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Abstract. Agent-based modeling and simulation (ABMS) became an attractive
and efficient way to model large-scale complex systems. The use of models
always raises the question whether the model is correctly encoded (verification)
and accurately represents the real system (validation). However, achieving a
sufficiently credible agent-based simulation (ABS) model is still difficult due to
weak verification, validation and testing (VV&T) techniques. Moreover, there is
no comprehensive and integrated toolkit for VV&T of ABS models that dem-
onstrates that inaccuracies exist and/or which reveals the existing errors in the
model. Based on this observation, we designed and developed RatKit: a toolkit
for ABS models to conduct VV&T. RatKit facilitates the VV&T process of
ABMS by providing an integrated environment that allows repeatable and
automated execution of ABS tests. This paper presents RatKit in detail and
demonstrates its effectiveness by showing its applicability on a simple well-
known case study: predator - prey.

Keywords: Agent-based modeling and simulation � Model testing � Verifica-
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1 Introduction

Agent-based modeling and Simulation (ABMS) is a very multidisciplinary complex
system modeling and simulation technique, which is has been used increasingly during
the last decade. The multidisciplinary scope of ABMS ranges from the life sciences
(e.g. Biological Networks [6], Ecology [7], social Sciences [8], Scientometrics [9] to
Large-scale Complex Adaptive COmmunicatiOn Networks and environmentS
(CACOONS) [10] such as Wireless Sensor Networks and the Internet of Things
(IoT)). While in some domains, ABMS is used for understanding complex phenomena,
in other domains it is used for designing complex systems. However, whatever the
objective is, in all of these domains large sets of agents interacting locally give rise to
bottom-up collective behaviors. The collective behaviors of agents, whether emergent
or not [11], depend on the local competences, the local perceptions and the partial
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knowledge of agents as well as the global parameter values of the simulation run.
A slight difference in any of these properties (whether intentional or not) may result in
totally different collective behaviors. Such a consequence leads either to a misunder-
standing of the system of interest or a bad system design.

Besides, despite all ABMS platforms are developed by computer scientists, the
users of these platforms (i.e. The developers of ABMS models) are more heteroge-
neous. Depending on the application domains, they can be (1) computer scientists that
are building ABS models for their domains, (2) non-computer scientists that are
building models for their domains or (3) computer scientists that are working closely
with non-computer scientists. On the one hand, non-computer scientist modelers are
experts in their domains (i.e. Domain experts) and are said to be capable of building the
right models. However, translating these models into their corresponding software
models (i.e. ABS models) can sometimes be problematic and open to mistakes.
Moreover, since they have less expertise concerning software development, it is a big
mystery as to whether they are building the models right or not. On the other hand,
computer scientist modelers are better at building models correctly, but they usually
lack the expertise to build the right models.

In this sense, correct design and implementation of ABS simulation models are
becoming highly important to increase reliability and to improve confidence. The use of
models always raises the question whether the model is correctly encoded (verification)
and accurately represents the real system (validation). Model verification deals with
“building the model right”while model validation deals with “building the right model”,
as stated in [1]. Model verification is the process of determining that a model is meeting
specified model requirements and reflecting the system of interest accurately. Also,
model validation is the process of determining the degree to which a model is an accurate
representation of the system of interest from the perspective of the intended modeling
objectives. Both verification and validation are processes that gather evidence of a
model’s reliability or accuracy; thus, verification and validation (V&V) cannot prove
that a model is definitely correct and accurate for all possible scenarios, but, rather, it can
provide evidence that the model is sufficiently accurate for its intended use [27].

In the literature, there are two main focuses for building accurate ABS models:
model fitting and model testing [28]. For both of these focuses the ultimate goal is to
have an ABS model that appropriately mimics the real system, however each focus has
different ways to achieve this. Model testing demonstrates that inaccuracies exist in the
model and reveals the existing errors in the model. In model testing, test data or test
cases are subject to the model to see if it functions properly [2]. Model testing focuses
on observable behaviors of the real system according to the experimental or real data.
On the other hand, model fitting focuses on achieving non-observable behaviors of the
real system that are not gathered with scientific or experimental methods. Even though
these focuses are at opposite ends of the spectrum, and certainly hybrids of these
focuses offers the solution of aforementioned V&V requirements of ABS models.

