
Chapter 2

Data Preparation

“Success depends upon previous preparation, and without such
preparation there is sure to be failure.”—Confucius

2.1 Introduction

The raw format of real data is usually widely variable. Many values may be missing, incon-
sistent across different data sources, and erroneous. For the analyst, this leads to numerous
challenges in using the data effectively. For example, consider the case of evaluating the
interests of consumers from their activity on a social media site. The analyst may first
need to determine the types of activity that are valuable to the mining process. The activ-
ity might correspond to the interests entered by the user, the comments entered by the
user, and the set of friendships of the user along with their interests. All these pieces of
information are diverse and need to be collected from different databases within the social
media site. Furthermore, some forms of data, such as raw logs, are often not directly usable
because of their unstructured nature. In other words, useful features need to be extracted
from these data sources. Therefore, a data preparation phase is needed.

The data preparation phase is a multistage process that comprises several individual
steps, some or all of which may be used in a given application. These steps are as follows:

1. Feature extraction and portability: The raw data is often in a form that is not suit-
able for processing. Examples include raw logs, documents, semistructured data, and
possibly other forms of heterogeneous data. In such cases, it may be desirable to
derive meaningful features from the data. Generally, features with good semantic
interpretability are more desirable because they simplify the ability of the analyst
to understand intermediate results. Furthermore, they are usually better tied to the
goals of the data mining application at hand. In some cases where the data is obtained
from multiple sources, it needs to be integrated into a single database for processing.
In addition, some algorithms may work only with a specific data type, whereas the
data may contain heterogeneous types. In such cases, data type portability becomes
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important where attributes of one type are transformed to another. This results in a
more homogeneous data set that can be processed by existing algorithms.

2. Data cleaning: In the data cleaning phase, missing, erroneous, and inconsistent entries
are removed from the data. In addition, some missing entries may also be estimated
by a process known as imputation.

3. Data reduction, selection, and transformation: In this phase, the size of the data is
reduced through data subset selection, feature subset selection, or data transforma-
tion. The gains obtained in this phase are twofold. First, when the size of the data is
reduced, the algorithms are generally more efficient. Second, if irrelevant features or
irrelevant records are removed, the quality of the data mining process is improved. The
first goal is achieved by generic sampling and dimensionality reduction techniques. To
achieve the second goal, a highly problem-specific approach must be used for feature
selection. For example, a feature selection approach that works well for clustering may
not work well for classification.

Some forms of feature selection are tightly integrated with the problem at hand. Later
chapters on specific problems such as clustering and classification will contain detailed
discussions on feature selection.

This chapter is organized as follows. The feature extraction phase is discussed in Sect. 2.2.
The data cleaning phase is covered in Sect. 2.3. The data reduction phase is explained in
Sect. 2.4. A summary is given in Sect. 2.5.

2.2 Feature Extraction and Portability

The first phase of the data mining process is creating a set of features that the analyst can
work with. In cases where the data is in raw and unstructured form (e.g., raw text, sensor
signals), the relevant features need to be extracted for processing. In other cases where a
heterogeneous mixture of features is available in different forms, an “off-the-shelf” analytical
approach is often not available to process such data. In such cases, it may be desirable to
transform the data into a uniform representation for processing. This is referred to as data
type porting.

2.2.1 Feature Extraction

The first phase of feature extraction is a crucial one, though it is very application specific.
In some cases, feature extraction is closely related to the concept of data type portability,
where low-level features of one type may be transformed to higher-level features of another
type. The nature of feature extraction depends on the domain from which the data is drawn:

1. Sensor data: Sensor data is often collected as large volumes of low-level signals, which
are massive. The low-level signals are sometimes converted to higher-level features
using wavelet or Fourier transforms. In other cases, the time series is used directly
after some cleaning. The field of signal processing has an extensive literature devoted
to such methods. These technologies are also useful for porting time-series data to
multidimensional data.

2. Image data: In its most primitive form, image data are represented as pixels. At a
slightly higher level, color histograms can be used to represent the features in differ-
ent segments of an image. More recently, the use of visual words has become more
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popular. This is a semantically rich representation that is similar to document data.
One challenge in image processing is that the data are generally very high dimen-
sional. Thus, feature extraction can be performed at different levels, depending on the
application at hand.

3. Web logs: Web logs are typically represented as text strings in a prespecified format.
Because the fields in these logs are clearly specified and separated, it is relatively easy
to convert Web access logs into a multidimensional representation of (the relevant)
categorical and numeric attributes.

4. Network traffic: In many intrusion-detection applications, the characteristics of the
network packets are used to analyze intrusions or other interesting activity. Depending
on the underlying application, a variety of features may be extracted from these
packets, such as the number of bytes transferred, the network protocol used, and so
on.

5. Document data: Document data is often available in raw and unstructured form, and
the data may contain rich linguistic relations between different entities. One approach
is to remove stop words, stem the data, and use a bag-of-words representation. Other
methods use entity extraction to determine linguistic relationships.

Named-entity recognition is an important subtask of information extraction. This
approach locates and classifies atomic elements in text into predefined expressions
of names of persons, organizations, locations, actions, numeric quantities, and so on.
Clearly, the ability to identify such atomic elements is very useful because they can be
used to understand the structure of sentences and complex events. Such an approach
can also be used to populate a more conventional database of relational elements or
as a sequence of atomic entities, which is more easily analyzed. For example, consider
the following sentence:

Bill Clinton lives in Chappaqua.

Here, “Bill Clinton” is the name of a person, and “Chappaqua” is the name of a
place. The word “lives” denotes an action. Each type of entity may have a different
significance to the data mining process depending on the application at hand. For
example, if a data mining application is mainly concerned with mentions of specific
locations, then the word “Chappaqua” needs to be extracted.

Popular techniques for named entity recognition include linguistic grammar-based
techniques and statistical models. The use of grammar rules is typically very effective,
but it requires work by experienced computational linguists. On the other hand, sta-
tistical models require a significant amount of training data. The techniques designed
are very often domain-specific. The area of named entity recognition is vast in its own
right, which is outside the scope of this book. The reader is referred to [400] for a
detailed discussion of different methods for entity recognition.

Feature extraction is an art form that is highly dependent on the skill of the analyst to
choose the features and their representation that are best suited to the task at hand. While
this particular aspect of data analysis typically belongs to the domain expert, it is perhaps
the most important one. If the correct features are not extracted, the analysis can only be
as good as the available data.
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2.2.2 Data Type Portability

Data type portability is a crucial element of the data mining process because the data is
often heterogeneous, and may contain multiple types. For example, a demographic data
set may contain both numeric and mixed attributes. A time-series data set collected from
an electrocardiogram (ECG) sensor may have numerous other meta-information and text
attributes associated with it. This creates a bewildering situation for an analyst who is now
faced with the difficult challenge of designing an algorithm with an arbitrary combination
of data types. The mixing of data types also restricts the ability of the analyst to use
off-the-shelf tools for processing. Note that porting data types does lose representational
accuracy and expressiveness in some cases. Ideally, it is best to customize the algorithm
to the particular combination of data types to optimize results. This is, however, time-
consuming and sometimes impractical.

This section will describe methods for converting between various data types. Because
the numeric data type is the simplest and most widely studied one for data mining algo-
rithms, it is particularly useful to focus on how different data types may be converted to
it. However, other forms of conversion are also useful in many scenarios. For example, for
similarity-based algorithms, it is possible to convert virtually any data type to a graph and
apply graph-based algorithms to this representation. The following discussion, summarized
in Table 2.1, will discuss various ways of transforming data across different types.

2.2.2.1 Numeric to Categorical Data: Discretization

The most commonly used conversion is from the numeric to the categorical data type.
This process is known as discretization. The process of discretization divides the ranges of
the numeric attribute into φ ranges. Then, the attribute is assumed to contain φ different
categorical labeled values from 1 to φ, depending on the range in which the original attribute
lies. For example, consider the age attribute. One could create ranges [0, 10], [11, 20], [21, 30],
and so on. The symbolic value for any record in the range [11, 20] is “2” and the symbolic
value for a record in the range [21, 30] is “3”. Because these are symbolic values, no ordering
is assumed between the values “2” and “3”. Furthermore, variations within a range are
not distinguishable after discretization. Thus, the discretization process does lose some
information for the mining process. However, for some applications, this loss of information is
not too debilitating. One challenge with discretization is that the data may be nonuniformly
distributed across the different intervals. For example, for the case of the salary attribute,
a large subset of the population may be grouped in the [40, 000, 80, 000] range, but very
few will be grouped in the [1, 040, 000, 1, 080, 000] range. Note that both ranges have the
same size. Thus, the use of ranges of equal size may not be very helpful in discriminating
between different data segments. On the other hand, many attributes, such as age, are not
as nonuniformly distributed, and therefore ranges of equal size may work reasonably well.
The discretization process can be performed in a variety of ways depending on application-
specific goals:

1. Equi-width ranges: In this case, each range [a, b] is chosen in such a way that b − a
is the same for each range. This approach has the drawback that it will not work for
data sets that are distributed nonuniformly across the different ranges. To determine
the actual values of the ranges, the minimum and maximum values of each attribute
are determined. This range [min,max] is then divided into φ ranges of equal length.

2. Equi-log ranges: Each range [a, b] is chosen in such a way that log(b)− log(a) has the
same value. This kinds of range selection has the effect of geometrically increasing
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Table 2.1: Portability of different data types
Source data type Destination data type Methods

Numeric Categorical Discretization
Categorical Numeric Binarization

Text Numeric Latent semantic analysis (LSA)
Time series Discrete sequence SAX
Time series Numeric multidimensional DWT, DFT

Discrete sequence Numeric multidimensional DWT, DFT
Spatial Numeric multidimensional 2-d DWT
Graphs Numeric multidimensional MDS, spectral
Any type Graphs Similarity graph

(Restricted applicability)

ranges [a, a · α], [a · α, a · α2], and so on, for some α > 1. This kind of range may be
useful when the attribute shows an exponential distribution across a range. In fact,
if the attribute frequency distribution for an attribute can be modeled in functional
form, then a natural approach would be to select ranges [a, b] such that f(b) − f(a)
is the same for some function f(·). The idea is to select this function f(·) in such a
way that each range contains an approximately similar number of records. However,
in most cases, it is hard to find such a function f(·) in closed form.

3. Equi-depth ranges: In this case, the ranges are selected so that each range has an
equal number of records. The idea is to provide the same level of granularity to each
range. An attribute can be divided into equi-depth ranges by first sorting it, and
then selecting the division points on the sorted attribute value, such that each range
contains an equal number of records.

The process of discretization can also be used to convert time-series data to discrete sequence
data.

2.2.2.2 Categorical to Numeric Data: Binarization

In some cases, it is desirable to use numeric data mining algorithms on categorical data.
Because binary data is a special form of both numeric and categorical data, it is possible
to convert the categorical attributes to binary form and then use numeric algorithms on
the binarized data. If a categorical attribute has φ different values, then φ different binary
attributes are created. Each binary attribute corresponds to one possible value of the cate-
gorical attribute. Therefore, exactly one of the φ attributes takes on the value of 1, and the
remaining take on the value of 0.

