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Abstract. The first year of life is the most dynamic and perhaps the most
critical phase of postnatal brain development. The ability to accurately charac-
terize structure changes is very critical in early brain development studies, which
highly relies on the performance of image segmentation and registration tech-
niques. However, either infant image segmentation or registration, if deployed
independently, encounters much more challenges than the adult brains due to
dynamic appearance change with rapid brain development. Fortunately, image
segmentation and registration of infant images can assist each other to overcome
the above difficulties by harnessing the growth trajectories (temporal corre-
spondences) learned from a large set of training subjects with complete longi-
tudinal data. To this end, we propose a joint segmentation and registration
algorithm for infant brain images. Promising segmentation and registration
results have been achieved for infant brain MR images aged from 2-week-old to
1-year-old, indicating the applicability of our joint segmentation and registration
method in early brain development studies.

1 Introduction

Human brain undergoes rapid physical growth and functional development from birth
to 1 year old. The ability to accurately measure the structural changes from MR
(Magnetic Resonance) images at this period is indispensable for shedding new light on
the exploration of brain development and also the early detection of neurodevelop-
mental disorder. For example, infants with autism were found to have 5 %–10 %
abnormal enlargement in total brain volume at early development stage [1].

However, the automatic image segmentation and registration tools for processing a
large amount of infant brain MR images lag behind the demands from ongoing neu-
roscience/clinical studies. Both image segmentation and registration are challenged by:
(1) the dynamic appearance changes of brain tissues from birth to 1 year old [1], and (2)
the fast and spatially-varied developments of brain anatomy and size, especially in the
first year of life [1]. Consequently, either segmentation or registration, if deployed
independently, is difficult to handle the above challenges.
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Since the imaging-based study on early brain development becomes more and more
popular, a sufficient number of longitudinal infant brain images have been collected in
the past years. Many subjects with complete longitudinal images have been well
segmented by either human interactions or automatic methods with multi-modality
information [2]. As demonstrated by many literatures, appropriate joint segmentation
and registration could significantly improve both of their performances [3]. Motivated
by this, we aim to develop joint segmentation and registration method to overcome the
above challenges. The leverage to achieve this goal is the availability of a large number
of longitudinal infant data (scanned at 2 weeks, 3 months, 6 months, 9 months, and
1 year of age) and their respective segmentation results. It is worth noting that these
valuable data are often ignored when performing segmentation/registration for the new
infant images by current methods.

In this paper, we present an accurate and robust approach for joint segmentation
and registration of any two given infant brain images by using the knowledge learned
from the training infant subjects with the complete longitudinal data and segmentation
results. Specifically, we first establish accurate temporal correspondences for each
training subject with complete longitudinal images, in order to learn the subject-specific
growth trajectories [4]. Then, to deal with the potential large age gap between two new
infant images, we first segment them separately with a sparse patch-based level set
approach that allows each patch in the new infant image to look for similar patches in
the respective training subjects with similar age and further combine the labels of
matched patches in the training subjects to provide a good initialization for the level set
segmentation. Afterwards, deformations between two new infant images can be esti-
mated by deformable registration upon their segmented images, thus avoiding the
challenge of directly registering two new infant images with large appearance differ-
ence. The refined registration allows all matched patches of longitudinal training
images (regardless of their ages) to improve the segmentation of each new infant
image. By alternating these segmentation and registration steps, we can iteratively
refine both segmentation and registration results of two new infant images. The
advantages of our method include: (1) avoiding the direct registration between two new
infant images with dynamic appearance changes, and (2) improving both segmentation
and registration performances by fully using the available information from a number
of training infant subjects with complete longitudinal data and their subject-specific
growth models. In experiments, improved segmentation and registration results have
been achieved for the infant images aged from 2-week-old to 1-year-old.

2 Methods

Our goal here is to register a moving infant brain image Mt2 with a fixed infant brain
image Ft1 and also simultaneously determine tissue maps for Ft1 and Mt2 , where t1 and
t2 are two different ages, each of which could be as young as 2-week-old or as old as
1-year-old. Assume that we have N training subjects Is (s = 1, …, N) with longitudinal
data Is ¼ Ist jt ¼ 1; . . .; Ts

� �
. For each image sequence Is, we can apply state-of-the-art

4D segmentation method [2] to segment 3D image at each time-point into WM (white
matter), GM (gray matter), and CSF (cerebral-spinal fluid), which can be denoted as
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Ls ¼ Lst jt ¼ 1; . . .; Ts
� �

. With some human inspection, we can regard these segmen-
tation results of longitudinal training images as the ground truth.

