
Chapter 2
A Uniform Theoretical Model for Fluid Flow
and Heat Transfer in Porous Media

Abstract To comprehensively study fluid flow and heat transfer in porous media, a
uniform model that is valid for both a regular microscopic geometry, e.g., spheres
and cylinders, and irregular microscopic geometries, such as metal foams or ceramic,
is needed to connect the macroscopic and microscopic flow and heat transfer. In this
chapter, the microscopic governing equations and volume averaged macroscopic
governing equations for flow and natural convection heat transfer are presented. As
defined in Chap. 1, the dimensionless geometry factor connects the macroscopic
and microscopic drag and heat flux between the solid and fluid phases in a porous
medium. Based on this geometry factor, the closure models are presented based on
the microscopic drag coefficients and heat transfer correlations in a uniform form
for porous media of arbitrary microscopic geometry. Also, relationships between the
microscopic drag coefficients and permeability, Forchheimer coefficient, and Ergun
constants are presented.

Keywords Drag coefficients · Geometry factor · Heat transfer coefficients

2.1 Microscopic Governing Equations

The microscopic continuity equation for an incompressible flow in porous media is,

∇ · vf = 0. (2.1)

The microscopic momentum equation is,

ρf

[

∂vf

∂t
+ ∇ · (vf vf

)

]

= −∇pf + μf ∇2vf + (ρf − ρf ∞
)

g. (2.2)

The microscopic energy equations for the fluid and solid phases are,

(

ρCp

)

f

[

∂Tf

∂t
+ ∇ · (vf Tf

)

]

= ∇ · (kf ∇Tf

)

, (2.3)

and

(

ρCp

)

s

∂Ts

∂t
= ∇ · (ks∇Ts) + q, (2.4)
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where q is a heat source in the solid phase. When the interface is treated as a surface
with zero thickness, the interface conditions that guarantee continuity of temperature
and heat flux between fluid and solid phases are,

Tf = Ts on Af s , (2.5)

and

nf s · kf ∇Tf = nf s · ks∇Ts on Af s. (2.6)

2.2 Macroscopic Governing Equations

Whitaker [88] applies a volume averaging method to derive the macroscopic gov-
erning equations in porous media. The volume average of a spatial derivative is
related to the spatial derivative of the volume average. Recently, Vafai [82] and Hsu
[29] simplified the volume averaging method of Whitaker [88] and provided closure
models for the thermal dispersion.

By distinguishing the gradient operators in the microscopic and macroscopic
coordinates, a simple form of the volume average is presented by Hsu and Cheng
[29] for the fluid (f ) and solid (s) phases in a porous medium. An intrinsic phase
average of a quantity associated with the fluid phase is defined as,

Ŵf = 1

Vf

∫

Vf

Wf dV , (2.7)

where Vf is the volume occupied by the fluid phase in V and Vf + Vs = V.
By introducing the method of volume averaging as given in Eq. (2.7) for the

velocity and temperature deviations in the porous medium, we obtain the macroscopic
continuity momentum and energy equations, as discussed in [29].

The macroscopic continuity equation is,

∇̂ · v = 0, (2.8)

where v = φv̂f is the Darcy velocity vector.
The macroscopic momentum equation with the Boussinesq assumption is,

ρf

[

∂v
∂t

+ ∇̂ ·
(

vv
φ

)]

= −∇̂p + μf ∇̂2v + B − ρf φβ
(

T̂f − T̂∞
)

g, (2.9)

where

B = − 1

V

∫

Af s

pf dS + μf

V

∫

Af s

(∇vf

) · dS, (2.10)

and

p = φp̂f . (2.11)
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On the right-hand side of Eq. (2.9), the second term is the viscous shear in the fluid.
The third term, represented by B, is the drag force per unit volume between solid
and fluid surfaces, i.e., the pressure and viscous drag force per unit volume of the
porous media.

The macroscopic energy equations for fluid and solid are respectively,

φ
(

ρCp

)

f

[

∂T̂f

∂t
+ ∇̂ ·

(

v̂f T̂f

)

]

= φ∇̂ ·
[

(

kf + k′) ∇̂T̂f

]

+ qsf , (2.12)

(1 − φ)
(

ρCp

)

s

∂T̂s

∂t
= (1 − φ)

[

∇̂ ·
(

ks∇̂T̂s

)]

− qsf + q. (2.13)

2.3 Closure Models for Macroscopic Equations

2.3.1 Closure Model for Drag

With a matched asymptotic expansion similar to that used for tubes [69, 71] and
spheres [29, 54], the drag coefficient, Cd , for an arbitrary microscopic geometry
with the microscopic length scale d can be expressed as,

Cd = cd0 + cd1Re−1
d + cd2Re

−1/2
d + O(Re

−3/2
d ), (2.14)

where,

Red =
∣

∣v̂f

∣

∣ d

νf

, (2.15)

and cd0 , cd1 , and cd2 are constants. The zeroth order term is a correction associated
with the inertial effect, the − 1 order term is the Stokes drag, the − 1/2 order term is
due to the skin friction, and the − 3/2 order term is a negligible higher order term.
Hence, the drag per unit volume of the porous medium can be expressed as,

