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Abstract. Commodity hardware is available in configurations with huge
amounts of main memory and it is viable to keep large databases of
enterprises in the RAM of one or a few machines. Additionally, a reuni-
fication of transactional and analytical systems has been proposed to
enable operational reporting on the most recent data. In-memory col-
umn stores appeared in academia and industry as a solution to han-
dle the resulting mixed workload of transactional and analytical queries.
Therein queries are processed by scanning whole columns to evaluate the
predicates on non-key columns. This leads to a waste of memory band-
width and reduced throughput.

In this work we present the Paged Index, an index tailored towards
dictionary-encoded columns. The indexing concept builds upon the avail-
ability of the indexed data at high speeds, a situation that is unique to
in-memory databases. By reducing the search scope we achieve up to
two orders of magnitude of performance increase for the column scan
operation during query runtime.

1 Introduction

Enterprise systems often process a read-mostly workload [5] and consequently
in-memory columns stores tailored towards this workload hold the majority of
table data in a read-optimized partition [9]. To apply predicates, this partition
is scanned in its compressed form through the intensive use of the SIMD units
of modern CPUs. Although this operation is fast when compared to disk-based
systems, its performance can be increased if we decrease the search scope and
thereby the amount of data that needs to be streamed from main memory to the
CPU. The resulting savings of memory bandwidth lead to a better utilization
of this scarce resource, which allows to process more queries with equally sized
machines.

2 Background and Prior Work

In this section we briefly summarize our prototypical database system, the used
compression technique and refer to prior work.
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2.1 Column Stores with a Read-Optimized Partition

Column stores are in the focus of research [10–12], because their performance
characteristics enable superior analytical (OLAP) performance, while keeping
the data in-memory still allows a sufficient transactional performance for many
usecases. Consequently, Plattner [6] proposed, that in-memory column stores
can handle a mixed workload of transactional (OLTP) and analytical queries
and become the single source of truth in future enterprise applications.

Dictionary Compressed Column. Our prototypical implementation stores
all table data vertically partitioned in dictionary compressed columns. The val-
ues are represented by bit-packed value-ids, which reference the actual, uncom-
pressed values within a sorted dictionary by their offset. Dictionary compressed
columns can be found in HYRISE [3], SanssouciDB [7] and SAP HANA [9].

Enterprise Data. As shown by Krueger et al. [5], enterprise data consists of
many sparse columns. The domain of values is often limited, because there is
a limited number of underlying options in the business processes. For example,
only a relatively small number of customers, appears in the typically large order
table. Additionally, data within some columns often correlates in regard to its
position. Consider a column storing the promised delivery date in the orders
table. Although the dates will not be ordered, because different products will
have different delivery time spans, the data will follow a general trend. In this
work, we want to focus on columns that exhibit such properties.

Related Work. Important work on main-memory indices has been done by
Rao and Ross [8], but their indexing method applies to the value-id lookup in
sorted dictionaries rather then the position lookup that we will focus on in this
paper. Since they focus on Decision Support Systems (DSS), they claim that an
index rebuild after every bulk-load is viable. In this paper we assume a mixed-
workload system, where the merge-performance must be kept as high as possible,
hence we reuse the old index to build an updated index.

Idreos et al. [4] present indices for in-memory column stores that are build
during query execution, and adapt to changing workloads, however the inte-
gration of the indexing schemes into the frequent merge process of the write-
optimized and read-only store is missing.

Graefe [2] evaluates a related indexing techniques, zone indexes with bit
vector filters, in the context of row-oriented data warehouses.

In previous work, we presented the Group-Key Index, which implements an
inverted index on the basis of the bit-packed value-id and showed that this index
allows very fast lookups while introducing acceptable overhead to the partition-
combining process [1].
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Fig. 1. Example for a strongly clustered column, showing delivery Dates from a pro-
ductive ERP system. The values follow a general trend, but are not strictly ordered.
The range for value 120 is given as an example.