Next, we first estimate the growth trajectory (Sect. 2.1) to determine temporal
correspondences for each point in the longitudinal data Is, as designated by the purple
dash curves in Fig. 1. Second, we use sparse patch-based label fusion method to
calculate the tissue probability maps for Ft1 and Mt2 separately, by using only the
training images at the respective time-point as the atlas images. For example, the label

fusion on Ft1 selects only the image patches from training images Ist1 js ¼ 1; . . .;N
n o

at

time-point t1 (as shown in the dash pink box of Fig. 1) to form the dictionary. The
obtained tissue probability maps can be used as a good initialization for level-set
approach for tissue segmentation (Sect. 2.2). In this way, we can just register the two
segmented images, thus avoiding the difficulty of directly registering the original two
images with different appearances (Sect. 2.3). Given the spatial correspondences
between Ft1 and Mt2 , we can further improve the segmentation accuracy by augmenting
the dictionary with additional image patches from training images at all other time-
points, not simply the similar time-point(s) (Sect. 2.4). By alternating these segmenta-
tion and registration steps, we can iteratively refine both segmentation and registration
results for Ft1 and Mt2 .

2.1 Learning Subject-Specific Growth Trajectories

For each training subject with complete longitudinal data Is and segmentations Ls, a
conventional way is to independently register all follow-up images to the baseline
image (first time-point). However, such independent image registration may tear down
the coherence of temporal correspondences in each longitudinal data. Hence, we go one
step further to apply a 4D image registration method [5] for jointly estimating the
deformation fields Us = {ut

s|t = 1, …, Ts} that can bring the image at each time-point to
the latent common space. Thus, the temporal deformations us

t!t0 from time-point t to

Fig. 1. The overview of joint segmentation and registration for infant brain images.
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time-point t′ can be efficiently computed as the composition of inverse deformation
(ut

s)−1 (from It
s toward common space) and the forward deformation us

t0 (from common

space to Is
t0 ): u

s
t!t0 ¼ ust

� ��1�us
t0 , where ∘ denote for the deformation composition. In

this way, we can use the estimated temporal deformation fields to form the growth
trajectories of each training subject Is, as indicated by the purple dash curves in Fig. 1.

2.2 Sparse Patch-Based Level Set Segmentation

Estimation of Tissue Probability Maps: The initial tissue probability maps for each
new infant image are very important to initialize the level set approach for achieving
accurate tissue segmentation. Here, we use a patch-based label fusion method to
estimate the tissue probability maps for each new infant image by considering the
training images with same age as the atlases.

Let’s take Ft1 as example, where we consider all training images at t1 time-point,
fðIst1 ; Lst1Þjs ¼ 1; . . .;Ng, as the atlases. We first affine register all atlases to Ft1 and then
apply deformable registration method to deform all atlases to Ft1 image space. To
determine the tissue type (WM, GM, or CSF) for each image point x in Ft1 , we extract a
referent patch Qðx; t1Þ � Ft1 centered at image point x. Next, we collect a number of
atlas patches Ps v; t1ð Þ � Ist1 across all training infant images Ist1 at the same time-point
t1, with the center point v sitting within a search neighborhood n(x). Thus, all of these
atlas patches form an over-complete dictionary D(x, t1) = {Ps(v, t1)|v ∊ n
(x), s = 1, …, N}. Since Ft1 and Ist1 are at the same time-point t1, the appearances of
these image patches are very similar. For clarity, we vectorize the reference patch Q
(x, t1) into a column vector b. Also, we arrange each atlas patch Ps(v, t1) into a column
vector ap and then assemble them into a matrix A ¼ ap

� �
p¼1;...;g, where p = (v, s) is a

bivariate index for the particular atlas patch Ps(v, t1) and g ¼ N � nðxÞj j denotes the total
number of atlas patches.

Inspired by the power of sparse representation, we further look for a sparse coef-
ficient vector w to represent the reference patch b by the dictionary matrix A, i.e.,
b Aw, where each element in w indicates the contribution of a particular atlas patch
ap in representing the reference patch b. Thus, the estimation of w falls to the classic
LASSO (Least Absolute Shrinkage and Selection Operator) problem [6–8]:

bw ¼ minw b� Awk k2þk wk k1; s:t:w[ 0; ð1Þ

where λ controls the sparsity of the coefficient vector w. Here, we specifically useeDðx; t1Þ to denote the set of selected image patches in D(x, t1) with the sparse coeffi-
cient wp > 0. Since the tissue type for each ap is known, we can calculate the tissue
probability w.r.t. WM, GM, and CSF, respectively. After repeating this procedure for
every point in the fixed image Ft1 , we can obtain the tissue probability maps (as shown
by a pink box in Fig. 1) to initialize the level set algorithm for segmenting Ft1 .