Model testing and model fitting, are general techniques that can be conducted to
perform verification and/or validation of ABS models. In this study, we extend the
model testing scope with the requirements of model fitting. We aimed to enrich model
testing methods with test scenario visualization, visual tests and logging support in
order to support model fitting, especially for domain experts and non-computer
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scientists. As [12] points out traditional testing techniques for VV&T cannot be
transferred easily to ABS. There are some efforts [13–17], but these studies do not
directly deal with model testing processes and focus on late validation and verification.
As well, there are few proposed model testing frameworks to conduct validation and
verification throughout the model testing process [15, 18, 19]. Among them, [18]
proposed an integrated testing framework, but unfortunately this framework not easy to
use for non-computer scientists.

Based on the above observations, our desire is to develop an automated and inte-
grated testing framework for ABSs in order to facilitate the model testing process for all
types of model developers. Towards this objective, we took the generic testing
framework proposed by Gürcan et al. [18] and improved it one step further by taking
into account the requirements of testing frameworks for ABMS. Previously, testing
requirements for ABMS are defined and testing levels of ABMS that can be subject of
the model testing process are clarified in our previous studies [18, 22]. We also revise
our multi-level testing categorization by keeping in sight the requirements of ABS
testing frameworks.

2 Requirements of Agent Based Simulation Testing
Frameworks

VV&T leads the simulation model development to increase understanding of the
potential of models and to decide when to believe a model, and when not to, and to
interpret and to use the model’s results [29]. However, it should be noted that VV&T is
not a silver bullet. VV&T also has some limitations and constraints. Apparently, one
intending to design a testing framework should take into consideration the requirements
below.

• Integrity: Testing of the model is not separate from the model development
(especially since it covers the verification). Rather, these tasks are tightly coupled,
since a testing framework for ABMS should be integrated or pluggable to the
simulation environment in order to behave like a simulation engine, to interpret the
model outputs and to execute the testing criteria corresponding to the evaluation
rules. Thus, applying VV&T in the early steps in model development can be easily
achieved.

• Multilevel Testing: Multilevel testing involves testing the model elements at dif-
ferent levels of organization; micro-, meso- and macro-levels. Due to the multilevel
nature of ABMS [25] and experiences reported in the literature [26], obviously a
testing framework dedicated to ABMS should support multilevel testing as dis-
cussed in other studies [18, 22, 24]. Corresponding to the multilevel testing, model
components tested at lower levels can be used in upper levels. So, multilevel testing
does not distinguish testing requirements. Rather, it presents a systematic way to
test simulation models iteratively.

• Automated Testing: Automatic testing is the capability of executing model tests
together and individually. Multilevel tests are not independent from each other.
Moreover, each level is a prerequisite of the upper-level for proper testing. Testing
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model with the model development in a multilevel manner systematically organizes
the model to achieve intended reliability and accuracy. Therefore, automated testing
is the essential requirement for the complementarity of the testing levels. Thus, the
impact of the new model components or behaviors added to the model can be easily
understood without any extra effort.

• Monitoring: Monitoring the simulation models, the behaviors of agents, or
occurrence of special or unexpected cases are the main expectations for testing.
Monitoring an agent in micro-level, a group of agent in meso-level or the whole
model in macro-level testing is the main requirement to evaluate models. Such a
testing framework should provide evidence to the modelers in order to assess about
the model behaviors or outputs. However, monitoring should be conducted without
any intervention to the model behavior if we want reliable information about the
model. Most of the existing monitoring efforts [15, 18] prefer to intervene in the
scheduling of agents, agent behaviors or the simulated environment. In this case,
observations gathered may be different from the real outputs of the model.