2.2 Paper Structure and Contribution

In the following section we introduce our dictionary-compressed, bit-packed
column storage scheme and the symbols that are used throughout the paper
(Table 1). In Sect. 4 the Paged Index is presented. We explain its structure, give
the memory traffic for a single lookup, and show the index rebuild algorithm.
A size overview for exemplary configurations and the lookup algorithm is given as
well. Afterwards, in Sect. 5, the column merge algorithm is shown, and extended
in Sect. 6 to enable the index maintenance during the column merge process. In
Sect. 7, we present the performance results for two index configurations. Findings
and contributions are summed up in Sect. 9.

3 Bit-Packed Column Scan

We define the attribute vector Vj
M to be a list of value-ids, referencing offsets in

the sorted dictionary Uj
M for column j. Values within Vj

M are bit-packed with
the minimal amount of bits necessary to reference the entries in Uj

M, we refer
to the amount of bits with Ej

C = �log2(|Uj
M|)� bits.

Consequently, to apply a predicate on a single column, the predicate condi-
tions have to be translated into value-ids by performing a binary search on the
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Table 1. Symbol definition. Entities annotated with ′ represent the merged (updated)
entry.

Description Unit Symbol

Number of columns in the table - NC

Number of tuples in the main/delta partition - NM ,ND

Number of tuples in the updated table - N′
M

For a given column j; j ∈ [1 . . .NC ]:

Main/delta partition of the jth column - Mj ,Dj

Merged column - M′j

Attribute vector of the jth column - Vj
M,Vj

D

Updated main attribute vector - V′j
M

Sorted dictionary of Mj/Dj - Uj
M,Uj

D

Updated main dictionary - U′j
M

CSB+ Tree Index on Dj - Tj

Compressed Value-Length bits Ej
C

New Compressed Value-Length bits E′j
C

Length of Address in Main Partition bits Aj

Fraction of unique values in Mj/Dj - λj
M,λj

D

Auxiliary structure for Mj / Dj - Xj
M,Xj

D

Paged Index - IjM

Paged Index Pagesize - Pj

Number of Pages - g

Memory Traffic bytes MT

main dictionary Uj
M and a scan of the main attribute vector Vj

M. Of importance
is here the scanning of Vj

M, which involves the read of MTCS bytes from main
memory, as defined in Eq. 1.

MTCS = NM · E
j
C

8
= NM · �log2(|Uj

M|)�
8

bytes (1)

Inserts and updates to the compressed column are handled by a delta par-
tition, thereby avoiding to re-encode the column for each insert [5]. The delta
partition is stored uncompressed and extended by a CSB+ tree index to allow
for fast lookups. If the delta partition reaches a certain threshold it is merged
with the main partition. This process and the extension to update the Paged
Index will be explained in detail in Sect. 5.
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4 Paged Index

While indices in classic databases are well studied and researched, the increase
of access speed to data for in-memory databases allows to rethink indexing tech-
niques. Now, that the data in columnar in-memory stores can be accessed at
the speed of RAM, it becomes possible to scan the complete column to evalu-
ate queries - an operation that is prohibitively slow on disk for huge datasets
(Fig. 2).

We propose the Paged Index, which benefits from clustered value distribu-
tions and focuses on reducing the memory traffic for the scan operation, while
adding as little overhead as possible to the merge process for index maintenance.
Additionally the index uses only minimal index storage space and is built for a
mixed workload. Figure 1 shows an example of real ERP customer data, outlin-
ing delivery dates from a productive system. Clearly, the data follows a strong
trend and consecutive values are only from a small value domain with a high
spatial locality. Consequently, the idea behind a Paged Index is to partition a
column into pages and to store bitmap indices for each value, reflecting in which
pages the respective value occurs in. Therefore, scan operators only have to con-
sider pages that are actually containing the value, which can drastically reduce
the search space.

4.1 Index Structure

To use the Paged Index, the column is logically split into multiple equally sized
pages. The last page is allowed to be of smaller size. Let the pagesize be Pj , then

Fig. 2. An example of the Paged Index for Pj = 3



20 M. Faust et al.

Mj contains g = �NM

Pj � pages. For each of the encoded values in the dictionary
Uj

M now a bitvector Bj
v is created, with v being the value-id of the encoded value,

equal to its offset in Uj
M. The bitvector contains exactly one bit for each page.