Level Set Segmentation: In level set algorithm, we employ three level sets, with their
zero-level surfaces, respectively, denoting for interfaces of WM/GM, GM/CSF, and
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CSF/background. The tissue probability maps can be integrated as prior knowledge
into the coupled level set segmentation algorithm to improve the segmentation accu-
racy. Similarly, we can repeat the above procedure to segment the moving image Mt2 ,
except building the patch dictionary from the training images at time-point t2. The
tentative segmentation results of Ft1 and Mt2 are shown in the blue boxes of Fig. 1.

2.3 Symmetric Feature-Based Image Registration

Given segmentations for the fixed and moving images, we can deploy the state-of-the-
art registration method, i.e., HAMMER [9], to register the two segmented images.
Since geometric invariant moment (GMI) features are extracted from the segmented
images, image registration is free of dynamic appearance changes in the original
intensity images. Here, we further improve HAMMER by using the symmetric
deformation estimation strategy, where we simultaneously estimate the deformation
pathways ϕ1 (from fixed image) and ϕ2 (from moving image). It is worth noting that the
deformed fixed image w.r.t. ϕ1 and the deformed moving image w.r.t. ϕ2 should be
similar in the end of registration.

Since ϕ1 and ϕ2 are iteratively refined during registration, we use k (k = 0,.., K) to
denote the iteration. In the beginning of registration (k = 0), Fð0Þ ¼ Ft1 and Mð0Þ ¼ Mt2 ,

along with the identity deformation pathways /ð0Þ1 and /ð0Þ2 : In the following, we adopt
the hierarchical deformation mechanism in HAMMER for establishing the corre-

spondence between the deformed fixed image FðkÞ ¼ Ft1 /ðkÞ1
� 	

and the deformed

moving image MðkÞ ¼ Mt2 /ðkÞ2
� 	

, instead of always using F(0) and M(0) in HAM-

MER. Also, only a small number of key points with distinctive features are selected
from F(k) and the M(k) to establish anatomical correspondences by matching the GMI

features. The entire deformation pathways /ðkÞ1 and ϕ2
(k) are steered by the correspon-

dences on these key points by requiring all other non-key points following the
deformations on the nearby key points. With progress of registration, more and more

key points are selected to refine the deformation pathways /ðkÞ1 and ϕ2
(k) regarding to F(k)

and M(k), which is repeated until F(k) and M(k) become very similar in the end of
registration. Finally, the deformation pathway from fixed image to moving image can
be calculated by ϕ = ϕ1

K ∘ (ϕ2
K)−1, where ‘∘’ denotes the composition of deformation

pathway ϕ1
K and the inverse deformation pathway /K

2

� ��1
.

2.4 Joint Segmentation and Registration by Using Growth Trajectories

Given the tentatively estimated deformations, we can further refine the tissue seg-
mentation and then continue to improve the registration results with more accurate
segmentation results. The key to achieve this goal is the augmented dictionary in tissue
segmentation step since the refined registration will allow all matched image patches in
other time-points to assist the segmentation, while these additional image patches are
not included in the initial dictionary.
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Taking Ft1 as example, the initial dictionary used to segment each image point
x 2 Ft1 uses only the image patches in time-point t1 of training subjects (the dash pink
box in Fig. 1). After registration, we assume the tentative corresponding location of x in
the moving image Mt2 is ϕ(x). Since we know the growth trajectory in each training
image, we can construct an augmented dictionary D*(x, t1) for image point x, by now
including: (1) image patches at time-point t1: the training image patches from the initial
dictionary D(x, t1) (at time-point t1); (2) image patches at time-point t2: the selected
image patches in eD / xð Þ; t2ð Þ that is used to represent the moving image patch Q(ϕ
(x), t2), and (3) image patches at all other time points: all temporally corresponded
image patches derived from eD / xð Þ; t2ð Þ. Thus, we also know the appearance infor-
mation at all other time points for each image patch in eD / xð Þ; t2ð Þ by traversing the
growth trajectory learned in Sect. 2.1.

As shown in Fig. 1, in our joint segmentation and registration framework, seg-
menting infant image at a particular time-point can now utilize the information in the
entire training images (pink and red boxes in Fig. 1). Since such additional subject-
specific image patches are more pertinent to the image point x than the training image
patches from the entire population, the augmented dictionary can provide more useful
information to guide tissue segmentation. By alternating the segmentation and regis-
tration steps, we can achieve state-of-the-art performance for both segmentation and
registration for the infant brain images.

