, the types passed to the continuation k
are different depending on whether the result is True (opening succeeded) or
False (opening failed). This uses validFile, defined in the Prelude, to test
whether a file handler refers to an open file or not.

4 Example: A “Mystery Word” Guessing Game

In this section, we will use effects to implement a larger example, a simple
text-based word-guessing game. The effect will allow us to express the rules of
the game formally and precisely, with a resource-dependent effect allowing the
machine to update game state at run-time, according to information which will
only be known at run-time.

In the game, the computer chooses a word, which the player must guess letter
by letter. The player wins when all the letters have been guessed correctly, and
loses after a limited number of wrong guesses®. We will implement the game by
following these steps:

1. Define the game state, in enough detail to express the rules

2. Define the rules of the game (i.e. what actions the player may take, and how
these actions affect the game state)

3. Implement the rules of the game (i.e. implement state updates for each
action)

4. Implement a user interface which allows a player to direct actions

2 Readers may recognise this game by the name “Hangman”.

Resource-Dependent Algebraic Effects 27

Step 2 may be achieved by defining an effect which depends on the state defined
in Step 1. Then Step 3 involves implementing a Handler for this effect. Finally,
Step 4 involves implementing a program in Eff using the newly defined effect
(and any others required to implement the interface). By using effects, we
can be certain that our implementation of the game follows the specified rules.

4.1 Step 1: Game State

First, we categorise the game states as running games (where there are a number
of guesses available, and a number of letters still to guess), or non-running games
(i.e. games which have not been started, or games which have been won or lost).

data GState = Running Nat Nat | NotRunning

Notice that at this stage, we say nothing about what it means to make a guess,
what the word to be guessed is, how to guess letters, or any other implementation
detail. We are only interested in what is necessary to describe the game rules.
We will, however, parameterise a concrete game state Mystery over this data:

data Mystery : GState -> Type

4.2 Step 2: Game Rules

We describe the game rules as a resource-dependent effect, where each action has
a precondition (i.e. what the game state must be before carrying out the action)
and a postcondition (i.e. how the action affects the game state). Informally, these
actions with the pre- and postconditions are:

Guess. Guess a letter in the word.
— Precondition: The game must be running, and there must be both guesses
still available, and letters still to be guessed.
— Postcondition: If the guessed letter is in the word and not yet guessed,
reduce the number of letters, otherwise reduce the number of guesses.
Won. Declare victory
— Precondition: The game must be running, with no letters to be guessed.
— Postcondition: The game is no longer running.
Lost. Accept defeat
— Precondition: The game must be running, with no guesses left.
— Postcondition: The game is no longer running.
NewWord. Set a new word to be guessed
— Precondition: The game must not be running.
— Postcondition: The game is running, with 6 guesses available and the
number of unique letters in the word still to be guessed.
StrState. Get a string representation of the game state. This is for display
purposes; there are no pre- or postconditions.

28 E. Brady

We can make these rules precise by declaring them in an effect signature (List-
ing 4). This description says nothing about how the rules are implemented. In
particular, it does not specify how to tell whether a guessed letter was in a word,
just that the result of Guess depends on it. Creating an EFFECT from this and
implementing a Handler for MysteryRules will then allow us to play the
game by filling in the missing implementation details.

MYSTERY : GState -> EFFECT
MYSTERY h = MkKEff (Mystery h) MysteryRules

Listing 4. Mystery Word Game Rules

data MysteryRules : Effect where
Guess : (x : Char) ->
{ Mystery (Running (S g) (S w)) ==>

{inword} if inword then Mystery (Running (S g) w)

else Mystery (Running g (S w)) }
MysteryRules Bool
Won : { Mystery (Running g 0) ==>
Mystery NotRunning } MysteryRules ()
Lost : { Mystery (Running 0 g) ==>
Mystery NotRunning } MysteryRules ()
NewWord : (w : String) ->
{ Mystery NotRunning ==>
Mystery (Running 6 (length (letters w))) }

MysteryRules ()
StrState : { Mystery h } MysteryRules String

4.3 Step 3: Implement Rules

To implement the rules, we begin by giving a concrete definition of game state:

data Mystery : GState -> Type where
Init : Mystery NotRunning
GameWon (word : String) -> Mystery NotRunning
GameLost (word : String) -> Mystery NotRunning
MkG : (word : String) -> (guesses : Nat) ->
(got : List Char) ->
(missing : Vect m Char) ->
Mystery (Running guesses m)