Bj
v = (b0, b1...bg) (2)

Each bit in Bj
v marks whether value-id v can be found within the subrange

represented by that page. To determine the actual tuple-id of the matching
values, the according subrange has to be scanned. If bx is set, one or more
occurrences of the value-id can be found in the attribute vector between offset
x∗Pj (inclusive) and (x+1)∗Pj (exclusive) as represented by Eq. 3. The Paged
Index is the set of bitvectors for all value-ids, as defined in Eq. 4.

bx ∈ Bj
v : bx = 1 ⇔ v ∈ Vj

M[x · Pj ...((x + 1) · Pj − 1)] (3)

IM =
[
Bj

0,B
j
1, ...,B

j

|Uj
M|−1

]
(4)

4.2 Index Size Estimate

The Paged Index is stored in one consecutive bitvector. For each distinct value
and each page a bit is stored. The size in bits is given by Eq. 5. In Table 2 we
show the resulting index sizes for some exemplary configurations.

s(IjM ) = |Uj
M| ∗ �NM

Pj
� bits (5)

Table 2. Example sizes of the Paged Index

NM |Uj
M| Pj s(IjM ) s(Vj

M)

100,000 10 4096 32 Byte 49 K

100,000 10 65536 3 Byte 49 K

100,000 100,000 4096 310 K 208 K

100,000 100,000 65536 31 K 208 K

1,000,000,000 10 4096 298 K 477M

1,000,000,000 10 65536 19 K 477M

1,000,000,000 100,000 4096 3 G 2G

1,000,000,000 100,000 65536 182 M 2G
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4.3 Index Enabled Lookups

If no index is present to determine all tuple-ids for a single value-id, the attribute
vector Vj

M is scanned from the beginning to the end and each compressed value-
id is compared against the requested value-id. The resulting tuple-ids, which
equal to the position in Vj

M, are written to a dynamically allocated results
vector. With the help of the Paged Index the scan costs can be minimized by
evaluating only relevant parts of Vj

M.

Algorithm 1. Scanning the Column with a Paged Index
1: procedure PagedIndexScan (valueid)

2: bitsPerRun =
|Ij

M
|

|Uj
M

|
3: results = vector < uint >
4: for page = 0; page ≤ bitsPerRun; + + page do
5: if IjM [bitsPerRun ∗ valueid + page] == 1 then
6: startOffset = page ∗ Pj

7: endOffset = (page + 1) ∗ Pj

8: for position = startOffset; position < endOffset; + + position do
9: if Vj

M[position] == valueid then
10: results.pushback(position)
11: end if
12: end for
13: end if
14: end for
15: return results
16: end procedure

Our evaluated implementation additionally decompresses multiple bit-packed
values at once for maximum performance. Algorithm 1 shows the simplified
implementation. The minimum memory traffic of an index-assisted partial scan
of the attribute vector for a single value-id is given by Eq. 7.

minPagesPerDistinctV alue =

⌈
NM

Pj ∗ |Uj
M|

⌉
(6)

MTPagedIndex =
⌈

NM

Pj · 8

⌉
+

⌈
NM

Pj · |Uj
M|

⌉
· P

j · Ej
C

8
bytes (7)

4.4 Rebuild of the Index

To extent an existing compressed column with an index, the index has to be
built. Additionally, a straightforward approach to enable index maintenance for
the merge of the main and delta partition is to rebuild the index after a new,
merged main partition has been created. Since all operations are in-memory,
Rao et al. [8] claim that for bulk-operations an index rebuild is a viable choice.
We take the rebuild as a baseline for further improvements.
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5 Column Merge

Our in-memory column store maintains two partitions for each column: a read-
optimized, compressed main partition and a writable delta partition. To allow
for fast queries on the delta partition, it has to be kept small. To achieve this,
the delta partition is merged with the main partition after its size has increased
beyond a certain threshold. As explained in [5], the performance of this merge
process is paramount to the overall sustainable insert performance. The inputs to
the algorithm consists of the compressed main partition and the uncompressed
delta partition with an CSB+ tree index [8]. The output is a new dictionary
encoded main partition.