2.2.2.3 Text to Numeric Data

Although the vector-space representation of text can be considered a sparse numeric data
set with very high dimensionality, this special numeric representation is not very amenable
to conventional data mining algorithms. For example, one typically uses specialized simi-
larity functions, such as the cosine, rather than the Euclidean distance for text data. This
is the reason that text mining is a distinct area in its own right with its own family of
specialized algorithms. Nevertheless, it is possible to convert a text collection into a form
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that is more amenable to the use of mining algorithms for numeric data. The first step is
to use latent semantic analysis (LSA) to transform the text collection to a nonsparse rep-
resentation with lower dimensionality. Furthermore, after transformation, each document
X = (x1 . . . xd) needs to be scaled to 1√∑d

i=1 x2
i

(x1 . . . xd). This scaling is necessary to ensure

that documents of varying length are treated in a uniform way. After this scaling, traditional
numeric measures, such as the Euclidean distance, work more effectively. LSA is discussed
in Sect. 2.4.3.3 of this chapter. Note that LSA is rarely used in conjunction with this kind
of scaling. Rather, traditional text mining algorithms are directly applied to the reduced
representation obtained from LSA.

2.2.2.4 Time Series to Discrete Sequence Data

Time-series data can be converted to discrete sequence data using an approach known as
symbolic aggregate approximation (SAX). This method comprises two steps:

1. Window-based averaging: The series is divided into windows of length w, and the
average time-series value over each window is computed.

2. Value-based discretization: The (already averaged) time-series values are discretized
into a smaller number of approximately equi-depth intervals. This is identical to the
equi-depth discretization of numeric attributes that was discussed earlier. The idea is
to ensure that each symbol has an approximately equal frequency in the time series.
The interval boundaries are constructed by assuming that the time-series values are
distributed with a Gaussian assumption. The mean and standard deviation of the
(windowed) time-series values are estimated in the data-driven manner to instantiate
the parameters of the Gaussian distribution. The quantiles of the Gaussian distribu-
tion are used to determine the boundaries of the intervals. This is more efficient than
sorting all the data values to determine quantiles, and it may be a more practical
approach for a long (or streaming) time series. The values are discretized into a small
number (typically 3 to 10) of intervals for the best results. Each such equi-depth inter-
val is mapped to a symbolic value. This creates a symbolic representation of the time
series, which is essentially a discrete sequence.

Thus, SAX might be viewed as an equi-depth discretization approach after window-based
averaging.

2.2.2.5 Time Series to Numeric Data

This particular transformation is very useful because it enables the use of multidimensional
algorithms for time-series data. A common method used for this conversion is the discrete
wavelet transform (DWT). The wavelet transform converts the time series data to multidi-
mensional data, as a set of coefficients that represent averaged differences between different
portions of the series. If desired, a subset of the largest coefficients may be used to reduce
the data size. This approach will be discussed in Sect. 2.4.4.1 on data reduction. An alterna-
tive method, known as the discrete Fourier transform (DFT), is discussed in Sect. 14.2.4.2
of Chap. 14. The common property of these transforms is that the various coefficients are
no longer as dependency oriented as the original time-series values.
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2.2.2.6 Discrete Sequence to Numeric Data

This transformation can be performed in two steps. The first step is to convert the discrete
sequence to a set of (binary) time series, where the number of time series in this set is equal
to the number of distinct symbols. The second step is to map each of these time series
into a multidimensional vector using the wavelet transform. Finally, the features from the
different series are combined to create a single multidimensional record.

To convert a sequence to a binary time series, one can create a binary string in which
the value denotes whether or not a particular symbol is present at a position. For example,
consider the following nucleotide sequence, which is drawn on four symbols:

ACACACTGTGACTG

This series can be converted into the following set of four binary time series corresponding
to the symbols A, C, T, and G, respectively:

10101000001000

01010100000100

00000010100010

00000001010001

A wavelet transformation can be applied to each of these series to create a multidimensional
set of features. The features from the four different series can be appended to create a single
numeric multidimensional record.

2.2.2.7 Spatial to Numeric Data

Spatial data can be converted to numeric data by using the same approach that was used for
time-series data. The main difference is that there are now two contextual attributes (instead
of one). This requires modification of the wavelet transformation method. Section 2.4.4.1
will briefly discuss how the one-dimensional wavelet approach can be generalized when there
are two contextual attributes. The approach is fairly general and can be used for any number
of contextual attributes.

2.2.2.8 Graphs to Numeric Data

Graphs can be converted to numeric data with the use of methods such as multidimen-
sional scaling (MDS) and spectral transformations. This approach works for those appli-
cations where the edges are weighted, and represent similarity or distance relationships
between nodes. The general approach of MDS can achieve this goal, and it is discussed
in Sect. 2.4.4.2. A spectral approach can also be used to convert a graph into a multi-
dimensional representation. This is also a dimensionality reduction scheme that converts
the structural information into a multidimensional representation. This approach will be
discussed in Sect. 2.4.4.3.

2.2.2.9 Any Type to Graphs for Similarity-Based Applications

Many applications are based on the notion of similarity. For example, the clustering problem
is defined as the creation of groups of similar objects, whereas the outlier detection problem
is defined as one in which a subset of objects differing significantly from the remaining
objects are identified. Many forms of classification models, such as nearest neighbor classi-
fiers, are also dependent on the notion of similarity. The notion of pairwise similarity can
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be best captured with the use of a neighborhood graph. For a given set of data objects
O = {O1 . . . On}, a neighborhood graph is defined as follows:

1. A single node is defined for each object in O. This is defined by the node set N ,
containing n nodes where the node i corresponds to the object Oi.

2. An edge exists between Oi and Oj , if the distance d(Oi, Oj) is less than a particular
threshold ε. Alternatively, the k-nearest neighbors of each node may be used. Because
the k-nearest neighbor relationship is not symmetric, this results in a directed graph.
The directions on the edges are ignored, and the parallel edges are removed. The
weight wij of the edge (i, j) is equal to a kernelized function of the distance between
the objects Oi and Oj , so that larger weights indicate greater similarity. An example
is the heat kernel:

wij = e−d(Oi,Oj)
2/t2 (2.1)

Here, t is a user-defined parameter.

A wide variety of data mining algorithms are available for network data. All these methods
can also be used on the similarity graph. Note that the similarity graph can be crisply
defined for data objects of any type, as long as an appropriate distance function can be
defined. This is the reason that distance function design is so important for virtually any
data type. The issue of distance function design will be addressed in Chap. 3. Note that
this approach is useful only for applications that are based on the notion of similarity or
distances. Nevertheless, many data mining problems are directed or indirectly related to
notions of similarity and distances.

2.3 Data Cleaning

The data cleaning process is important because of the errors associated with the data
collection process. Several sources of missing entries and errors may arise during the data
collection process. Some examples are as follows:

1. Some data collection technologies, such as sensors, are inherently inaccurate because
of the hardware limitations associated with collection and transmission. Sometimes
sensors may drop readings because of hardware failure or battery exhaustion.

2. Data collected using scanning technologies may have errors associated with it because
optical character recognition techniques are far from perfect. Furthermore, speech-to-
text data is also prone to errors.

3. Users may not want to specify their information for privacy reasons, or they may
specify incorrect values intentionally. For example, it has often been observed that
users sometimes specify their birthday incorrectly on automated registration sites
such as those of social networks. In some cases, users may choose to leave several
fields empty.

4. A significant amount of data is created manually. Manual errors are common during
data entry.

5. The entity in charge of data collection may not collect certain fields for some records,
if it is too costly. Therefore, records may be incompletely specified.
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The aforementioned issues may be a significant source of inaccuracy for data mining appli-
cations. Methods are needed to remove or correct missing and erroneous entries from the
data. There are several important aspects of data cleaning:

1. Handling missing entries: Many entries in the data may remain unspecified because of
weaknesses in data collection or the inherent nature of the data. Such missing entries
may need to be estimated. The process of estimating missing entries is also referred
to as imputation.

2. Handling incorrect entries: In cases where the same information is available from
multiple sources, inconsistenciesmay be detected. Such inconsistencies can be removed
as a part of the analytical process. Another method for detecting the incorrect entries
is to use domain-specific knowledge about what is already known about the data.
For example, if a person’s height is listed as 6 m, it is most likely incorrect. More
generally, data points that are inconsistent with the remaining data distribution are
often noisy. Such data points are referred to as outliers. It is, however, dangerous
to assume that such data points are always caused by errors. For example, a record
representing credit card fraud is likely to be inconsistent with respect to the patterns
in most of the (normal) data but should not be removed as “incorrect” data.

3. Scaling and normalization: The data may often be expressed in very different scales
(e.g., age and salary). This may result in some features being inadvertently weighted
too much so that the other features are implicitly ignored. Therefore, it is important
to normalize the different features.

The following sections will discuss each of these aspects of data cleaning.

2.3.1 Handling Missing Entries

Missing entries are common in databases where the data collection methods are imperfect.
For example, user surveys are often unable to collect responses to all questions. In cases
where data contribution is voluntary, the data is almost always incompletely specified. Three
classes of techniques are used to handle missing entries:

1. Any data record containing a missing entry may be eliminated entirely. However, this
approach may not be practical when most of the records contain missing entries.

2. The missing values may be estimated or imputed. However, errors created by the
imputation process may affect the results of the data mining algorithm.

3. The analytical phase is designed in such a way that it can work with missing values.
Many data mining methods are inherently designed to work robustly with missing
values. This approach is usually the most desirable because it avoids the additional
biases inherent in the imputation process.

The problem of estimating missing entries is directly related to the classification problem.
In the classification problem, a single attribute is treated specially, and the other features
are used to estimate its value. In this case, the missing value can occur on any feature, and
therefore the problem is more challenging, although it is fundamentally not different. Many
of the methods discussed in Chaps. 10 and 11 for classification can also be used for missing
value estimation. In addition, the matrix completion methods discussed in Sect. 18.5 of
Chap. 18 may also be used.
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Figure 2.1: Finding noise by data-centric methods

In the case of dependency-oriented data, such as time series or spatial data, missing value
estimation is much simpler. In this case, the behavioral attribute values of contextually
nearby records are used for the imputation process. For example, in a time-series data set,
the average of the values at the time stamp just before or after the missing attribute may
be used for estimation. Alternatively, the behavioral values at the last n time-series data
stamps can be linearly interpolated to determine the missing value. For the case of spatial
data, the estimation process is quite similar, where the average of values at neighboring
spatial locations may be used.

2.3.2 Handling Incorrect and Inconsistent Entries

The key methods that are used for removing or correcting the incorrect and inconsistent
entries are as follows:

1. Inconsistency detection: This is typically done when the data is available from different
sources in different formats. For example, a person’s name may be spelled out in full in
one source, whereas the other source may only contain the initials and a last name. In
such cases, the key issues are duplicate detection and inconsistency detection. These
topics are studied under the general umbrella of data integration within the database
field.

2. Domain knowledge: A significant amount of domain knowledge is often available in
terms of the ranges of the attributes or rules that specify the relationships across
different attributes. For example, if the country field is “United States,” then the city
field cannot be “Shanghai.” Many data scrubbing and data auditing tools have been
developed that use such domain knowledge and constraints to detect incorrect entries.