If a game is NotRunning, that is either because it has not yet started (Init)
or because it is won or lost (GameWon and GameLost, each of which carry the
word so that showing the game state will reveal the word to the player). Finally,
MkG captures a running game’s state, including the target word, the letters
successfully guessed, and the missing letters. Using a Vect for the missing letters
is convenient since its length is used in the type of Mystery itself. This makes
the link between the missing letters and the game state explicit and checkable.

Resource-Dependent Algebraic Effects 29

To initialise the state, we implement the following functions: letters, which
returns a list of unique letters in a String (ignoring spaces) and initState
which sets up an initial state considered valid as a postcondition for NewWord.

letters : String -> List Char
initState : (x : String) ->
Mystery (Running 6 (length (letters x)))

When checking if a guess is correct, it is convenient to return a proof that the
guess is in the vector of missing letters, rather than a Bool, using isElem:

data IsElem : a -> Vect n a -> Type where
First : IsElem x (X :: Xs)
Later : IsElem x xs -> IsElem x (y :: X8)

isElem : DecEg a =>
(x : a) -> (xs : Vect n a) -> Maybe (IsElem x Xs)

This is defined in the IDRIS prelude. The reason for returning a proof is that we
can use it to remove an element from the correct position:

shrink : (xs : Vect (S n) a) -> IsElem x xs -> Vect n a

The Handler implementation for MysteryRules now involves directly updat-
ing the game state in a way which is consistent with the declared rules:

instance Handler MysteryRules m where
handle (MkG w g got []) Won k =
handle (MkG w Z got m) Lost k =

k () (GameWon w)
k () (GameLost w)
handle st StrState k = k (show st) st

handle st (NewWord w) k = k () (initState w)

handle (MkG w (S g) got m) (Guess x) k =
case isElem x m of
Nothing => k False (MkG w _ got m)
(Just p) =>
k True (MkG w _ (x :: got) (shrink m p))

In particular, in Guess, if the handler claims that the guessed letter is in the
word (by passing True to k), there is no way to update the state in such a
way that the number of missing letters or number of guesses does not follow
the rules. This would be a compile-time type error, due to the link between the
game state’s type and the vector of missing letters.

4.4 Step 4: Implement Interface

Having described the rules, and implemented state transitions which follow those
rules as an effect handler, we can now write an interface for the game which uses
the MYSTERY effect:

30 E. Brady

game : { [MYSTERY (Running (S g) w), STDIO]

==>
[MYSTERY NotRunning, STDIO] } Eff ()

The type indicates that the game must start in a running state, with some
guesses available and no assumption about the number of letters in the given
word, and eventually reach a not-running state (i.e. won or lost). The only way
to achieve this is by correctly following the stated rules. A possible complete
implementation of game is presented in Listing 5.

Listing 5. Mystery Word Game Implementation

game : { [MYSTERY (Running (S g) w), STDIO] ==>
[MYSTERY NotRunning, STDIO] } Eff ()
game {w=Z} = Won

game {w=S _}
= do putStr (!StrState ++ "\nEnter guess: ")
let guess = trim !getStr
case choose (not (guess == "")) of
(Left p) => processGuess (strHead’ guess p)
(Right p) => do putStrLn "Invalid input!"
game
where
processGuess : Char ->
{ [MYSTERY (Running (S g) (S w)), STDIO] ==>
[MYSTERY NotRunning, STDIO] } Eff ()
processGuess {g} {w} c
= case ! (Guess c) of
True => do putStrLn "Good guess!"
case w of
Z => Won
(S k) => game
False => do putStrLn "No, sorry"
case g of

Z => Lost
(S k) => game

Finally, we need to initialise the game by picking a word at random from a
list of candidates, setting it as the target using NewWord, then running game:

runGame : { [MYSTERY NotRunning, RND, SYSTEM, STDIO] }

Eff ()
runGame = do srand (cast !time)
let w = index ! (rndFin _) words
NewWord w
game

putStrLn !StrState

Resource-Dependent Algebraic Effects 31

We use the system time (provided by SYSTEM) to initialise the random number
generator (provided by RND), then pick a random element of a finite set Fin to
index into a list of words. For example, we could initialise a word list as follows:

words : ?wtype

words = with Vect ["idris","agda", "haskell", "miranda",
"java", "javascript", "fortran", "basic", "erlang",
"racket", "clean", "links", "coffeescript", "rust"]

wtype = proof search

Aside: Rather than have to explicitly declare a type with the vector’s length,
it is convenient to give a metavariable ?wtype and let IDRIS’s proof search find
the type. This is a limited form of type inference, but useful in practice.