B = Dragf s

Vs + Vf

= −
1
2ρf |v̂f |v̂f Af sCd

Vs/(1 − φ)

= −(1 − φ)η
ρf

2

ν2
f

d3

[

cd0Re2
d + cd1Re1

d + cd2Re
3/2
d

]

êf , (2.16)

where, êf is the unit vector in the direction of the macroscopic velocity, i.e., the
Darcy velocity, v̂f /|v̂f | = v/|v|. From Eq. (2.16), it can be seen that the geometry
factor, η, presented in Eq. (1.2), and the bulk porosity, φ, connect the macroscopic
drag force and the microscopic drag coefficient for arbitrary microscopic geometry.
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2.3.2 Relation to the Darcy–Brinkman Model

The drag model presented in Eq. (2.16) is a uniform format, which is appropriate
for arbitrary microscopic geometries. The frequently used Darcy–Brinkman’s model
presented in Eq. (1.14) in Chap. 1 is a special case of Eq. (2.16). The two models are
equivalent when the skin friction term of Eq. (2.14) is negligible or when the fluid
viscous shear stress effect is negligible compared to the viscous drag, i.e., when L

d

is large.
For viscous drag in packed bed of spheres, the drag force based on Brinkman’s

model [7] is,

∇p̂f = −
[

μf

K
v + CF ρf√

K
v|v|
]

. (2.17)

By multiplying Eq. (2.17) by φ, the drag force per unit volume is,

B = ∇p = ∇φp̂f = −φ

[

μf

K
v + CF ρf√

K
v|v|
]

, (2.18)

which can be expressed as,

B = −
[

μf

K
φ2
(νf

d

)

Red + CF ρf√
K

φ3
(νf

d

)2
Re2

d

]

êf . (2.19)

Comparing Eqs. (2.16) and (2.19), based on the coefficients of zero and −1 order,
one obtains,

μf

K
φ2
(νf

d

)

= (1 − φ)η
ρf

2

(νf

d

)2 1

d
cd1 , (2.20)

and

CF ρf√
K

φ3
(νf

d

)2 = (1 − φ)η
ρf

2

(νf

d

)2 1

d
cd0 , (2.21)

respectively. From Eqs. (2.20) and (2.21), the permeability and the Forchheimer
coefficient can be expressed in terms of the drag coefficient and geometry factor for
an arbitrary structured porous medium as,

K = φ2

(1 − φ)η

2d2

cd1

, and CF =
√

(1 − φ)η

φ2

c0
√

2cd1

. (2.22)

Thus the Darcy number can be recast as,

Da = K

L2
= φ2

(1 − φ)η

(

d

L

)2 2

cd1

. (2.23)
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Equations (2.22) and (2.23) show the effects of the microscopic geometry factor,
porosity, and the microscopic drag coefficients on permeability, Forchheimer coeffi-
cient, and Darcy number. From Ergun’s experimental study [16] of a bed of packed
spheres, permeability and the Forchheimer coefficient are related to the porosity by,

K = φ3d2

a(1 − φ)2
, and CF = b√

aφ3/2
. (2.24)

Thus the Ergun constants can be expressed as,

a = φ

(1 − φ)

η

2
cd1 , and b = η

2
cd0 . (2.25)

Based on prior studies [29] for a packed bed of spheres, η = d(πd2/4)/(πd3/24) =
6, cd0 = 0.4/4 = 0.1, cd1 = 24/4 = 6, and cd2 = 6/4 = 1.5. For loosely
packed cylinders [69], η = d(πd)/(πd2/4) = 4, cd0 = 1.18/π , cd1 = 6.8/π , and
cd2 = 1.96/π . Thus the Ergun constants, a and b, differ a great deal depending on
the structure of the porous matrix. From Eq. (2.25), it is seen that b is independent
of porosity while a is dependent on it. Thus we see why experimental correlation
constants for a vary more than b when the porosity changes, as discussed in [7, 10]
and [16].

From Eq. (2.16), a normalized drag force is derived,

|B| d3

1
2ρf ν2

f (1 − φ)
= η

[

c0Re2
d + c1Re1

d + c2Re
3/2
d

]

= ηCDRe2
d . (2.26)

This dimensionless quantity is independent of porosity and linear in η.

2.3.3 Closure Models for Heat Transfer in Porous Media

2.3.3.1 LTE Model

The governing energy equation of the LTE model is identical to Eq. (1.17),

(

ρCp

)

m

∂T̂

∂t
+ ∇̄ ·

[

vT̂
]

= αf

(

km

kf

+ k′

kf

)

∇̂2T̂ + (1 − φ)q. (2.27)

The effective thermal conductivity of the porous medium is expressed as,

km

kf

= φ + (1 − φ)
ks

kf

, (2.28)

and the effective heat capacity is expressed as,

(ρcp)m
(ρcp)f

= φ + (1 − φ)
(ρcp)s
(ρcp)f

. (2.29)
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Hence, the ratio of thermal diffusivities is,

αm

αf

=
φ + (1 − φ) ks

kf

(φ + (1 − φ) (ρcp)s
(ρcp)f

. (2.30)

The above mixture model has some limitations. For complex geometries like metal
foams, the effective thermal conductivity may be represented by [5],

km

kf

= M

[

φ + (1 − φ)
ks

kf

]

+ (1 − M)
(

φ + 1−φ

ks/kf

) , (2.31)

where M = 0.33 based on recent experiments of natural convection in an open
cell metal foam [85]. (In [5], M = 0.35 was recommended for one-dimensional
conduction.)

