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Abstract. Microwave scanning of the breast would provide a technology
for cancer detection and screening that is significantly safer than current
methods involving radiation. This research focuses on finding the best
way for accurate characterization of cancerous signals and normal signals
using clinical data collected from a previously developed ultra wideband
(UWB) antenna, BRATUMASS (Breast Tumor Microwave Sensor Sys-
tem). BRATUMASS which detects changes in dielectric constants within
the breast. The signals collected from the microwave scanning procedure
are reconstructed into a single, informative representation of the breast
via diffraction tomography. This representation contains the informa-
tion of the breast’s conductivity and the change in dielectric constants.
We illustrate the feasibility of using Haralick features to make distinc-
tions among breasts with a malignant tumor present and breasts with
no malignancy in data collected from Shanghai Sixth People’s Hospital
and Shanghai First People’s Hospital.

Keywords: Microwave near-field imaging · Breast cancer detection ·
Haralick features

1 Introduction

Ultra high frequency (UHF) microwaves in the band 300 MHz–3 GHz are of
increasing interest for their ability to penetrate through obstacles and perform
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precise localization and tracking of objects in indoor environments [5]. More-
over, due to their low cost and minimal radiation, UHF band microwaves are
being researched for medical imaging [11]. In breast cancer detection, UHF band
antennas offer the ability to focus power from the antenna through the breast
tissue to localize malignant tumors. Microwave antennas are able to detect very
low power signals in the presence of noise and interference, which is important
when the target is small and of low-contrast. Microwave breast imaging has the
potential to obviate unnecessary biopsies, increase patient comfort, and increase
the effectiveness with which breast cancer can be detected.

Detection and classification using microwave breasts imaging has concen-
trated on simulation studies [2,16], rather than the use of clinical data. Simu-
lated classification studies have used various approaches including support vector
machines [4,14], and neural networks [9]. Recently, the feasibility of lesion clas-
sification based on contrast-aided UWB breast imaging using simulations was
demonstrated [3]. There has been a movement toward conducting more clinical
experiments [8], but availability of clinical data is limited.

In this paper, a detection algorithm is developed to detect the differences
between cancer subimages (Class 1), and normal subimages within a normal
breast which has no evidence of maligancy present (Class 3) based on Haralick’s
textural features [6]. The uniqueness of this research is the UHF microwave clini-
cal data being used for the detection analysis. The purpose of this detection algo-
rithm is to find the optimal set of features that accurately distinguish between
the two classes. Most classification techniques have been performed using mam-
mograms or MRI data, due to the access to a variety of databases [7,10].

2 Background

2.1 Microwave Technology - BRATUMASS

The BRATUMASS developed by Yao [18] is monostatic, meaning one transmit-
ter and one receiver are co-located; the device emits low power on the order of
6.0 mW, and transmits a chirp signal through an impedance matching medium
that concentrates the signal for transmission into the breast. The measurements
of interest for this system is dielectric constants. The distribution of water con-
tent throughout a cancerous breast will differ from that of a normal breast since
in areas of cancer, the water content will be more highly concentrated [15]. This
will lead to higher dielectric constants in that area. The dielectric constants of
a malignant tumor area (ε ≈ 50) are significantly higher than that of a nor-
mal breast area (ε ≈ 10) at an intermediate frequency of 1.575 GHz [17]. Our
research is novel in the fact that (1) the device transmits an intermediate fre-
quency of only 1.575 GHz, (2) that signal and image processing techniques are
being applied to clinical data and (3) BRATUMASS offers portability and the
safety necessary to allow extensive, longitudinal studies of patients.
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2.2 Clinical Data and Data Collection

Clinical data were collected at hospitals in Shanghai under a protocol approved
by East China Normal University in accordance with Chinese regulations. In a
procedure sanctioned by the Michigan State University IRB, the breast scans and
diagnostic data are being used in the U.S. without patient-identifying informa-
tion. The clinical dataset includes 11 diagnosed cancer patients, with quadrant
specific ground truth from the clinician. Figure 1(right) illustrates the transceiver
antenna used for data collection, which spans 50 mm. An example of the BRA-
TUMASS positioned at the 6 o’clock around the breast boundary is illustrated
in Fig. 1(left). As a patient lies on her back, a clinician uses the transceiver
to collect data from 16 different positions. At each antenna position, a pulsed
microwave signal is sent from the transmitter (A) in the direction of the metal
coin slice. The receiver (B) collects information about the changes in dielectric
properties from the reflections and scattering of the microwave pulses within
the breast, and the clipboard (C) connects (A) and (B). The sent and received
signals are passed through a frequency mixer. The output of the mixer is further
processed to map the changes in frequency to time delay distributions. These
16 processed signals are used as the signal data to reconstruct a 2D image of a
patient’s breast.