3. Data-centric methods: In these cases, the statistical behavior of the data is used to
detect outliers. For example, the two isolated data points in Fig. 2.1 marked as “noise”
are outliers. These isolated points might have arisen because of errors in the data
collection process. However, this may not always be the case because the anomalies
may be the result of interesting behavior of the underlying system. Therefore, any
detected outlier may need to be manually examined before it is discarded. The use of
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data-centric methods for cleaning can sometimes be dangerous because they can result
in the removal of useful knowledge from the underlying system. The outlier detection
problem is an important analytical technique in its own right, and is discussed in
detail in Chaps. 8 and 9.

The methods for addressing erroneous and inconsistent entries are generally highly domain
specific.

2.3.3 Scaling and Normalization

In many scenarios, the different features represent different scales of reference and may
therefore not be comparable to one another. For example, an attribute such as age is drawn
on a very different scale than an attribute such as salary. The latter attribute is typically
orders of magnitude larger than the former. As a result, any aggregate function computed
on the different features (e.g., Euclidean distances) will be dominated by the attribute of
larger magnitude.

To address this problem, it is common to use standardization. Consider the case where
the jth attribute has mean μj and standard deviation σj . Then, the jth attribute value xj

i

of the ith record Xi may be normalized as follows:

zji =
xj
i − μj

σj
(2.2)

The vast majority of the normalized values will typically lie in the range [−3, 3] under the
normal distribution assumption.

A second approach uses min-max scaling to map all attributes to the range [0, 1]. Let
minj and maxj represent the minimum and maximum values of attribute j. Then, the jth
attribute value xj

i of the ith record Xi may be scaled as follows:

yji =
xj
i −minj

maxj −minj
(2.3)

This approach is not effective when the maximum and minimum values are extreme value
outliers because of some mistake in data collection. For example, consider the age attribute
where a mistake in data collection caused an additional zero to be appended to an age,
resulting in an age value of 800 years instead of 80. In this case, most of the scaled data
along the age attribute will be in the range [0, 0.1], as a result of which this attribute may
be de-emphasized. Standardization is more robust to such scenarios.

2.4 Data Reduction and Transformation

The goal of data reduction is to represent it more compactly. When the data size is smaller,
it is much easier to apply sophisticated and computationally expensive algorithms. The
reduction of the data may be in terms of the number of rows (records) or in terms of the
number of columns (dimensions). Data reduction does result in some loss of information.
The use of a more sophisticated algorithm may sometimes compensate for the loss in infor-
mation resulting from data reduction. Different types of data reduction are used in various
applications:
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1. Data sampling: The records from the underlying data are sampled to create a much
smaller database. Sampling is generally much harder in the streaming scenario where
the sample needs to be dynamically maintained.

2. Feature selection: Only a subset of features from the underlying data is used in the
analytical process. Typically, these subsets are chosen in an application-specific way.
For example, a feature selection method that works well for clustering may not work
well for classification and vice versa. Therefore, this section will discuss the issue of
feature subsetting only in a limited way and defer a more detailed discussion to later
chapters.

3. Data reduction with axis rotation: The correlations in the data are leveraged to repre-
sent it in a smaller number of dimensions. Examples of such data reduction methods
include principal component analysis (PCA), singular value decomposition (SVD), or
latent semantic analysis (LSA) for the text domain.

4. Data reduction with type transformation: This form of data reduction is closely related
to data type portability. For example, time series are converted to multidimensional
data of a smaller size and lower complexity by discrete wavelet transformations. Simi-
larly, graphs can be converted to multidimensional representations by using embedding
techniques.

Each of the aforementioned aspects will be discussed in different segments of this section.

2.4.1 Sampling

The main advantage of sampling is that it is simple, intuitive, and relatively easy to imple-
ment. The type of sampling used may vary with the application at hand.

2.4.1.1 Sampling for Static Data

It is much simpler to sample data when the entire data is already available, and therefore
the number of base data points is known in advance. In the unbiased sampling approach,
a predefined fraction f of the data points is selected and retained for analysis. This is
extremely simple to implement, and can be achieved in two different ways, depending upon
whether or not replacement is used.

In sampling without replacement from a data set D with n records, a total of �n · f�
records are randomly picked from the data. Thus, no duplicates are included in the sample,
unless the original data set D also contains duplicates. In sampling with replacement from
a data set D with n records, the records are sampled sequentially and independently from
the entire data set D for a total of �n · f� times. Thus, duplicates are possible because
the same record may be included in the sample over sequential selections. Generally, most
applications do not use replacement because unnecessary duplicates can be a nuisance for
some data mining applications, such as outlier detection. Some other specialized forms of
sampling are as follows:

1. Biased sampling: In biased sampling, some parts of the data are intentionally empha-
sized because of their greater importance to the analysis. A classical example is that of
temporal-decay bias where more recent records have a larger chance of being included
in the sample, and stale records have a lower chance of being included. In exponential-
decay bias, the probability p(X) of sampling a data record X, which was generated
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δt time units ago, is proportional to an exponential decay function value regulated by
the decay parameter λ:

p(X) ∝ e−λ·δt (2.4)

Here e is the base of the natural logarithm. By using different values of λ, the impact
of temporal decay can be regulated appropriately.

2. Stratified sampling: In some data sets, important parts of the data may not be suffi-
ciently represented by sampling because of their rarity. A stratified sample, therefore,
first partitions the data into a set of desired strata, and then independently samples
from each of these strata based on predefined proportions in an application-specific
way.

For example, consider a survey that measures the economic diversity of the lifestyles
of different individuals in the population. Even a sample of 1 million participants may
not capture a billionaire because of their relative rarity. However, a stratified sample
(by income) will independently sample a predefined fraction of participants from each
income group to ensure greater robustness in analysis.

Numerous other forms of biased sampling are possible. For example, in density-biased sam-
pling, points in higher-density regions are weighted less to ensure greater representativeness
of the rare regions in the sample.

2.4.1.2 Reservoir Sampling for Data Streams

A particularly interesting form of sampling is that of reservoir sampling for data streams.
In reservoir sampling, a sample of k points is dynamically maintained from a data stream.
Recall that a stream is of an extremely large volume, and therefore one cannot store it on
a disk to sample it. Therefore, for each incoming data point in the stream, one must use a
set of efficiently implementable operations to maintain the sample.

In the static case, the probability of including a data point in the sample is k/n where
k is the sample size, and n is the number of points in the “data set.” In this case, the “data
set” is not static and cannot be stored on disk. Furthermore, the value of n is constantly
increasing as more points arrive and previous data points (outside the sample) have already
been discarded. Thus, the sampling approach works with incomplete knowledge about the
previous history of the stream at any given moment in time. In other words, for each
incoming data point in the stream, we need to dynamically make two simple admission
control decisions:

1. What sampling rule should be used to decide whether to include the newly incoming
data point in the sample?

2. What rule should be used to decide how to eject a data point from the sample to
“make room” for the newly inserted data point?

Fortunately, it is relatively simple to design an algorithm for reservoir sampling in data
streams [498]. For a reservoir of size k, the first k data points in the stream are used to
initialize the reservoir. Subsequently, for the nth incoming stream data point, the following
two admission control decisions are applied:

1. Insert the nth incoming stream data point into the reservoir with probability k/n.

2. If the newly incoming data point was inserted, then eject one of the old k data points
at random to make room for the newly arriving point.
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It can be shown that the aforementioned rule maintains an unbiased reservoir sample from
the data stream.

Lemma 2.4.1 After n stream points have arrived, the probability of any stream point being
included in the reservoir is the same, and is equal to k/n.

Proof: This result is easy to show by induction. At initialization of the first k data points,
the theorem is trivially true. Let us (inductively) assume that it is also true after (n − 1)
data points have been received, and therefore the probability of each point being included
in the reservoir is k/(n − 1). The probability of the arriving point being included in the
stream is k/n, and therefore the lemma holds true for the arriving data point. It remains
to prove the result for the remaining points in the data stream. There are two disjoint case
events that can arise for an incoming data point, and the final probability of a point being
included in the reservoir is the sum of these two cases:

I: The incoming data point is not inserted into the reservoir. The probability of this is
(n−k)/n. Because the original probability of any point being included in the reservoir
by the inductive assumption, is k/(n − 1), the overall probability of a point being
included in the reservoir and Case I event, is the multiplicative value of p1 = k(n−k)

n(n−1) .

II: The incoming data point is inserted into the reservoir. The probability of Case II
is equal to insertion probability k/n of incoming data points. Subsequently, existing
reservoir points are retained with probability (k − 1)/k because exactly one of them
is ejected. Because the inductive assumption implies that any of the earlier points in
the data stream was originally present in the reservoir with probability k/(n − 1),
it implies that the probability of a point being included in the reservoir and Case II
event is given by the product p2 of the three aforementioned probabilities:

p2 =
(
k

n

)(
k − 1
k

)(
k

n− 1

)
=

k(k − 1)
n(n− 1)

(2.5)

Therefore, the total probability of a stream point being retained in the reservoir after the
nth data point arrival is given by the sum of p1 and p2. It can be shown that this is equal
to k/n.
It is possible to extend reservoir sampling to cases where temporal bias is present in the
data stream. In particular, the case of exponential bias has been addressed in [35].

2.4.2 Feature Subset Selection

A second method for data preprocessing is feature subset selection. Some features can
be discarded when they are known to be irrelevant. Which features are relevant? Clearly,
this decision depends on the application at hand. There are two primary types of feature
selection:

1. Unsupervised feature selection: This corresponds to the removal of noisy and redundant
attributes from the data. Unsupervised feature selection is best defined in terms of
its impact on clustering applications, though the applicability is much broader. It
is difficult to comprehensively describe such feature selection methods without using
the clustering problem as a proper context. Therefore, a discussion of methods for
unsupervised feature selection is deferred to Chap. 6 on data clustering.
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Figure 2.2: Highly correlated data represented in a small number of dimensions in an axis
system that is rotated appropriately

2. Supervised feature selection: This type of feature selection is relevant to the problem of
data classification. In this case, only the features that can predict the class attribute
effectively are the most relevant. Such feature selection methods are often closely
integrated with analytical methods for classification. A detailed discussion is deferred
to Chap. 10 on data classification.

Feature selection is an important part of the data mining process because it defines the
quality of the input data.

2.4.3 Dimensionality Reduction with Axis Rotation

In real data sets, a significant number of correlations exist among different attributes. In
some cases, hard constraints or rules between attributes may uniquely define some attributes
in terms of others. For example, the date of birth of an individual (represented quantita-
tively) is perfectly correlated with his or her age. In most cases, the correlations may not be
quite as perfect, but significant dependencies may still exist among the different features.
Unfortunately, real data sets contain many such redundancies that escape the attention of
the analyst during the initial phase of data creation. These correlations and constraints
correspond to implicit redundancies because they imply that knowledge of some subsets
of the dimensions can be used to predict the values of the other dimensions. For example,
consider the 3-dimensional data set illustrated in Fig. 2.2. In this case, if the axis is rotated
to the orientation illustrated in the figure, the correlations and redundancies in the newly
transformed feature values are removed. As a result of this redundancy removal, the entire
data can be (approximately) represented along a 1-dimensional line. Thus, the intrinsic
dimensionality of this 3-dimensional data set is 1. The other two axes correspond to the
low-variance dimensions. If the data is represented as coordinates in the new axis system
illustrated in Fig. 2.2, then the coordinate values along these low-variance dimensions will
not vary much. Therefore, after the axis system has been rotated, these dimensions can be
removed without much information loss.