The algorithm is the basis for our index-aware merge process that will be
presented in the next section.

We perform the merge using the following two steps:

1. Merge Main Dictionary and Delta Index, Create value-ids for Dj.
We simultaneously iterate over Uj

M and the leafs of Tj and create the new
sorted dictionary U′j

M and the auxiliary structure Xj
M. Because Tj contains

a list of all positions for each distinct value in the delta partition of the
column, we can set all positions in the value-id vector Vj

D. This leads to
non-continuous access to Vj

D. Note that the value-ids in Vj
D refer to the new

dictionary U′j
M.

2. Create New Attribute Vector. This step consists of creating the new
main attribute vector V′j

M by concatenating the main and delta partition’s
attribute vectors Vj

M and Vj
D. The compressed values in Vj

M are updated
by a lookup in the auxiliary structure Xj

M as shown in Eq. 8. Values from
Vj

D are copied without translation to V′j
M. The new attribute vector V′j

M will
contain the correct offsets for the corresponding values in U′j

M, by using E′j
C

bits-per-value, calculated as shown in Eq. 9.

V′j
M[i] = Vj

M[i] + Xj
M[Vj

M[i]] ∀i ∈ [0...NM − 1] (8)

Algorithm 2. Rebuild of Paged Index
1: procedure Rebuild Paged Index

2: bitsPerRun = NM+Pj−1

Pj

3: IjM [0...(bitsPerRun ∗ |Uj
M|)] = 0

4: for pos = 0; pos ≤ NM ; + + pos do
5: valueid = Vj

M[pos]
6: run = valueid ∗ bitsPerRun
7: page = pos

Pj

8: IjM [run + page] = 1
9: end for

10: end procedure
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Note that the optimal amount of bits-per-value for the bit-packed V′j
M can

only be evaluated after the cardinality of Uj
M ∪Dj is determined. If we accept a

non-optimal compression, we can set the compressed value length to the sum of
the cardinalities of the dictionary Uj

M and the delta CSB+ tree index Tj . Since
the delta partition is expected to be much smaller than the main partition, the
difference from the optimal compression is low.

E′j
C = �log2(|Uj

M ∪ Dj |)� ≤ �log2(|Uj
M| + |Tj |)� (9)

Step 1’s complexity is determined by the size of the union of the dictionaries
and the size of the delta partition. Its complexity is O(|Uj

M ∪Uj
D|+ |Dj |). Step

2 is dependent on the length of the new attribute vector, O(NM + ND).

6 Index-Aware Column Merge

We now integrate the index rebuild into the column merge process. This allows
us to reduce the memory traffic and create a more efficient algorithm to merge
columns with a Paged Index.

Algorithm 3. Extended Dictionary Merge
1: procedure ExtendedDictionaryMerge
2: d, m, n = 0
3: g = �NM

Pj � (Number of Pages)

4: while d != |Tj | or m != |Uj
M| do

5: processM = (Uj
M[m] <= Tj [d] or d == |Tj |)

6: processD = (Tj [d] <= Uj
M[m] or m == |Uj

M|)
7: if processM then
8: U′j

M[n] ← Uj
M[m]

9: Xj
M[m] ← n − m

10: I ′
M [n ∗ g · · · n ∗ (g + 1)] = IM [m ∗ g · · · m(g + 1)]

11: m ← m + 1
12: end if
13: if processD then
14: U′j

M[n] ← Tj [d]
15: for dpos in Tj [d].positions do
16: V′j

D[dpos] = n

17: Ij′
M [n ∗ (|Vj

M
|+|Vj

D
|)

Pj +
|Vj

M
|+dpos

Pj ] = 1
18: end for
19: d ← d + 1
20: end if
21: n ← n + 1
22: end while
23: end procedure
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We extend Step 1 of the column merge process from Sect. 5 to maintain the
Paged Index. During the dictionary merge we perform additional steps for each
processed dictionary entry. The substeps are extended as follows:

1. For Dictionary Entries from the Main Partition. Calculate the begin
and end offset in IjM and the starting offset in Ij′M . Copy the range from IjM
to Ij′M . The additional bits in the run are left zero, because the value is not
present in the delta partition.