Fig. 1. Overview of BRATUMASS antenna setup, where the transmitter (A), and the
receiver (B) are joined together by clipboard (C)

2.3 Haralick Features

Haralick features (HF) have been used to successfully capture textural patterns
in images. HF are statistical computations that describe the overall texture of
an image using measures such as entropy and sum of variance. Each feature uses
information from the gray level co-occurence (GLCO) matrix, which is crucial in
computing HF. In this study, the GLCO matrix characterizes the spatial depen-
dence between two neighboring horizontal pixels. In addition to the traditional
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set of HF, two more features were included, trace median and trace mean, due to
the success of using those features for classification of malignant tumors found
in mammograms [1]. This results in a total of 15 features.

3 Methods

3.1 Image Reconstruction and Feature Computation

The breast images are reconstructed using diffraction tomography [12,13]. Each
data point is represented by a series of intersecting arcs at each antenna posi-
tion. Each reconstructed image is mapped to a 160px by 160px space. Refer to
Fig. 2 for the reconstruction of both breasts referring to patient ID 1, (PID 1).
The box in the upper right area indicates the area where the cancer is present
in PID 1. HF are calculated on non-overlapping subimages of the reconstructed
image. Only those subimages that are not the background or center of the breast
are used in this analysis. The background refers to the subimages that repre-
sent the air around the breast, and the center subimages are those near the
center of the breast that represent the nipple area. Each image is divided into
5px × 5px subimages, over which all 15 features are calculated. The subimage
size was chosen after testing a variety of sizes. It was concluded that a tradeoff
between subimage size and the amount of retained information is inevitable. If
the subimage size is too small, the information in the GLCO will not be retained
because the probability of detecting the desired pattern has been limited. If the
subimage size is too big, the background effects near the breast boundary will
dominate the information in those subimages, even if the tumor is present in
that subimage.

3.2 Class Label Generation

The subimage can belong to one of the three different classes. A comparison
between (Class 1) ‘cancer,’ (Class 2) ‘normal’ and (Class 3) ‘normaln’ subimages
for the sum variance feature is depicted in Fig. 3. It shows the average and
standard error of the sum variance (SV) feature for each possible class, across
all 11 cancer patients. The sum variance feature is computed using

SV =
2Ng∑

i=2

(i +
2Ng∑

i=2

px+y(i) log px+y(i))2px+y(i) (1)

where Ng is the number of distinct gray levels, px+y(i) is
Ng∑
j=2

Ng∑
k=2

p(j, k), and

p(j, k) corresponds to the probability distribution generated by i, the position
entries in the GLCO matrix. In this experiment, the ground truth is quadrant
specific, which means the diagnosed cancer location is localized to a quadrant.
The key is to detect abnormalities between the normal breast and cancerous
breast. Though there are different stages and types of cancer, we are currently
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Fig. 2. Reconstructed breast images for PID 1, with normal breast pictured left and
breast containing cancer pictured right with a rectangular box indicating the quadrant
of the cancer location
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Fig. 3. Mean and standard error of sum variance feature

interested in depicting whether or not there are general differences between
breasts with cancer and breasts without any cancer present. Though each breast
in its entirety can be labeled as containing ‘cancer’ or ‘normal’ subimages in
those defined quadrants are labeled ‘cancer,’ ‘normal’ or ‘normaln’ based on the
additional quadrant information provided by the clinician. Ultrasound was used
to cross check the clinician’s diagnosis. Since the only accessible ground truth
includes a general area of one quadrant location and tumor size, the difficulty
with defining localized ground truth is clearly evident. Creating accurate ground
truth is an active area of research.
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3.3 Performance Measures