A natural question arises as to how the correlation-removing axis system such as that in
Fig. 2.2 may be determined in an automated way. Two natural methods to achieve this goal
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are those of principal component analysis (PCA) and singular value decomposition (SVD).
These two methods, while not exactly identical at the definition level, are closely related.
Although the notion of principal component analysis is intuitively easier to understand,
SVD is a more general framework and can be used to perform PCA as a special case.

2.4.3.1 Principal Component Analysis

PCA is generally applied after subtracting the mean of the data set from each data point.
However, it is also possible to use it without mean centering, as long as the mean of the
data is separately stored. This operation is referred to as mean centering, and it results in
a data set centered at the origin. The goal of PCA is to rotate the data into an axis-system
where the greatest amount of variance is captured in a small number of dimensions. It is
intuitively evident from the example of Fig. 2.2 that such an axis system is affected by
the correlations between attributes. An important observation, which we will show below,
is that the variance of a data set along a particular direction can be expressed directly in
terms of its covariance matrix.

Let C be the d× d symmetric covariance matrix of the n× d data matrix D. Thus, the
(i, j)th entry cij of C denotes the covariance between the ith and jth columns (dimensions)
of the data matrix D. Let μi represent the mean along the ith dimension. Specifically, if
xm
k be the mth dimension of the kth record, then the value of the covariance entry cij is as

follows:

cij =
∑n

k=1 x
i
kx

j
k

n
− μiμj ∀i, j ∈ {1 . . . d} (2.6)

Let μ = (μ1 . . . μd) is the d-dimensional row vector representing the means along the different
dimensions. Then, the aforementioned d× d computations of Eq. 2.6 for different values of
i and j can be expressed compactly in d× d matrix form as follows:

C =
DTD

n
− μTμ (2.7)

Note that the d diagonal entries of the matrix C correspond to the d variances. The covari-
ance matrix C is positive semi-definite, because it can be shown that for any d-dimensional
column vector v, the value of vTCv is equal to the variance of the 1-dimensional projection
Dv of the data set D on v.

vTCv =
(Dv)TDv

n
− (μ v)2 = Variance of 1-dimensional points in Dv ≥ 0 (2.8)

In fact, the goal of PCA is to successively determine orthonormal vectors v maximizing
vTCv. How can one determine such directions? Because the covariance matrix is symmetric
and positive semidefinite, it can be diagonalized as follows:

C = PΛPT (2.9)

The columns of the matrix P contain the orthonormal eigenvectors of C, and Λ is a diagonal
matrix containing the nonnegative eigenvalues. The entry Λii is the eigenvalue corresponding
to the ith eigenvector (or column) of the matrix P . These eigenvectors represent successive
orthogonal solutions1 to the aforementioned optimization model maximizing the variance
vTCv along the unit direction v.

1Setting the gradient of the Lagrangian relaxation vTCv−λ(||v||2−1) to 0 is equivalent to the eigenvector
condition Cv − λv = 0. The variance along an eigenvector is vTCv = vTλv = λ. Therefore, one should
include the orthonormal eigenvectors in decreasing order of eigenvalue λ to maximize preserved variance in
reduced subspace.
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An interesting property of this diagonalization is that both the eigenvectors and eigenval-
ues have a geometric interpretation in terms of the underlying data distribution. Specifically,
if the axis system of data representation is rotated to the orthonormal set of eigenvectors
in the columns of P , then it can be shown that all

(
d
2

)
covariances of the newly transformed

feature values are zero. In other words, the greatest variance-preserving directions are also
the correlation-removing directions. Furthermore, the eigenvalues represent the variances
of the data along the corresponding eigenvectors. In fact, the diagonal matrix Λ is the
new covariance matrix after axis rotation. Therefore, eigenvectors with large eigenvalues
preserve greater variance, and are also referred to as principal components. Because of the
nature of the optimization formulation used to derive this transformation, a new axis system
containing only the eigenvectors with the largest eigenvalues is optimized to retaining the
maximum variance in a fixed number of dimensions. For example, the scatter plot of Fig. 2.2
illustrates the various eigenvectors, and it is evident that the eigenvector with the largest
variance is all that is needed to create a variance-preserving representation. It generally
suffices to retain only a small number of eigenvectors with large eigenvalues.

Without loss of generality, it can be assumed that the columns of P (and corresponding
diagonal matrix Λ) are arranged from left to right in such a way that they correspond to
decreasing eigenvalues. Then, the transformed data matrix D′ in the new coordinate system
after axis rotation to the orthonormal columns of P can be algebraically computed as the
following linear transformation:

D′ = DP (2.10)

While the transformed data matrix D′ is also of size n × d, only its first (leftmost) k � d
columns will show significant variation in values. Each of the remaining (d − k) columns
of D′ will be approximately equal to the mean of the data in the rotated axis system. For
mean-centered data, the values of these (d − k) columns will be almost 0. Therefore, the
dimensionality of the data can be reduced, and only the first k columns of the transformed
data matrix D′ may need to be retained2 for representation purposes. Furthermore, it can
be confirmed that the covariance matrix of the transformed data D′ = DP is the diagonal
matrix Λ by applying the covariance definition of Eq. 2.7 to DP (transformed data) and μP
(transformed mean) instead ofD and μ, respectively. The resulting covariance matrix can be
expressed in terms of the original covariance matrix C as PTCP . Substituting C = PΛPT

from Eq. 2.9 shows equivalence because PTP = PPT = I. In other words, correlations have
been removed from the transformed data because Λ is diagonal.

The variance of the data set defined by projections along top-k eigenvectors is equal to
the sum of the k corresponding eigenvalues. In many applications, the eigenvalues show a
precipitous drop-off after the first few values. For example, the behavior of the eigenvalues
for the 279-dimensional Arrythmia data set from the UCI Machine Learning Repository [213]
is illustrated in Fig. 2.3. Figure 2.3a shows the absolute magnitude of the eigenvalues in
increasing order, whereas Fig. 2.3b shows the total amount of variance retained in the top-k
eigenvalues. Figure 2.3b can be derived by using the cumulative sum of the smallest eigen-
values in Fig. 2.3a. It is interesting to note that the 215 smallest eigenvalues contain less
than 1% of the total variance in the data and can therefore be removed with little change
to the results of similarity-based applications. Note that the Arrythmia data set is not a
very strongly correlated data set along many pairs of dimensions. Yet, the dimensional-
ity reduction is drastic because of the cumulative effect of the correlations across many
dimensions.

2The means of the remaining columns also need be stored if the data set is not mean centered.
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Figure 2.3: Variance retained with increasing number of eigenvalues for the Arrythmia data
set

The eigenvectors of the matrix C may be determined by using any numerical method
discussed in [295] or by an off-the-shelf eigenvector solver. PCA can be extended to discov-
ering nonlinear embeddings with the use of a method known as the kernel trick. Refer to
Sect. 10.6.4.1 of Chap. 10 for a brief description of kernel PCA.

2.4.3.2 Singular Value Decomposition

Singular value decomposition (SVD) is closely related to principal component analysis
(PCA). However, these distinct methods are sometimes confused with one another because
of the close relationship. Before beginning the discussion of SVD, we state how it is related
to PCA. SVD is more general than PCA because it provides two sets of basis vectors instead
of one. SVD provides basis vectors of both the rows and columns of the data matrix, whereas
PCA only provides basis vectors of the rows of the data matrix. Furthermore, SVD provides
the same basis as PCA for the rows of the data matrix in certain special cases:

SVD provides the same basis vectors and data transformation as PCA for data sets in
which the mean of each attribute is 0.

The basis vectors of PCA are invariant to mean-translation, whereas those of SVD are
not. When the data are not mean centered, the basis vectors of SVD and PCA will not be
the same, and qualitatively different results may be obtained. SVD is often applied without
mean centering to sparse nonnegative data such as document-term matrices. A formal way
of defining SVD is as a decomposable product of (or factorization into) three matrices:

D = QΣPT (2.11)

Here, Q is an n× n matrix with orthonormal columns, which are the left singular vectors.
Σ is an n× d diagonal matrix containing the singular values, which are always nonnegative
and, by convention, arranged in nonincreasing order. Furthermore, P is a d×d matrix with
orthonormal columns, which are the right singular vectors. Note that the diagonal matrix Σ
is rectangular rather than square, but it is referred to as diagonal because only entries of the
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form Σii are nonzero. It is a fundamental fact of linear algebra that such a decomposition
always exists, and a proof may be found in [480]. The number of nonzero diagonal entries of
Σ is equal to the rank of the matrix D, which is at most min{n, d}. Furthermore, because
of the orthonormality of the singular vectors, both PTP and QTQ are identity matrices.
We make the following observations:

1. The columns of matrix Q, which are also the left singular vectors, are the orthonormal
eigenvectors of DDT . This is because DDT = QΣ(PTP )ΣTQT = QΣΣTQT . There-
fore, the square of the nonzero singular values, which are diagonal entries of the n×n
diagonal matrix ΣΣT , represent the nonzero eigenvalues of DDT .

2. The columns of matrix P , which are also the right singular vectors, are the orthonor-
mal eigenvectors of DTD. The square of the nonzero singular values, which are rep-
resented in diagonal entries of the d× d diagonal matrix ΣTΣ, are the nonzero eigen-
values of DTD. Note that the nonzero eigenvalues of DDT and DTD are the same.
The matrix P is particularly important because it provides the basis vectors, which
are analogous to the eigenvectors of the covariance matrix in PCA.

3. Because the covariance matrix of mean-centered data is DTD
n (cf. Eq. 2.7) and the

right singular vectors of SVD are eigenvectors of DTD, it follows that the eigenvectors
of PCA are the same as the right-singular vectors of SVD for mean-centered data.
Furthermore, the squared singular values in SVD are n times the eigenvalues of PCA.
This equivalence shows why SVD and PCA can provide the same transformation for
mean-centered data.

4. Without loss of generality, it can be assumed that the diagonal entries of Σ are
arranged in decreasing order, and the columns of matrix P and Q are also ordered
accordingly. Let Pk and Qk be the truncated d × k and n × k matrices obtained by
selecting the first k columns of P and Q, respectively. Let Σk be the k × k square
matrix containing the top k singular values. Then, the SVD factorization yields an
approximate d-dimensional data representation of the original data set D:

D ≈ QkΣkP
T
k (2.12)

The columns of Pk represent a k-dimensional basis system for a reduced representation
of the data set. The dimensionality reduced data set in this k-dimensional basis system
is given by the n×k data set D′

k = DPk = QkΣk, as in Eq. 2.10 of PCA. Each of the n
rows of D′

k contain the k coordinates of each transformed data point in this new axis
system. Typically, the value of k is much smaller than both n and d. Furthermore,
unlike PCA, the rightmost (d−k) columns of the full d-dimensional transformed data
matrix D′ = DP will be approximately 0 (rather than the data mean), whether the
data are mean centered or not. In general, PCA projects the data on a low-dimensional
hyperplane passing through the data mean, whereas SVD projects the data on a low-
dimensional hyperplane passing through the origin. PCA captures as much of the
variance (or, squared Euclidean distance about the mean) of the data as possible,
whereas SVD captures as much of the aggregate squared Euclidean distance about
the origin as possible. This method of approximating a data matrix is referred to as
truncated SVD.