• Parameter Tuning: Simulation parameters are the key values for the model and
affect the simulation behaviors. A dedicated testing framework should provide
parameter tuning capability [5] to the modeler to find appropriate parameter values,
showing the domino effect between parameters, testing the variety of parameter
values, drawing the boundaries for the parameter value set, testing the parameter
sensitivity, etc. To perform parameter tuning modelers choose to run the model
multiple times with different initial values in order to find the appropriate values.
But instead of such a testing framework supports parametric test scenario definition
can handle this issue.

• Presenting Model Observation: Evaluation of the model observations against the
real data is the subject of testing [2]. Model observations are not only final outputs,
but also the data that are captured at any time during the model execution.
An observation value can be the value of an agent attribute, state, parameter,
environment parameter or resource. Presenting observations to the modeler con-
tributes to evaluate the potential of the model.

• Visualization Support: VV&T of ABMS do not only focus on quantitative
methods [15]. Especially for non-computer scientists, a testing framework should
present visual outputs to support model fitting[]. However, visualization is not only
to visualize the simulation execution, but also to present or to summarize obser-
vations. Drawing a graphical representation of observation history should help
modelers to review simulation execution or the behaviors of the agents. In this
sense, modelers can monitor the behaviors of agents or a group of agents with
different conditions without any extra effort. To perform VV&T based on classical
quantitative techniques narrows the VV&T perspective. However, a testing
framework that is enriched with the support of visualization provides a broader
perspective in order to evaluate the potential of the model.

• Logging: Logging [15] is presenting a history of the model execution to the
modeler. Some of the situations not considered in a test scenario can be determined
with the help of logs. Especially in meso- and macro- testing levels, when the
number of agents in the model under test increases, the impact of logging during
assessment can be easily achieved. Reviewing logs help modelers to monitor the

20 İ. Çakırlar et al.



model behaviors easily. Logging should be optional and should support logging
levels in order to avoid confusion.

• Ease-of-Use: Testing proposals [13–17] for ABS is hard-to-use and requires extra
effort. VV&T is difficult enough for modelers because of its nature. Therefore, it
should be identical to the model development to address all modelers, especially
non-computer scientists. Thus, modelers do not need to any extra effort to perform
model VV&T.

It’s inevitable that such a testing framework for ABMS should support these
requirements. Towards this objective, we designed and developed RatKit for ABMS to
facilitate the model testing process taking into consideration ABMS audience
requirements and expectations.

3 Related Work

There has been little work that specifically addresses testing of ABSs and also simu-
lation models.

MASTER is proposed by Wright et al. [19], is a simulation model testing frame-
work for ABSs and compatible with the MASON. MASTER is an external testing tool
that provides defining acceptance tests for simulation models. MASTER aims to detect
suspicious simulation runs corresponding to the user defined assertions. The modeler
defines normal situations, facts, constraints and abnormal situations for the model
under test; the framework monitors the simulation runs and evaluates deviations from
the normal situations. MASTER is a semi-automatic testing tool and only focuses on
prepared simulation models. Rather than developing credible simulation models, it
focuses on final VV&T process.

VOMAS, proposed by Niazi et al. [15], is one tool for VV&T of ABMS. They
propose using a group of specialized agents; agents specialized in monitoring and
testing, over an overlay network to conduct the VV&T process. The agents of the
overlay use defined constraints in order to detect unusual behaviors, and report vio-
lations if they occur. However, it is not clear how the constraints for the overlay agents
are derived and how observations are evaluated. And also, monitoring of the model
agents is not clarified. Intervention into the simulation agents breaks the normal sim-
ulation run and VV&T gets further away from its main objective.

4 RatKit: A Repeatable Automated Testing Toolkit
for ABMS

RatKit (Repeatable Automated Testing toolKIT) is a testing toolkit to facilitate model
testing. Testing requires the execution of the model under test as stated in [18]. In this
context, each specific model designed for testing is called Test Scenario. Each Test
Scenario is defined for specific purpose(s) and includes the required test cases, activ-
ities, sequences, and observations. Observations are collected by the Test Environment
during the execution of the test scenario. The Test Agent is responsible for evaluating
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these assertions according to the collected observations in order to check if these
testable elements [18] behave as expected or not.