3 Experiments

In the training stage, we collect 24 infant subjects with complete longitudinal data as
the training subjects, where each subject has T1- and T2-weighted images at 2 weeks,
3 months, 6 months, 9 months, and 12 months of age. All images were acquired from a
Siemens head-only 3T MR scanner. T1-weighted images were acquired with 144
sagittal slices at resolution of 1 × 1 × 1 mm3. T2-weighted images with 64 axis slices
were obtained at resolution of 1.25 × 1.25 × 1.95 mm3. For each subject, the
T2-weighted image is aligned to the T1-weighted image at the same time-point and
then further resampled to 1 × 1 × 1 mm3. Note that we use T2-weighted images for
segmenting 2-week-old and 3-month-old infant images, while use T1-weighted images
to segment 6-, 9-, and 12-month-old infant images, considering the strong tissue
contrast in the respective time-points for the respective MR images.

Since most of early brain development studies use the infant image at 1-year-old or
older age as the atlas to discover structure development, we apply our joint segmen-
tation and registration method to align 27 images at 2-week-old and 28 images at
3-month-old as moving images onto a 1-year-old infant image that is used as the fixed
image (top right of Fig. 2). In the following, we evaluate the segmentation and reg-
istration performances one by one.
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3.1 Evaluation of Segmentation Results

For each testing infant image, we have the manual segmentation results of WM, GM,
and CSF. Here, we use Dice ratio to quantitatively measure the overlap degree between
manual segmentations (used as ground truth) and our estimated tissue segmentations.
The sparse patch-based level set segmentation algorithm (without using registration to
refine) is used as the baseline method for comparison. The Dice ratios on each tissue
type for 2-week-old and 3-month-old infant brain images are listed in Tables 1 and 2,
respectively. After joint segmentation and registration, our method achieves overall
2.38 % and 1.95 % improvement in segmenting 2-week-old and 3-month-old infant
brain images, respectively. Some typical improvements on 2-week-old infant brain
image (top left of Fig. 2) are displayed in Fig. 2. It is clear that the initial mis-
segmentations (in the blue boxes of Fig. 2) have been successfully corrected based on
more and more accurate image registration (in the red boxes of Fig. 2).

3.2 Evaluation on Registration Results

A typical result of registering 2-week-old image to 1-year-old image is shown in the
bottom right of Fig. 2. Since we have the manually labeled hippocampus region for
both fixed image (1-year-old image as shown in the top right of Fig. 2) and eight
2-week-old infant brain images, we can further quantitatively evaluate the registration
accuracy on 2-week-old images, by measuring the overlap degree between manual
ground-truth and our estimated hippocampus (by deforming the hippocampal region of
the fixed image to the image space of each individual 2-week-old image). In order to
demonstrate the power of joint segmentation and registration, we apply HAMMER [9]
on the baseline segmentations, obtained by using the sparse patch-based level set only
(without refinement by joint registration). The average and standard deviation of Dice
ratios on hippocampus is 70.13 ± 4.69 by HAMMER (based on the baseline seg-
mentations) and 73.48 ± 2.05 by our joint segmentation and registration method,
achieving almost 4.7 % increase in Dice ratio by our proposed method.

Table 1. The Dice ratios of WM, GM, and CSF on 2-week-old infant brain images

WM GM CSF Overall

Sparse-level set 82.04 ± 5.17 81.02 ± 4.10 73.02 ± 5.77 78.69 ± 3.33
Our method 84.12 ± 2.38 83.53 ± 1.97 76.48 ± 2.98 81.07 ± 1.49

Table 2. The Dice ratios of WM, GM, and CSF on 3-month-old infant brain images

WM GM CSF Overall

Sparse-level set 82.53 ± 4.61 81.25 ± 3.53 75.14 ± 3.38 79.77 ± 2.68
Our method 84.35 ± 1.76 82.44 ± 2.11 77.00 ± 2.12 81.94 ± 1.27
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4 Conclusion

In this paper, we propose a novel joint segmentation and registration method for infant
brain images by using the growth trajectories learned from a large number of training
subjects with complete longitudinal data. Specifically, image segmentation assists the
registration by providing accurate tissue segmentations, which avoid the challenge of
directly registering the two infant brain images with large appearance changes. In
return, the refined image registration can bring more useful information to provide
better tissue probability maps for guiding the level set based segmentation. Promising
results for both segmentation and registration have been achieved, indicating the
potential applicability of our method for early brain development study.
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