5 Related Work

There has been much recent interest in using algebraic effects to support mod-
ular, composable effectful programming. The effects library was initially
inspired by Bauer and Pretnar’s Eff language [2], and there have been suc-
cessful efforts to implement handlers of algebraic effects in Haskell and other
languages [9,10]. Unlike the effects library, these systems do not attempt to
support reasoning about resource usage or state updates, but are flexible in other
ways such as allowing handlers of effects to be reordered. Other languages aim to
bring effects into their type system, such as Disciple [13], Koka [11] and Frank®.
These languages are built on well-studied theoretical foundations [8,12,16,17]
modelling effects as operations of an algebraic theory. However, unlike these
other languages, we have preferred to build ef fects as a library rather than a
language extension, since IDRIS’s type system is sufficiently expressive.

The resource-dependent effect library described in this paper is a refinement
of previous work [4] implementing algebraic effects in IDRIS. An important lim-
itation of this work was the difficulty of dealing with errors; state transitions in
effects were expressed statically, meaning that the result state could not depend
on the result of an operation. This was improved to some extent in order to
implement libraries for web programming [6] by adding an explicit error-checking
construct, but this too has proved limited in practice for implementing more
complex protocols. Inspired by McBride [14], the present implementation allows
the result type of an effectful operation to depend on run-time information,
with compile-time checks enforced by the type system ensuring that any nec-
essary run-time checks are made. The effect transitions given in function types
are reminiscent of Hoare triples, describing preconditions and postconditions on
operations. One previous implementation of this idea using dependent types is
YNot [15], an axiomatic extension to Coq. While each of these approaches is
similar in expressivity, the implementation described in this paper allows fine-
grained control over allowed effects, as well as composition of effects.

3 https://personal.cis.strath.ac.uk/conor.mcbride/pub/Frank/

https://personal.cis.strath.ac.uk/conor.mcbride/pub/Frank/

32 E. Brady

The problem of reasoning about resource usage protocols has previously
been tackled using special purpose type systems [19], by creating DSLs for
resource management [5], or with Typestate [1,18]. These are less flexible than
the effects approach, however, since combining resources is difficult. In
effects, we can combine resources simply by extending the list of available
effects.

6 Conclusion

The effects system extends the previous implementation by allowing precise
reasoning about state updates, even in the presence of information which is not
known until run-time. By capturing the possibility of failure in the resource
state of an effect, we know that a programmer cannot avoid handling failure.
Lightweight syntactic sugar, such as !-notation and pattern matching alterna-
tives mean that programs remain short and readable.

In the Mystery Word game, I wrote the rules separately as an effect, then
wrote an implementation which uses that effect. This ensured that the implemen-
tation must follow the rules. In practice, we would not expect to follow a strict
process of writing the rules first then implementing the game. Indeed, I did not do
so when constructing the example! Rather, I wrote down a first draft of the rules
making any assumptions ezplicit in the state transitions for MysteryRules.
Then, when implementing game at first, any incorrect assumption was caught
as a type error. The following errors were caught during development:

— Not realising that allowing NewWord to be an arbitrary string would mean
that game would have to deal with a zero-length word as a starting state.

— Forgetting to check whether a game was won before recursively calling
processGuess, thus accidentally continuing a finished game.

— Accidentally checking the number of missing letters, rather than the number
of remaining guesses, when checking if a game was lost.

While these are simple errors, they were caught by the type checker before any
testing of the game. This approach has practical applications in more serious
contexts; MysteryRules for example can be thought of as describing a proto-
col that a game player most follow, or alternative a precisely-typed API. Precise
reasoning about resource usage, and constraints on ordering of operations and
error checking, can be particularly important in safety and security critical con-
texts. For example, a recent security flaw in Apple’s i0S* was caused in part by
faulty error handling code in an SSL key exchange protocol.