4.1 RatKit Architecture

The UML model of the RatKit is given in Fig. 1. RatKit uses Junit1 testing infra-
structure for all testing purposes like assertions, test runners, etc. RatKitRunner is the
main class for the architecture and the Junit test runner for simulation tests. When a test
class is annotated by the annotation @RunWith (RatKitRunner.class) all test methods
of the test class are evaluated by the TestAgent. RatKit toolkit is implemented for the
Repast simulation environment [23] (RatKit4Repast2).

RatKitRunner first initializes the given test scenario for each test method and
creates test scenario elements using RatKitScenarioLoader. RatKitScenarioLoader
creates the necessary test scenario files corresponding to the defined test method
parameters. RatKit provides test developers to define parametric, periodic and
repeatable test executions with the @RatKitTest annotation. RatKitScenarioLoader
evaluates the defined parameters for the test scenario and decides the type of test
execution. Each RatKitParameter definition corresponds to a simulation model
parameter. RatKitParameter values can be constant, number, value iterations like 0 to
100, or a list of values. RatKitParameterSweeper evaluates these parameter definitions
and triggers the RatKitRunner for parametric/periodic test scenario executions.

Fig. 1. RatKit architecture (UML class model)

1 JUnit. http://www.junit.org (Accessed: July 2014).
2 RatKit4Repast http://code.google.com/p/ratkit (Accessed: September 2014).
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The test scenario is a sub-model of the model in order to achieve expected
behaviors. For simulation tests, each test, corresponding to the testing levels, should
have at least one observation point definition. TestAgent executes the assertions cor-
responding to the observation results. There are two types of observation definitions:
SimpleObservationPoint (SP) and AggregateObservationPoint (AOP). SP definitions
provide gathering model element properties; a property of an agent or an environment
variable. AOP definitions provide summarized results for the model under test using
aggregate functions (count, max, min etc.). Each observation point definition is handled
by the RatKitRunner and presents it to the TestAgent during the execution of the test
cases as an ObservationResult. Each observation result is time stamped, when it’s
observed and by whom (agent identifier) if required. RatKitTestEnvironment holds the
current observation history, a map of the observation results gathered during the
execution, and presents to the TestAgent. According to the test execution behavior of
the developer, TestAgent executes evaluations (assertions) corresponding to the
observations.

5 Case Study: Predator Prey

In this section, we demonstrate the effectiveness of RatKit and its applicability on a
well-known case study: Predator Prey. We use a model of wolf-sheep predation [4] of
the Repast Simphony [23] that is intentionally simple as an introductory tutorial. While
the example is not intended to show real VV&T phenomenon, the model’s complexity
is high enough to illustrate developing ABMS tests.

This model represents a simple variation of predator prey behavior using three
agent types: wolf, sheep, and grass. Both the wolves and sheep move randomly on a
grid, and lose energy. The wolves and sheep need to feed in order to replenish their
energy, and they will die once their energy level reaches zero. Wolves prey on sheep
and may eat them if the two are located in the same spatial position. Sheep may
similarly eat grass if the sheep is located on a patch that contains living grass.

In the case study, all of the possible test scenarios are implemented corresponding
to our testing levels. It’s ready for download in the Ratkit website. Because of page
limits we only present a meso-level test: wolf agent prey on a sheep agent. The
definition of the test scenario is shown in the Fig. 2. WolfSheepInteractionScenario-
Builder class defines the test scenario. In the scenario, there are two fake agents [18]:
FakeSheep, FakeWolf. These agent classes are extended from original agent classes to
prevent random movement of the real agent classes. The real purpose of the test
scenario is to test the interaction between wolf and sheep agent in the same spatial
position. Therefore, both of the scenario agents are located in the same (20, 30)
position. We expect at the first tick of the test execution the wolf agent will prey on the
sheep agent in the same spatial position.