We determined which set of HF best discriminates between ‘cancer’, and ‘nor-
maln’ subimages by generating all possible combinations, 215, of features and
selecting that combination for which linear regression resulted in the highest
classification performance. The performance is based on two criteria: (1) mini-
mizing the error rate, and maximizing the posterior probability between classes
and the (2) Matthew Correlation Coefficient (MCC) [14] score, which serves as a
performance measure that normalizes class sizes, and incorporates true positives
(TP), and false positives (FP) into the score. This score takes on values between
−1 and +1, with +1 indicating perfect prediction. Cost were incorporated by
weighting the false positive rate (FPR) by 0.9 and the false negative rate (FNR)
by 0.1. As for the MCC score, for every one true cost incurred the final FP was
increased by the five to represent a heavier weight. Finally, five-fold cross vali-
dation was performed on the two-class dataset, which includes instances of 200
‘cancer’ subimages, and 748 ‘normaln’ subimages. The best set of features that
yielded the highest classification performance by means of classifier performance
and MCC score was tracked and recorded.

4 Results

Two examples are provided of the current images used in the HF analysis are
shown in Fig. 2. Notice that the distribution of arcs is different between the two
breasts within the same patient. In the cancerous breast, there is less unifor-
mity and more scattering than in the normal breast. The lighter pixels indicate
stronger changes in dielectric constant. Both the normal and cancer breast con-
tain lighter pixels; however, in the cancerous breast, there is a concentration of
lighter pixels surrounded by darker pixels, which is different from other quadrants
within the breast. HF are strongly dependent on the images used, which means
any slight change in the image reconstruction process can drastically effect the
HF numerical measurements, which means extreme care has to be taken with
the images selected for analysis. The best feature set can be represented using
0’s for exclusion and 1’s for inclusion of that feature in the set, which resulted
in 010001111111111. This means that four of the features, ‘energy,’ ‘correlation,’
‘sum of variances’ and ‘inverse difference moment’ were not used in the feature
set. The features included were ‘contrast,’‘sum average,’‘sum variance,’ ‘sum
entropy,’ ‘entropy,’ ‘difference variance,’ ‘difference entropy,’ ‘information mea-
sures of correlation I,’ ‘information measures of correlation II,’ ‘trace mean’ and
‘trace median.’ The inclusion of these features strongly influence the performance
measures. The performance measures for the best linear combination of features
can be found in Table 1. The accuracy is lower than desired because of the low
resolution of ground truth labeling in the subimage domain and the imbalance
in class sizes. The more specific and accurate the ground truth, the better the
classification that would result. In order to address the issues with class imbal-
ance, the MCC score was used which illustrated more favorable results because
of the normalizing capability built inherently in the MCC Score computation.
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Table 1. Performance measures of best feature set

Averaged test performance measures

Classification Accuracy % 71.7

MCC Score .889

Upon further investigation of features for all 11 patients, it can be seen that
for certain patients there are significant differences between classes, as depicted
in Fig. 3. For example, for PIDs 1, 2, 6, 8, and 10, the (Class 2) case is significantly
different from (Class 1) and (Class 2). This suggests the importance of patient-
specific techniques.

5 Conclusions

In this paper, a procedure for selecting discriminating features within clinical
data using a HF detection algorithm was developed. The feasibility of using HF
to make distinctions between ‘cancer’, and ‘normaln’ subimages within a patient
was investigated. Due to the differences among patients, it is more beneficial to
focus on patient-specific techniques versus across all patient techniques. That is,
comparing the two breasts of a given patient to detect possibly cancer-indicating
differences may show more promise than comparing each breast singularly with
a broad reverence standard. Moving toward a more patient-specific approach is
the next area of pursuit.

For future work, extensive studies will be conducted to finalize the most
accurate and informative reconstructed images. Most clinicians would doubtless
rather have images that clearly indicate the presence of cancer than having
to analyze nonintuitive feature representation, so effective image reconstruction
is crucial in making procedures straightforward for clinicians. Experimenting
with other feature sets and feature extraction techniques, as well as increasing
the number and variety of features is another future endeavor. Research is also
being done in the signal domain, where classification and detection can be made
prior to image reconstruction. Performing detection in the signal domain can
inherently reduce the noise introduced in transition from the signal domain to
the image domain. Image reconstruction is still needed to serve as a visual aid
for clinicians who would rather see an image than a set of microwave signals.
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