We are using resource-dependent effects to implement a DSL for type-safe com-
munication, similar to session types [7]. Using this, we plan to investigate verifi-
cation of security properties of protocols. In this context, resource-dependency is
essential: the execution of the protocol depends on values which are communicated
across a network or given by a user, which cannot be known until run-time.

* http://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2014-1266

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-1266

Resource-Dependent Algebraic Effects 33

Acknowledgements. My thanks to the Scottish Informatics and Computer Science
Alliance (SICSA) for financial support, and to the reviewers for their helpful comments.

References

1.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming,.
In: Proceedings of the 24th Conference on Object Oriented Programming Systems
Languages and Applications, pp. 1015-1012 (2009)

Bauer, A., Pretnar, M.: Programming with Algebraic Effects and Handlers (2012).
http://arxiv.org/abs/1203.1539

Brady, E.: Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming 23, 552-593
(2013)

Brady, E.: Programming and reasoning with algebraic effects and dependent types.
In: ICFP 2013: Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming. ACM (2013)

Brady, E., Hammond, K.: Correct-by-construction concurrency: Using dependent
types to verify implementations of effectful resource usage protocols. Fundamenta
Informaticae 102, 145-176 (2010)

Fowler, S., Brady, E.: Dependent types for safe and secure web programming.
In: Implementation and Application of Functional Languages (IFL) (2013)
Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types.
In: POPL, pp. 273-284 (2008)

Hyland, M., Plotkin, G., Power, J.: Combining effects: Sum and tensor. Theoretical
Computer Science 357, 70-99 (2006)

Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: Proceedings of the 18th
International Conference on Functional Programming (ICFP 2013). ACM (2013)
Kiselyov, O., Sabry, A., Swords, C.: Extensible effects: an alternative to monad
transformers. In: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell,
Haskell 2013, pp. 59-70, New York. ACM (2013)

Leijen, D.: Koka: programming with row polymorphic effect types. In: Levy, P.,
Krishnaswami, N. (eds.) MSFP. EPTCS, vol. 153, pp. 100-126 (2014)

Levy, P.B.: Call-By-Push-Value. PhD thesis, Queen Mary and Westfield College,
University of London (2001)

Lippmeier, B.: Witnessing purity, constancy and mutability. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 95-110. Springer, Heidelberg (2009)
McBride, C.: Kleisli arrows of outrageous fortune (2011), (Draft)

Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: rea-
soning with the awkward squad. In: ICFP 2008: Proceeding of the 13th ACM
SIGPLAN International Conference on Functional Programming, pp. 229-240,
New York. ACM (2008)

Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP
2009. LNCS, vol. 5502, pp. 80-94. Springer, Heidelberg (2009)

Pretnar, M.: The Logic and Handling of Algebraic Effects. PhD thesis, University
of Edinburgh (2010)

Strom, R., Yemini, S.: Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering
SE—-12(1), 157-171 (1986)

Walker, D.: A type system for expressive security policies. In: Proceedings of the
27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2000, pp. 254-267. ACM (2000)

http://arxiv.org/abs/1203.1539

2 Springer
http://www.springer.com/978-3-319-14674-4

Trends in Functional Frogramming

15th International Symposium, TFP 2014, Soesterberg, The
Metherlands, May 26-28, 2014, Eevised Selected Papers
Hage, |.; McCarthy, |. (Eds.)

2015, X, 143 p. 29 illus., Softcover

ISBM: 978-3-219-14674-4

	Resource-Dependent Algebraic Effects
	1 Introduction
	1.1 Contributions

	2 Effectful Programming in Idris
	2.1 Example Effectful Programs
	2.2 !-notation
	2.3 Pattern Matching Bind

	3 Implementing Resource-Dependent Effects
	3.1 State
	3.2 File Management

	4 Example: A ``Mystery Word'' Guessing Game
	4.1 Step 1: Game State
	4.2 Step 2: Game Rules
	4.3 Step 3: Implement Rules
	4.4 Step 4: Implement Interface

	5 Related Work
	6 Conclusion
	References