2. For CSB+ Index Entries from the Delta Partition. Calculate the posi-
tion of the run in Ij′M , read all positions from Tj , increase them by NM , and
set the according bits in Ij′M .

3. Entries found in both Partitions. Perform both steps sequentially.

Algorithm 3 shows a modified dictionary merge algorithm to maintain the
paged index during the column merge.

7 Evaluation

We evaluate our Paged Index on a clustered column. In a clustered column equal
data entries are grouped together, but the column is not necessarily sorted by
the value. Our index does perform best, if each value’s occurrences form exactly
one group, however it is not required. Outliers or multiple groups are supported
by the Paged Index.

With the help of the index the column scan is accelerated by scanning only
the pages which are known to have at least one occurrence of the desired value.

The benchmarks were performed on a two socket Intel Xeon X5650 system
with 48 GB of RAM. In Fig. 3 the CPU cycles for the column scan and two
configurations of the Paged Index are shown. We choose pagesizes of 4096 and
16384 entries as an example. The Paged Index enables an performance increase
of two orders of magnitude for columns with a medium to high amount of distinct
values through a drastic reduction of of the search scope. For smaller dictionaries,

Table 3. Example sizes of the evaluated Paged Index

NM |Uj
M| Pj s(IjM ) s(Vj

M)

3,000,000 10 4096 917 byte 1.4 M

3,000,000 10 65536 58 byte 1.4 M

3,000,000 100,000 4096 8.7 M 6.1 M

3,000,000 100,000 65536 571.0 K 6.1 M

3,000,000 1,000,000 4096 87.4 M 7.2 M

3,000,000 1,000,000 65536 5.6 M 7.2 M

3,000,000 3,000,000 4096 262.3 M 7.9 M

3,000,000 3,000,000 65536 16.7 M 7.9 M
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Fig. 3. Scan performance and index sizes in comparison

the benefit is lower. However an order of magnitude is already reached with
λj = 10−5, which corresponds to 30 distinct values in our example. For very
small dictionaries with less than 5 values, the overhead of reading the Paged
Index leads to a performance decrease. In these cases the Paged Index should
not be applied to a column. In Table 3 the index and attribute vector sizes for
some of the measured configurations are given. The Paged Index can deliver
its performance increase for columns with a medium amount of distinct values
for only little storage overhead. For the columns with a very high distinct value
count the Paged Index grows prohibitively large. Note, that the storage footprint
halves by each doubling of the pagesize. For the aforementioned delivery dates
column the Paged Index decreases the scan time for a specific value-id by a
factor 20.

8 Future Work

The current design of a bit-packed attribute vector does not allow a fixed map-
ping of the resulting sub-ranges to memory pages. In future work we want to
compare the performance benefits if a attribute vector is designed, so that the
reading of a sub-range leads to at most one transaction lookaside buffer (TLB)
miss.

Other interesting topics include the automatic determination of the best page
size, index compression and varying page sizes.

9 Conclusion

Shifted access speeds in main memory databases and special domain knowledge
in enterprise systems allow for a reevaluation of indexing concepts. With the
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original data available at the speed of main memory, indices do not need to
narrow down the search scope as far as in disk based databases. Therefore,
relatively small indices can have huge impacts, especially if they are designed
towards a specific data distribution.

In this paper, we proposed the Paged Index, which is tailored towards columns
with clustered data. As our analyses of real customer data showed, such data dis-
tributions are especially common in enterprise systems. By indexing the occur-
rence of values on a block level, the search scope for scan operations can be
reduced drastically with the use of a Paged Index. In our experimental evalua-
tion, we report speed improvements up to two orders of magnitude, while only
adding little overhead for the index maintenance and storage. Finally, we pro-
posed an integration of the index maintenance into the merge process, further
reducing index maintenance costs.
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