In the following, we will show that truncated SVD maximizes the aggregate squared
Euclidean distances (or energy) of the transformed data points about the origin. Let v be a
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Figure 2.4: Complementary basis properties of matrix factorization in SVD

d-dimensional column vector and Dv be the projection of the data set D on v. Consider the
problem of determining the unit vector v such that the sum of squared Euclidean distances
(Dv)T (Dv) of the projected data points from the origin is maximized. Setting the gradient
of the Lagrangian relaxation vTDTDv − λ(||v||2 − 1) to 0 is equivalent to the eigenvector
condition DTDv − λv = 0. Because the right singular vectors are eigenvectors of DTD, it
follows that the eigenvectors (right singular vectors) with the k largest eigenvalues (squared
singular values) provide a basis that maximizes the preserved energy in the transformed and
reduced data matrix D′

k = DPk = QkΣk. Because the energy, which is the sum of squared
Euclidean distances from the origin, is invariant to axis rotation, the energy in D′

k is the
same as that in D′

kP
T
k = QkΣkP

T
k . Therefore, k-rank SVD is a maximum energy-preserving

factorization. This result is known as the Eckart–Young theorem.
The total preserved energy of the projection Dv of the data set D along unit right-

singular vector v with singular value σ is given by (Dv)T (Dv), which can be simplified as
follows:

(Dv)T (Dv) = vT (DTDv) = vT (σ2v) = σ2

Because the energy is defined as a linearly separable sum along orthonormal directions, the
preserved energy in the data projection along the top-k singular vectors is equal to the
sum of the squares of the top-k singular values. Note that the total energy in the data set
D is always equal to the sum of the squares of all the nonzero singular values. It can be
shown that maximizing the preserved energy is the same as minimizing the squared error3

(or lost energy) of the k-rank approximation. This is because the sum of the energy in the
preserved subspace and the lost energy in the complementary (discarded) subspace is always
a constant, which is equal to the energy in the original data set D.

When viewed purely in terms of eigenvector analysis, SVD provides two different perspec-
tives for understanding the transformed and reduced data. The transformed data matrix can
either be viewed as the projection DPk of the data matrix D on the top k basis eigenvectors
Pk of the d × d scatter matrix DTD, or it can directly be viewed as the scaled eigenvec-
tors QkΣk = DPk of the n × n dot-product similarity matrix DDT . While it is generally
computationally expensive to extract the eigenvectors of an n × n similarity matrix, such
an approach also generalizes to nonlinear dimensionality reduction methods where notions
of linear basis vectors do not exist in the original space. In such cases, the dot-product
similarity matrix is replaced with a more complex similarity matrix in order to extract a
nonlinear embedding (cf. Table 2.3).

SVD is more general than PCA and can be used to simultaneously determine a subset
of k basis vectors for the data matrix and its transpose with the maximum energy. The
latter can be useful in understanding complementary transformation properties of DT .

3The squared error is the sum of squares of the entries in the error matrix D −QkΣkP
T
k .
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The orthonormal columns of Qk provide a k-dimensional basis system for (approximately)
transforming “data points” corresponding to the rows of DT , and the matrix DTQk = PkΣk

contains the corresponding coordinates. For example, in a user-item ratings matrix, one may
wish to determine either a reduced representation of the users, or a reduced representation
of the items. SVD provides the basis vectors for both reductions. Truncated SVD expresses
the data in terms of k dominant latent components. The ith latent component is expressed
in the ith basis vectors of both D and DT , and its relative importance in the data is defined
by the ith singular value. By decomposing the matrix product QkΣkP

T
k into column vectors

of Qk and Pk (i.e., dominant basis vectors of DT and D), the following additive sum of the
k latent components can be obtained:

QkΣkP
T
k =

k∑
i=1

qiσipi
T =

k∑
i=1

σi(qi piT ) (2.13)

Here qi is the ith column of Q, pi is the ith column of P , and σi is the ith diagonal entry
of Σ. Each latent component σi(qi piT ) is an n× d matrix with rank 1 and energy σ2

i . This
decomposition is referred to as spectral decomposition. The relationships of the reduced basis
vectors to SVD matrix factorization are illustrated in Fig. 2.4.

An example of a rank-2 truncated SVD of a toy 6× 6 matrix is illustrated below:

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 2 1 2 0 0
2 3 3 3 0 0
1 1 1 1 0 0
2 2 2 3 1 1
0 0 0 1 1 1
0 0 0 2 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

≈ Q2Σ2P
T
2

≈

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.41 0.17
−0.65 0.31
−0.23 0.13
−0.56 −0.20
−0.10 −0.46
−0.19 −0.78

⎞
⎟⎟⎟⎟⎟⎟⎠

(
8.4 0
0 3.3

)(
−0.41 −0.49 −0.44 −0.61 −0.10 −0.12
0.21 0.31 0.26 −0.37 −0.44 −0.68

)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1.55 1.87 1.67 1.91 0.10 0.04
2.46 2.98 2.66 2.95 0.10 −0.03
0.89 1.08 0.96 1.04 0.01 −0.04
1.81 2.11 1.91 3.14 0.77 1.03
0.02 −0.05 −0.02 1.06 0.74 1.11
0.10 −0.02 0.04 1.89 1.28 1.92

⎞
⎟⎟⎟⎟⎟⎟⎠

Note that the rank-2 matrix is a good approximation of the original matrix. The entry with
the largest error is underlined in the final approximated matrix. Interestingly, this entry is
also inconsistent with the structure of the remaining matrix in the original data (why?).
Truncated SVD often tries to correct inconsistent entries, and this property is sometimes
leveraged for noise reduction in error-prone data sets.

2.4.3.3 Latent Semantic Analysis

Latent semantic analysis (LSA) is an application of the SVD method to the text domain.
In this case, the data matrix D is an n × d document-term matrix containing normalized
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word frequencies in the n documents, where d is the size of the lexicon. No mean centering
is used, but the results are approximately the same as PCA because of the sparsity of D.
The sparsity of D implies that most of the entries in D are 0, and the mean values of each
column are much smaller than the nonzero values. In such scenarios, it can be shown that
the covariance matrix is approximately proportional to DTD. The sparsity of the data set
also results in a low intrinsic dimensionality. Therefore, in the text domain, the reduction in
dimensionality from LSA is rather drastic. For example, it is not uncommon to be able to
represent a corpus drawn on a lexicon of 100,000 dimensions in fewer than 300 dimensions.

LSA is a classical example of how the “loss” of information from discarding some dimen-
sions can actually result in an improvement in the quality of the data representation. The
text domain suffers from two main problems corresponding to synonymy and polysemy.
Synonymy refers to the fact that two words may have the same meaning. For example, the
words “comical” and “hilarious” mean approximately the same thing. Polysemy refers to
the fact that the same word may mean two different things. For example, the word “jaguar”
could refer to a car or a cat. Typically, the significance of a word can only be understood
in the context of other words in the document. This is a problem for similarity-based appli-
cations because the computation of similarity with the use of word frequencies may not
be completely accurate. For example, two documents containing the words “comical” and
“hilarious,” respectively, may not be deemed sufficiently similar in the original representa-
tion space. The two aforementioned issues are a direct result of synonymy and polysemy
effects. The truncated representation after LSA typically removes the noise effects of syn-
onymy and polysemy because the (high-energy) singular vectors represent the directions of
correlation in the data, and the appropriate context of the word is implicitly represented
along these directions. The variations because of individual differences in usage are implic-
itly encoded in the low-energy directions, which are truncated anyway. It has been observed
that significant qualitative improvements [184, 416] for text applications may be achieved
with the use of LSA. The improvement4 is generally greater in terms of synonymy effects
than polysemy. This noise-removing behavior of SVD has also been demonstrated in general
multidimensional data sets [25].

2.4.3.4 Applications of PCA and SVD

Although PCA and SVD are primarily used for data reduction and compression, they have
many other applications in data mining. Some examples are as follows:

1. Noise reduction: While removal of the smaller eigenvectors/singular vectors in PCA
and SVD can lead to information loss, it can also lead to improvement in the quality of
data representation in surprisingly many cases. The main reason is that the variations
along the small eigenvectors are often the result of noise, and their removal is generally
beneficial. An example is the application of LSA in the text domain where the removal
of the smaller components leads to the enhancement of the semantic characteristics
of text. SVD is also used for deblurring noisy images. These text- and image-specific
results have also been shown to be true in arbitrary data domains [25]. Therefore, the
data reduction is not just space efficient but actually provides qualitative benefits in
many cases.

4Concepts that are not present predominantly in the collection will be ignored by truncation. Therefore,
alternative meanings reflecting infrequent concepts in the collection will be ignored. While this has a robust
effect on the average, it may not always be the correct or complete disambiguation of polysemous words.
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2. Data imputation: SVD and PCA can be used for data imputation applications [23],
such as collaborative filtering, because the reduced matrices Qk, Σk, and Pk can be
estimated for small values of k even from incomplete data matrices. Therefore, the
entire matrix can be approximately reconstructed as QkΣkP

T
k . This application is

discussed in Sect. 18.5 of Chap. 18.

3. Linear equations: Many data mining applications are optimization problems in which
the solution is recast into a system of linear equations. For any linear system Ay = 0,
any right singular vector of A with 0 singular value will satisfy the system of equations
(see Exercise 14). Therefore, any linear combination of the 0 singular vectors will
provide a solution.

4. Matrix inversion: SVD can be used for the inversion of a square d×dmatrixD. Let the
decomposition of D be given by QΣPT . Then, the inverse of D is D−1 = PΣ−1QT .
Note that Σ−1 can be trivially computed from Σ by inverting its diagonal entries.
The approach can also be generalized to the determination of the Moore–Penrose
pseudoinverse D+ of a rank-k matrix D by inverting only the nonzero diagonal entries
of Σ. The approach can even be generalized to non-square matrices by performing the
additional operation of transposing Σ. Such matrix inversion operations are required
in many data mining applications such as least-squares regression (cf. Sect. 11.5 of
Chap. 11) and social network analysis (cf. Chap. 19).

5. Matrix algebra: Many network mining applications require the application of alge-
braic operations such as the computation of the powers of a matrix. This is common
in random-walk methods (cf. Chap. 19), where the kth powers of the symmetric adja-
cency matrix of an undirected network may need to be computed. Such symmetric
adjacency matrices can be decomposed into the form QΔQT . The kth power of this
decomposition can be efficiently computed as Dk = QΔkQT . In fact, any polynomial
function of the matrix can be computed efficiently.

SVD and PCA are extraordinarily useful because matrix and linear algebra operations are
ubiquitous in data mining. SVD and PCA facilitate such matrix operations by providing
convenient decompositions and basis representations. SVD has rightly been referred to [481]
as “absolutely a high point of linear algebra.”