The test method of the test scenario is shown in Fig. 3. Case study test cases are
defined by the wolfEatSheep method which is annotated by the @RatKitTest anno-
tation. The test method annotation includes the definitions of test scenario, execution
parameters, simulation model parameters and observation points. In our test scenario,
sheepgainfromfood, wolfgainfromfood, wolfreproduce, sheepreproduce are model
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parameters. These are required parameters for the initialization of agent instances and
also parameter values which affect agent’s behaviors in the simulated environment.
Sheepgainfromfood, wolfreproduce, sheepreproduce are constant type parameters. And
wolfgainfromfood parameter type is defined as the number (type = NUMBER). In the
execution of simulation tests, the parameter value will be increased from 5 to 10 by the
RatKit infrastructure.

In this scenario, we intend to test the wolf agent to see whether it gains energy and
the sheep agent dies. Firstly, we need to monitor the energy value of the wolf agent. For
this reason, we define a simple observation target SimpleAgent class instance (we want
to monitor all wolves in the simulated environment) by collecting the values of the
“getEnergy” method with the identifier “getLabel” value. Observation results are
presented to the developers with an identifier and a time value (in which tick obser-
vation result is gathered).

In test cases, we need to separate which result belongs to which agent. In the
definition of test scenarios, we define the identifiers of the agents like “wolf1” and
“sheep1”.

Another purpose of the test case to test whether the sheep agent has died (removed
from the simulated environment). For this reason, we define an aggregate observation
point for counting the sheep agent instances in the environment for each tick of the
simulation run. The aggregate observation point targets the Sheep agents by using the
“count” aggregate function which is named as “sheep_count”.

In that test method body firstly an instance of the RatKitTestEnvironment class is
initialized. This class is responsible for presenting observation results to the developers.
To test whether the wolf agent gains energy from the eating behavior that is executed in
the first tick (tick value is 1.0), we need to get observation results of the “getEnergy”
observation results of the initial and final ticks. The wolf agent is created with an initial
energy; its energy is decreased by one for each simulation tick and in the first tick the

  WolfSheepScenarioBuilder  Preda-

torPreyScenarioBuilder { 
 @Override 

  createAgents() { 

Wolf wolf =getEnvironment().fakeWolf("wolf1"); 
Sheep sheep = getEnvironment().fakeSheep("sheep1"); 
getContext (). add (wolf); 
getContext().add(sheep); 
Grid grid = getContext().getProjection("grid"); 
grid.moveTo (sheep, 20, 30); 
grid.moveTo (wolf,  20, 30); 
 } 
} 

Fig. 2. Test scenario definition
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wolf agent gains energy by eating the sheep agent. These values are evaluated based on
the model parameter “wolfgainfood” value.

Another purpose of the test method is comparing the initial and the final sheep count
in the environment. For this reason, we get the “sheep_count” observation results of the
initial and the final tick value. And we expect here that there are no sheep in the final tick.

Fig. 3. Test method definition
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6 Future Works and Conclusions

This paper has introduced RatKit and its VV&T approach against ABMS. A tool
supporting all needs and aforementioned requirements for VV&T targeting ABMS is
an important lack. Our main motivation is filling this gap by the development of
RatKit.

Currently using RatKit, users can define simulation tests according to their VV&T
purposes. All of the tests are implemented by the users. However, for future work we
intend to support automated test case generation from the test scenarios. Most of the
testing requirements for the models except domain specific ones have some common
points. So, automatic generation of common test cases will be supported by RatKit next
versions. In this study, we defined the requirements of ABMS testing frameworks.

Besides, as we mentioned before, a testing framework leading to right design and
implementation of ABS models are highly important in order to be able to increase
their reliability. For another future work, we intend to define a test driven development
methodology for ABMS. Trying to verify, validate and test the ABS models after
model building makes ABS development more complex. Such a test driven develop-
ment methodology that is supported by a testing framework is another gap in the
ABMS literature.
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