Furthermore, when the convective effects of the fluid motion are introduced, ther-
mal dispersion becomes important. Hsu [52] extended his earlier work of interfacial
heat transfer for pure conduction [29] to incorporate the effect of forced convection
for both low and high Reynolds number flows.

The solution of the energy equation requires a closure model for thermal
dispersion. For forced convection in packed cylinders [29],

α′

αf

= k′

kf

=
⎧

⎨

⎩

ε
1−φ

φ
RedP rf , ifRed � 10,

ε
1−φ

φ2 (RedP rf )2, ifRed � 10,
(2.32)

where α′ is the thermal dispersion diffusivity, k′ is the the thermal dispersion con-
ductivity, and ε is the thermal dispersivity. Similarity analysis has demonstrated a
closure model for dispersion in natural convection [69, 71]. For natural convection,
the local velocity is estimated to be

√
gβ�T d, and thus the local Reynolds number

is,

Red ∼
√

gβ�T dd

νf

=
√

Rad

P rf

. (2.33)

Equations (2.32) and (2.33) are combined to yield,

α′

αf

= k′

kf

=
⎧

⎨

⎩

ε
1−φ

φ
(RadP rf )1/2, if Rad

P rf
≥ 100,

ε
1−φ

φ2 (RadP rf ), if Rad

P rf
< 100.

(2.34)

The quantities α′ and k′ are tensors in anisotropic porous medium, but it is common
to treat them as isotropic scalars. For forced convection of water and air through
heated packed channels and cylindrical packed tubes, ε ∼ 0.04 [29]. In our previous
work [69, 74], we found that the enhancement of thermal conductivity due to thermal
dispersion with value 0.04 is 1–3% for both cylinders and metal foams, and thus heat
transfer enhancement due to thermal dispersion is insignificant.
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2.3.3.2 NLTE Model

The governing energy equations of the NLTE model are,

φ
(

ρCp

)

f

[

∂T̂f

∂t
+ ∇̂ ·

(

v̂f T̂f

)

]

= φ∇̂ ·
[

(

kf + k′) ∇̂T̂f

]

+ qsf , (2.35)

(1 − φ)
(

ρCp

)

s

∂T̂s

∂t
= (1 − φ) ∇̂ ·

(

ks∇̂T̂s

)

− qsf + q, (2.36)

where qsf is the heat flux from solid to fluid phase and q is a heat source in solid
phase, such as electrical heaters, or as will be shown in Chap. 4 for tube bundle heat
exchangers, treated as porous medium.

The heat flux between the solid and fluid phases per unit volume of porous media
qsf can be expressed as,

qsf = Asf hsf (T̂s − T̂f )
Vs

(1−φ)

= hsf (T̂s − T̂f )ss = (1 − φ)η
1

d
hsf (T̂s − T̂f ). (2.37)

In a manner similar to that for microscopic drag, an asymptotic expansion for the
microscopic heat transfer coefficient is,

hsf Af s(Ts − Tf ) =
∮

REV

kf

(

∂T

∂n

)

sf

dAf s. (2.38)

With Eq. (2.38), the microscopic Nusselt number can be expressed as,

Nud = hsf d

kf

= cho + ch1Re
ch2
d P r

ch3
f . (2.39)

For packed spheres, ch0 = 2, ch1 = 0.6, ch2 = 1/2, and ch3 = 1/3 [88], and for
loosely packed cylinders, ch0 = 0.3, ch1 = 0.62, ch2 = 1/2, and ch3 = 1/3 [71]. For
the saturated metal foam investigated by Wade [85], we observe that there are many
wedge shapes, or nearly so, in the microscopic structures. We therefore compare the
wedge flow heat transfer coefficients (with ch0 = 0.3, ch1 = 0.51, ch2 = 0.5, and
ch3 = 1/3 [89]) to widely used correlations for fibrous metal foams [97], and find
that they show reasonably good agreement over a wide range of Red .

Substituting Eq. (2.39) into Eq. (2.37), the heat flux per unit volume is,

qsf = (1 − φ)η
[

cho + ch1Re
ch2
d P r

ch3
f

] kf

d2
(T̂s − T̂f ), (2.40)

and the normalized heat flux is,

qsf d2

kf (T̂s − T̂f )(1 − φ)
= η

[

cho + ch1Re
ch2
d P r

ch3
f

]

= ηNud , (2.41)

which, like the microscopic drag coefficients, are independent of φ and linear in η.
The grouping ηNud demonstrates the importance of the microscopic interface on
heat transfer.
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