2.4.4 Dimensionality Reduction with Type Transformation

In these methods, dimensionality reduction is coupled with type transformation. In most
cases, the data is transformed from a more complex type to a less complex type, such as
multidimensional data. Thus, these methods serve the dual purpose of data reduction and
type portability. This section will study two such transformation methods:

1. Time series to multidimensional: A number of methods, such as the discrete Fourier
transform and discrete wavelet transform are used. While these methods can also be
viewed as a rotation of an axis system defined by the various time stamps of the
contextual attribute, the data are no longer dependency oriented after the rotation.
Therefore, the resulting data set can be processed in a similar way to multidimensional
data. We will study the Haar wavelet transform because of its intuitive simplicity.

2. Weighted graphs to multidimensional: Multidimensional scaling and spectral methods
are used to embed weighted graphs in multidimensional spaces, so that the similarity
or distance values on the edges are captured by a multidimensional embedding.
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Table 2.2: An example of wavelet coefficient computation

Granularity (order k) Averages DWT coefficients
(Φ values) (ψ values)

k = 4 (8, 6, 2, 3, 4, 6, 6, 5) –
k = 3 (7, 2.5, 5, 5.5) (1, −0.5, −1, 0.5)
k = 2 (4.75, 5.25) (2.25, −0.25)
k = 1 (5) (−0.25)

This section will discuss each of these techniques.

2.4.4.1 Haar Wavelet Transform

Wavelets are a well-known technique that can be used for multigranularity decomposition
and summarization of time-series data into the multidimensional representation. The Haar
wavelet is a particularly popular form of wavelet decomposition because of its intuitive
nature and ease of implementation. To understand the intuition behind wavelet decompo-
sition, an example of sensor temperatures will be used.

Suppose that a sensor measured the temperatures over the course of 12 h from the
morning until the evening. Assume that the sensor samples temperatures at the rate of
1 sample/s. Thus, over the course of a single day, a sensor will collect 12 × 60 × 60 =
43, 200 readings. Clearly, this will not scale well over many days and many sensors. An
important observation is that many adjacent sensor readings will be very similar, causing
this representation to be very wasteful. So, how can we represent this data approximately
in a small amount of space? How can we determine the key regions where “variations” in
readings occur, and store these variations instead of repeating values?

Suppose we only stored the average over the entire day. This provides some idea of the
temperature but not much else about the variation over the day. Now, if the difference in
average temperature between the first half and second half of the day is also stored, we
can derive the averages for both the first and second half of the day from these two values.
This principle can be applied recursively because the first half of the day can be divided
into the first quarter of the day and the second quarter of the day. Thus, with four stored
values, we can perfectly reconstruct the averages in four quarters of the day. This process
can be applied recursively right down to the level of granularity of the sensor readings.
These “difference values” are used to derive wavelet coefficients. Of course, we did not yet
achieve any data reduction because the number of such coefficients can be shown to be
exactly equal to the length of the original time series.

It is important to understand that large difference values tell us more about the varia-
tions in the temperature values than the small ones, and they are therefore more important
to store. Therefore, larger coefficient values are stored after a normalization for the level of
granularity. This normalization, which is discussed later, has a bias towards storing coeffi-
cients representing longer time scales because trends over longer periods of time are more
informative for (global) series reconstruction.

More formally, the wavelet technique creates a decomposition of the time series into
a set of coefficient-weighted wavelet basis vectors. Each of the coefficients represents the
rough variation of the time series between the two halves of a particular time range. The
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SERIES
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Figure 2.5: Illustration of the wavelet decomposition

wavelet basis vector is a time series that represents the temporal range of this variation in
the form of a simple step function. The wavelet coefficients are of different orders, depending
on the length of the time-series segment analyzed, which also represents the granularity of
analysis. The higher-order coefficients represent the broad trends in the series because they
correspond to larger ranges. The more localized trends are captured by the lower-order
coefficients. Before providing a more notational description, a simple recursive description
of wavelet decomposition of a time series segment S is provided below in two steps:

1. Report half the average difference of the behavioral attribute values between the first
and second temporal halves of S as a wavelet coefficient.

2. Recursively apply this approach to first and second temporal halves of S.

At the end of the process, a reduction process is performed, where larger (normalized)
coefficients are retained. This normalization step will be described in detail later.

A more formal and notation-intensive description will be provided at this point. For ease
in discussion, assume that the length q of the series is a power of 2. For each value of k ≥ 1,
the Haar wavelet decomposition defines 2k−1 coefficients of order k. Each of these 2k−1

coefficients corresponds to a contiguous portion of the time series of length q/2k−1. The ith
of these 2k−1 coefficients corresponds to the segment in the series starting from position
(i − 1) · q/2k−1 + 1 to the position i · q/2k−1. Let us denote this coefficient by ψi

k and the
corresponding time-series segment by Si

k. At the same time, let us define the average value
of the first half of the Si

k by aik and that of the second half by bik. Then, the value of ψi
k

is given by (aik − bik)/2. More formally, if Φi
k denote the average value of the Si

k, then the
value of ψi

k can be defined recursively as follows:

ψi
k = (Φ2·i−1

k+1 − Φ2·i
k+1)/2 (2.14)

The set of Haar coefficients is defined by all the coefficients of order 1 to log2(q). In
addition, the global average Φ1

1 is required for the purpose of perfect reconstruction. The
total number of coefficients is exactly equal to the length of the original series, and the
dimensionality reduction is obtained by discarding the smaller (normalized) coefficients.
This will be discussed later.
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Figure 2.6: The error tree from the wavelet decomposition

The coefficients of different orders provide an understanding of the major trends in
the data at a particular level of granularity. For example, the coefficient ψi

k is half the
quantity by which the first half of the segment Si

k is larger than the second half of the same
segment. Because larger values of k correspond to geometrically reducing segment sizes,
one can obtain an understanding of the basic trends at different levels of granularity. This
definition of the Haar wavelet makes it very easy to compute by a sequence of averaging and
differencing operations. Table 2.2 shows the computation of the wavelet coefficients for the
sequence (8, 6, 2, 3, 4, 6, 6, 5). This decomposition is illustrated in graphical form in Fig. 2.5.
Note that each value in the original series can be represented as a sum of log2(8) = 3
wavelet coefficients with a positive or negative sign attached in front. In general, the entire
decomposition may be represented as a tree of depth 3, which represents the hierarchical
decomposition of the entire series. This is also referred to as the error tree. In Fig. 2.6,
the error tree for the wavelet decomposition in Table 2.2 is illustrated. The nodes in the
tree contain the values of the wavelet coefficients, except for a special super-root node that
contains the series average.

The number of wavelet coefficients in this series is 8, which is also the length of the
original series. The original series has been replicated just below the error tree in Fig. 2.6,
and can be reconstructed by adding or subtracting the values in the nodes along the path
leading to that value. Each coefficient in a node should be added, if we use the left branch
below it to reach to the series values. Otherwise, it should be subtracted. This natural
decomposition means that an entire contiguous range along the series can be reconstructed
by using only the portion of the error tree which is relevant to it.

As in all dimensionality reduction methods, smaller coefficients are ignored. We will
explain the process of discarding coefficients with the help of the notion of the basis vectors
associated with each coefficient:

The wavelet representation is a decomposition of the original time series of length q into
the weighted sum of a set of q “simpler” time series (or wavelets) that are orthogonal to
one another. These “simpler” time series are the basis vectors, and the wavelet coefficients
represent the weights of the different basis vectors in the decomposition.

Figure 2.5 shows these “simpler” time series along with their corresponding coefficients.
The number of wavelet coefficients (and basis vectors) is equal to the length of the series q.
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The length of the time series representing each basis vector is also q. Each basis vector has
a +1 or −1 value in the contiguous time-series segment from which a particular coefficient
was derived by a differencing operation. Otherwise, the value is 0 because the wavelet is
not related to variations in that region of the time series. The first half of the nonzero
segment of the basis vector is +1, and the second half is −1. This gives it the shape of a
wavelet when it is plotted as a time series, and also reflects the differencing operation in the
relevant time-series segment. Multiplying a basis vector with the coefficient has the effect
of creating a weighted time series in which the difference between the first half and second
half reflects the average difference between the corresponding segments in the original time
series. Therefore, by adding up all these weighted wavelets over different levels of granularity
in the error tree, it is possible to reconstruct the original series. The list of basis vectors in
Fig. 2.5 are the rows of the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that the dot product of any pair of basis vectors is 0, and therefore these series are
orthogonal to one another. The most detailed coefficients have only one +1 and one −1,
whereas the most coarse coefficient has four +1 and −1 entries. In addition, the vector
(11111111) is needed to represent the series average.

For a time series T , letW1 . . .Wq be the corresponding basis vectors. Then, if a1 . . . aq are
the wavelet coefficients for the basis vectors W1 . . .Wq, the time series T can be represented
as follows:

T =
q∑

i=1

aiWi =
q∑

i=1

(ai||Wi||)
Wi

||Wi||
(2.15)

The coefficients represented in Fig. 2.5 are unnormalized because the underlying basis vec-
tors do not have unit norm. While ai is the unnormalized value from Fig. 2.5, the values
ai||Wi|| represent normalized coefficients. The values of ||Wi|| are different for coefficients
of different orders, and are equal to

√
2,

√
4, or

√
8 in this particular example. For example,

in Fig. 2.5, the broadest level unnormalized coefficient is −0.25, whereas the corresponding
normalized value is −0.25

√
8. After normalization, the basis vectors W1 . . .Wq are orthonor-

mal, and, therefore, the sum of the squares of the corresponding (normalized) coefficients
is equal to the retained energy in the approximated time series. Because the normalized
coefficients provide a new coordinate representation after axis rotation, Euclidean distances
between time series are preserved in this new representation if coefficients are not dropped.
It can be shown that by retaining the coefficients with the largest normalized values, the
error loss from the wavelet representation is minimized.

The previous discussion focused on the approximation of a single time series. In practice,
one might want to convert a database of N time series into N multidimensional vectors.
When a database of multiple time series is available, then two strategies can be used:

1. The coefficient for the same basis vector is selected for each series to create a mean-
ingful multidimensional database of low dimensionality. Therefore, the basis vectors
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Figure 2.7: Illustration of the top levels of the wavelet decomposition for spatial data in a
grid containing sea-surface temperatures

that have the largest average normalized coefficient across the N different series are
selected.

2. The full dimensionality of the wavelet coefficient representation is retained. However,
for each time series, the largest normalized coefficients (in magnitude) are selected
individually. The remaining values are set to 0. This results in a sparse database
of high dimensionality, in which many values are 0. A method such as SVD can be
applied as a second step to further reduce the dimensionality. The second step of this
approach has the disadvantage of losing interpretability of the features of the wavelet
transform. Recall that the Haar wavelet is one of the few dimensionality reduction
transforms where the coefficients do have some interpretability in terms of specific
trends across particular time-series segments.

The wavelet decomposition method provides a natural method for dimensionality reduction
(and data-type transformation) by retaining only a small number of coefficients.

Wavelet Decomposition with Multiple Contextual Attributes

Time-series data contain a single contextual attribute, corresponding to the time value.
This helps in simplification of the wavelet decomposition. However, in some cases such as
spatial data, there may be two contextual attributes corresponding to the X-coordinate and
the Y -coordinate. For example, sea-surface temperatures are measured at spatial locations
that are described with the use of two coordinates. How can wavelet decomposition be
performed in such cases? In this section, a brief overview of the extension of wavelets to
multiple contextual attributes is provided.

Assume that the spatial data is represented in the form of a 2-dimensional grid of
size q × q. Recall that in the 1-dimensional case, differencing operations were applied over
contiguous segments of the time series by successive division of the time series in hierarchical
fashion. The corresponding basis vectors have +1 and −1 at the relevant positions. The 2-
dimensional case is completely analogous where contiguous areas of the spatial grid are used
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by successive divisions. These divisions are alternately performed along the different axes.
The corresponding basis vectors are 2-dimensional matrices of size q × q that regulate how
the differencing operations are performed.

An example of the strategy for 2-dimensional decomposition is illustrated in Fig. 2.7.
Only the top two levels of the decomposition are illustrated in the figure. Here, a 4× 4 grid
of spatial temperatures is used as an example. The first division along the X-axis divides
the spatial area into two blocks of size 4 × 2 each. The corresponding two-dimensional
binary basis matrix is illustrated into the same figure. The next phase divides each of these
4 × 2 blocks into blocks of size 2 × 2 during the hierarchical decomposition process. As
in the case of 1-dimensional time series, the wavelet coefficient is half the difference in
the average temperatures between the two halves of the relevant block being decomposed.
The alternating process of division along the X-axis and the Y -axis can be carried on to
the individual data entries. This creates a hierarchical wavelet error tree, which has many
similar properties to that created in the 1-dimensional case. The overall principles of this
decomposition are almost identical to the 1-dimensional case, with the major difference in
terms of how the cuts along different dimensions are performed by alternating at different
levels. The approach can be extended to the case of k > 2 contextual attributes with the
use of a round-robin rotation in the axes that are selected at different levels of the tree for
the differencing operation.

2.4.4.2 Multidimensional Scaling

Graphs are a powerful mechanism for representing relationships between objects. In some
data mining scenarios, the data type of an object may be very complex and heteroge-
neous such as a time series annotated with text and other numeric attributes. However,
a crisp notion of distance between several pairs of data objects may be available based
on application-specific goals. How can one visualize the inherent similarity between these
objects? How can one visualize the “nearness” of two individuals connected in a social net-
work? A natural way of doing so is the concept of multidimensional scaling (MDS). Although
MDS was originally proposed in the context of spatial visualization of graph-structured dis-
tances, it has much broader applicability for embedding data objects of arbitrary types in
multidimensional space. Such an approach also enables the use of multidimensional data
mining algorithms on the embedded data.

For a graph with n nodes, let δij = δji denote the specified distance between nodes
i and j. It is assumed that all

(
n
2

)
pairwise distances between nodes are specified. It is

desired to map the n nodes to n different k-dimensional vectors denoted by X1 . . . Xn, so
that the distances in multidimensional space closely correspond to the

(
n
2

)
distance values

in the distance graph. In MDS, the k coordinates of each of these n points are treated as
variables that need to be optimized, so that they can fit the current set of pairwise distances.
Metric MDS, also referred to as classical MDS, attempts to solve the following optimization
(minimization) problem:

O =
∑

i,j:i<j

(||Xi −Xj || − δij)2 (2.16)

Here || · || represents Euclidean norm. In other words, each node is represented by a mul-
tidimensional data point, such that the Euclidean distances between these points reflect
the graph distances as closely as possible. In other forms of nonmetric MDS, this objective
function might be different. This optimization problem therefore has n · k variables, and it
scales with the size of the data n and the desired dimensionality k of the embedding. The
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Table 2.3: Scaled eigenvectors of various similarity matrices yield embeddings with different
properties

Method Relevant similarity matrix

PCA Dot product matrix DDT after mean centering D
SVD Dot product matrix DDT

Spectral embedding Sparsified/normalized similarity matrix Λ−1/2WΛ−1/2

(Symmetric Version) (cf. Sect. 19.3.4 of Chap. 19)
MDS/ISOMAP Similarity matrix derived from distance matrix Δ with

cosine law S = − 1
2 (I −

U
n )Δ(I − U

n )
Kernel PCA Centered kernel matrix S = (I − U

n )K(I − U
n )

(cf. Sect. 10.6.4.1 of Chap. 10)

objective function O of Eq. 2.16 is usually divided by
∑

i,j:i<j δ
2
ij to yield a value in (0, 1).

The square root of this value is referred to as Kruskal stress.
The basic assumption in classical MDS is that the distance matrix Δ = [δ2ij ]n×n is

generated by computing pairwise Euclidean distances in some hypothetical data matrix D
for which the entries and dimensionality are unknown. The matrix D can never be recovered
completely in classical MDS because Euclidean distances are invariant to mean translation
and axis rotation. The appropriate conventions for the data mean and axis orientation will
be discussed later. While the optimization of Eq. 2.16 requires numerical techniques, a direct
solution to classical MDS can be obtained by eigen decomposition under the assumption
that the specified distance matrix is Euclidean:

1. Any pairwise (squared) distance matrix Δ = [δ2ij ]n×n can be converted into a sym-
metric dot-product matrix Sn×n with the help of the cosine law in Euclidean space. In
particular, if Xi and Xj are the embedded representations of the ith and jth nodes,
the dot product between Xi and Xj can be related to the distances as follows:

Xi ·Xj = −1
2
[
||Xi −Xj ||2 − (||Xi||2 + ||Xj ||2)

]
∀i, j ∈ {1 . . . n} (2.17)

For a mean-centered embedding, the value of ||Xi||2 + ||Xj ||2 can be expressed (see
Exercise 9) in terms of the entries of the distance matrix Δ as follows:

||Xi||2+ ||Xj ||2 =

∑n
p=1 ||Xi −Xp||2

n
+

∑n
q=1 ||Xj −Xq||2

n
−
∑n

p=1

∑n
q=1 ||Xp −Xq||2

n2

(2.18)
A mean-centering assumption is necessary because the Euclidean distance is mean
invariant, whereas the dot product is not. By substituting Eq. 2.18 in Eq. 2.17, it is
possible to express the dot product Xi ·Xj fully in terms of the entries of the distance
matrix Δ. Because this condition is true for all possible values of i and j, we can
conveniently express it in n×n matrix form. Let U be the n×n matrix of all 1s, and
let I be the identity matrix. Then, our argument above shows that the dot-product
matrix S is equal to − 1

2 (I−
U
n )Δ(I− U

n ). Under the Euclidean assumption, the matrix
S is always positive semidefinite because it is equal to the n× n dot-product matrix
DDT of the unobserved data matrix D, which has unknown dimensionality. Therefore,
it is desired to determine a high-quality factorization of S into the form DkD

T
k , where

Dk is an n× k matrix of dimensionality k.
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2. Such a factorization can be obtained with eigen decomposition. Let S ≈ QkΣ2
kQ

T
k =

(QkΣk)(QkΣk)T represent the approximate diagonalization of S, where Qk is an n×k
matrix containing the largest k eigenvectors of S, and Σ2

k is a k × k diagonal matrix
containing the eigenvalues. The embedded representation is given by Dk = QkΣk.
Note that SVD also derives the optimal embedding as the scaled eigenvectors of the
dot-product matrix of the original data. Therefore, the squared error of representation
is minimized by this approach. This can also be shown to be equivalent to minimizing
the Kruskal stress.

The optimal solution is not unique, because we can multiply QkΣk with any k × k matrix
with orthonormal columns, and the pairwise Euclidean distances will not be affected. In
other words, any representation of QkΣk in a rotated axis system is optimal as well. MDS
finds an axis system like PCA in which the individual attributes are uncorrelated. In fact,
if classical MDS is applied to a distance matrix Δ, which is constructed by computing the
pairwise Euclidean distances in an actual data set, then it will yield the same embedding as
the application of PCA on that data set. MDS is useful when such a data set is not available
to begin with, and only the distance matrix Δ is available.

As in all dimensionality reduction methods, the value of the dimensionality k provides the
trade-off between representation size and accuracy. Larger values of the dimensionality k will
lead to lower stress. A larger number of data points typically requires a larger dimensionality
of representation to achieve the same stress. The most crucial element is, however, the
inherent structure of the distance matrix. For example, if a 10, 000×10, 000 distance matrix
contains the pairwise driving distance between 10,000 cities, it can usually be approximated
quite well with just a 2-dimensional representation. This is because driving distances are
an approximation of Euclidean distances in 2-dimensional space. On the other hand, an
arbitrary distance matrix may not be Euclidean and the distances may not even satisfy the
triangle inequality. As a result, the matrix S might not be positive semidefinite. In such
cases, it is sometimes still possible to use the metric assumption to obtain a high-quality
embedding. Specifically, only those positive eigenvalues may be used, whose magnitude
exceeds that of the most negative eigenvalue. This approach will work reasonably well if the
negative eigenvalues have small magnitude.

MDS is commonly used in nonlinear dimensionality reduction methods such as ISOMAP
(cf. Sect. 3.2.1.7 of Chap. 3). It is noteworthy that, in conventional SVD, the scaled eigen-
vectors of the n× n dot-product similarity matrix DDT yield a low-dimensional embedded
representation of D just as the eigenvectors of S yield the embedding in MDS. The eigen
decomposition of similarity matrices is fundamental to many linear and nonlinear dimen-
sionality reduction methods such as PCA, SVD, ISOMAP, kernel PCA, and spectral embed-
ding. The specific properties of each embedding are a result of the choice of the similarity
matrix and the scaling used on the resulting eigenvectors. Table 2.3 provides a preliminary
comparison of these methods, although some of them are discussed in detail only in later
chapters.

2.4.4.3 Spectral Transformation and Embedding of Graphs

Whereas MDS methods are designed for preserving global distances, spectral methods are
designed for preserving local distances for applications such as clustering. Spectral methods
work with similarity graphs in which the weights on the edges represent similarity rather
than distances. When distance values are available they are converted to similarity values
with kernel functions such as the heat kernel discussed earlier in this chapter. The notion
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of similarity is natural to many real Web, social, and information networks because of the
notion of homophily. For example, consider a bibliographic network in which nodes cor-
respond to authors, and the edges correspond to co-authorship relations. The weight of
an edge represents the number of publications between authors and therefore represents
one possible notion of similarity in author publications. Similarity graphs can also be con-
structed between arbitrary data types. For example, a set of n time series can be converted
into a graph with n nodes, where a node represents each time series. The weight of an
edge is equal to the similarity between the two nodes, and only edges with a “sufficient”
level of similarity are retained. A discussion of the construction of the similarity graph is
provided in Sect. 2.2.2.9. Therefore, if a similarity graph can be transformed to a multidi-
mensional representation that preserves the similarity structure between nodes, it provides
a transformation that can port virtually any data type to the easily usable multidimen-
sional representation. The caveat here is that such a transformation can only be used for
similarity-based applications such as clustering or nearest neighbor classification because
the transformation is designed to preserve the local similarity structure. The local similarity
structure of a data set is nevertheless fundamental to many data mining applications.

Let G = (N,A) be an undirected graph with node set N and edge set A. It is assumed
that the node set contains n nodes. A symmetric n×n weight matrix W = [wij ] represents
the similarities between the different nodes. Unlike MDS, which works with a complete
graph of global distances, this graph is generally a sparsified representation of the similarity
of each object to its k nearest objects (cf. Sect. 2.2.2.9). The similarities to the remaining
objects are not distinguished from one another and set to 0. This is because spectral methods
preserve only the local similarity structure for applications such as clustering. All entries in
this matrix are assumed to be nonnegative, and higher values indicate greater similarity. If
an edge does not exist between a pair of nodes, then the corresponding entry is assumed to
be 0. It is desired to embed the nodes of this graph into a k-dimensional space so that the
similarity structure of the data is preserved.

First, let us discuss the much simpler problem of mapping the nodes onto a 1-dimensional
space. The generalization to the k-dimensional case is relatively straightforward. We would
like to map the nodes in N into a set of 1-dimensional real values y1 . . . yn on a line, so that
the distances between these points reflect the edge connectivity among the nodes. Therefore,
it is undesirable for nodes that are connected with high-weight edges, to be mapped onto
distant points on this line. Therefore, we would like to determine values of yi that minimize
the following objective function O:

O =
n∑

i=1

n∑
j=1

wij(yi − yj)2 (2.19)

This objective function penalizes the distances between yi and yj with weight proportional
to wij . Therefore, when wij is very large (more similar nodes), the data points yi and yj will
be more likely to be closer to one another in the embedded space. The objective function
O can be rewritten in terms of the Laplacian matrix L of weight matrix W . The Laplacian
matrix L is defined as Λ − W , where Λ is a diagonal matrix satisfying Λii =

∑n
j=1 wij .

Let the n-dimensional column vector of embedded values be denoted by y = (y1 . . . yn)T . It
can be shown after some algebraic simplification that the minimization objective function
O can be rewritten in terms of the Laplacian matrix:

O = 2yTLy (2.20)
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The matrix L is positive semidefinite with nonnegative eigenvalues because the sum-of-
squares objective function O is always nonnegative. We need to incorporate a scaling con-
straint to ensure that the trivial value of yi = 0 for all i, is not selected by the optimization
solution. A possible scaling constraint is as follows:

yTΛy = 1 (2.21)

The use of the matrix Λ in the constraint of Eq. 2.21 is essentially a normalization constraint,
which is discussed in detail in Sect. 19.3.4 of Chap. 19.

It can be shown that the value of O is optimized by selecting y as the smallest eigen-
vector of the relationship Λ−1Ly = λy. However, the smallest eigenvalue is always 0, and
it corresponds to the trivial solution where the node embedding y is proportional to the
vector containing only 1s. This trivial eigenvector is non-informative because it corresponds
to an embedding in which every node is mapped to the same point. Therefore, it can be
discarded, and it is not used in the analysis. The second-smallest eigenvector then provides
an optimal solution that is more informative.

This solution can be generalized to finding an optimal k-dimensional embedding by
determining successive directions corresponding to eigenvectors with increasing eigenvalues.
After discarding the first trivial eigenvector e1 with eigenvalue λ1 = 0, this results in a set
of k eigenvectors e2, e3 . . . ek+1, with corresponding eigenvalues λ2 ≤ λ3 ≤ . . . ≤ λk+1. Each
eigenvector is of length n and contains one coordinate value for each node. The ith value
along the jth eigenvector represents the jth coordinate of the ith node. This creates an
n× k matrix, corresponding to the k-dimensional embedding of the n nodes.

What do the small magnitude eigenvectors intuitively represent in the new transformed
space? By using the ordering of the nodes along a small magnitude eigenvector to create a
cut, the weight of the edges across the cut is likely to be small. Thus, this represents a cluster
in the space of nodes. In practice, the k smallest eigenvectors (after ignoring the first) are
selected to perform the reduction and create a k-dimensional embedding. This embedding
typically contains an excellent representation of the underlying similarity structure of the
nodes. The embedding can be used for virtually any similarity-based application, although
the most common application of this approach is spectral clustering. Many variations of
this approach exist in terms of how the Laplacian L is normalized, and in terms of how the
final clusters are generated. The spectral clustering method will be discussed in detail in
Sect. 19.3.4 of Chap. 19.

2.5 Summary

Data preparation is an important part of the data mining process because of the sensitivity
of the analytical algorithms to the quality of the input data. The data mining process
requires the collection of raw data from a variety of sources that may be in a form which
is unsuitable for direct application of analytical algorithms. Therefore, numerous methods
may need to be applied to extract features from the underlying data. The resulting data
may have significant missing values, errors, inconsistencies, and redundancies. A variety
of analytical methods and data scrubbing tools exist for imputing the missing entries or
correcting inconsistencies in the data.

Another important issue is that of data heterogeneity. The analyst may be faced with
a multitude of attributes that are distinct, and therefore the direct application of data
mining algorithms may not be easy. Therefore, data type portability is important, wherein
some subsets of attributes are converted to a predefined format. The multidimensional
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format is often preferred because of its simplicity. Virtually, any data type can be converted
to multidimensional representation with the two-step process of constructing a similarity
graph, followed by multidimensional embedding.

The data set may be very large, and it may be desirable to reduce its size both in terms
of the number of rows and the number of dimensions. The reduction in terms of the number
of rows is straightforward with the use of sampling. To reduce the number of columns in the
data, either feature subset selection or data transformation may be used. In feature subset
selection, only a smaller set of features is retained that is most suitable for analysis. These
methods are closely related to analytical methods because the relevance of a feature may
be application dependent. Therefore, the feature selection phase need to be tailored to the
specific analytical method.

There are two types of feature transformation. In the first type, the axis system may be
rotated to align with the correlations of the data and retain the directions with the greatest
variance. The second type is applied to complex data types such as graphs and time series.
In these methods, the size of the representation is reduced, and the data is also transformed
to a multidimensional representation.

2.6 Bibliographic Notes

The problem of feature extraction is an important one for the data mining process but it is
highly application specific. For example, the methods for extracting named entities from a
document data set [400] are very different from those that extract features from an image
data set [424]. An overview of some of the promising technologies for feature extraction in
various domains may be found in [245].

After the features have been extracted from different sources, they need to be inte-
grated into a single database. Numerous methods have been described in the conventional
database literature for data integration [194, 434]. Subsequently, the data needs to be
cleaned and missing entries need to be removed. A new field of probabilistic or uncertain
data has emerged [18] that models uncertain and erroneous records in the form of prob-
abilistic databases. This field is, however, still in the research stage and has not entered
the mainstream of database applications. Most of the current methods either use tools
for missing data analysis [71, 364] or more conventional data cleaning and data scrubbing
tools [222, 433, 435].

After the data has been cleaned, its size needs to be reduced either in terms of numerosity
or in terms of dimensionality. The most common and simple numerosity reduction method
is sampling. Sampling methods can be used for either static data sets or dynamic data sets.
Traditional methods for data sampling are discussed in [156]. The method of sampling has
also been extended to data streams in the form of reservoir sampling [35, 498]. The work
in [35] discusses the extension of reservoir sampling methods to the case where a biased
sample needs to be created from the data stream.

Feature selection is an important aspect of the data mining process. The approach is
often highly dependent on the particular data mining algorithm being used. For example, a
feature selection method that works well for clustering may not work well for classification.
Therefore, we have deferred the discussion of feature selection to the relevant chapters on
the topic on clustering and classification in this book. Numerous books are available on the
topic of feature selection [246, 366].

The two most common dimensionality reduction methods used for multidimensional
data are SVD [480, 481] and PCA [295]. These methods have also been extended to text in
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the form of LSA [184, 416]. It has been shown in many domains [25, 184, 416] that the use of
methods such as SVD, LSA, and PCA unexpectedly improves the quality of the underlying
representation after performing the reduction. This improvement is because of reduction
in noise effects by discarding the low-variance dimensions. Applications of SVD to data
imputation are found in [23] and Chap. 18 of this book. Other methods for dimensionality
reduction and transformation include Kalman filtering [260], Fastmap [202], and nonlinear
methods such as Laplacian eigenmaps [90], MDS [328], and ISOMAP [490].

Many dimensionality reduction methods have also been proposed in recent years that
simultaneously perform type transformation together with the reduction process. These
include wavelet transformation [475] and graph embedding methods such as ISOMAP and
Laplacian eigenmaps [90, 490]. A tutorial on spectral methods for graph embedding may be
found in [371].

2.7 Exercises

1. Consider the time-series (−3,−1, 1, 3, 5, 7, ∗). Here, a missing entry is denoted by ∗.
What is the estimated value of the missing entry using linear interpolation on a window
of size 3?

2. Suppose you had a bunch of text documents, and you wanted to determine all the
personalities mentioned in these documents. What class of technologies would you use
to achieve this goal?

3. Download the Arrythmia data set from the UCI Machine Learning Repository [213].
Normalize all records to a mean of 0 and a standard deviation of 1. Discretize each
numerical attribute into (a) 10 equi-width ranges and (b) 10 equi-depth ranges.

4. Suppose that you had a set of arbitrary objects of different types representing different
characteristics of widgets. A domain expert gave you the similarity value between every
pair of objects. How would you convert these objects into a multidimensional data set
for clustering?

5. Suppose that you had a data set, such that each data point corresponds to sea-surface
temperatures over a square mile of resolution 10×10. In other words, each data record
contains a 10 × 10 grid of temperature values with spatial locations. You also have
some text associated with each 10× 10 grid. How would you convert this data into a
multidimensional data set?

6. Suppose that you had a set of discrete biological protein sequences that are annotated
with text describing the properties of the protein. How would you create a multidi-
mensional representation from this heterogeneous data set?

7. Download the Musk data set from the UCI Machine Learning Repository [213]. Apply
PCA to the data set, and report the eigenvectors and eigenvalues.

8. Repeat the previous exercise using SVD.

9. For a mean-centered data set with points X1 . . . Xn, show that the following is true:

||Xi||2+ ||Xj ||2 =

∑n
p=1 ||Xi −Xp||2

n
+

∑n
q=1 ||Xj −Xq||2

n
−
∑n

p=1

∑n
q=1 ||Xp −Xq||2

n2

(2.22)
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10. Consider the time series 1, 1, 3, 3, 3, 3, 1, 1. Perform wavelet decomposition on the time
series. How many coefficients of the series are nonzero?

11. Download the Intel Research Berkeley data set. Apply a wavelet transformation to
the temperature values in the first sensor.

12. Treat each quantitative variable in the KDD CUP 1999 Network Intrusion Data Set
from the UCI Machine Learning Repository [213] as a time series. Perform the wavelet
decomposition of this time series.

13. Create samples of size n = 1, 10, 100, 1000, 10000 records from the data set of the
previous exercise, and determine the average value ei of each quantitative column i
using the sample. Let μi and σi be the global mean and standard deviation over the
entire data set. Compute the number of standard deviations zi by which ei varies from
μi.

zi =
|ei − μi|

σi

How does zi vary with n?

14. Show that any right singular vector y of A with 0 singular value satisfies Ay = 0.

15. Show that the diagonalization of a square matrix is a specialized variation of SVD.
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