
Chapter 2
Basic Counting

2.1 The Multiplication Principle

Suppose that we are ordering dinner at a small restaurant. We must first order our
drink, the choices being Soda, Tea, Water, Coffee, and Wine (respectively S, T, W,
C, and I). Then, we order our appetizer, either Soup or Salad (respectively O and
A). Next we order our entree from Beef, Chicken, Fish, and Vegetarian. Finally, we
order dessert from Pie, Cake, and Ice Cream.

When ordering dinner, we can think of each choice as a separate independent
event. In other words, our choice of an appetizer does not limit our choice of an
entree. In reality, we may prefer certain choices of drink and appetizer with our
choice of entree. However, we do not limit ourselves to these considerations for this
example. So, our possibilities for drink and appetizer are:
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Note that regardless of our choice of drink, we still have two choices for an
appetizer. Hence, we have 5(2) = 10 choices for drink and appetizer. For each of
these ten choices, we then have four possibilities for our entree (Beef, Chicken, Fish,
and Vegetarian). This gives us a total of 5(2)(4) = 40 possibilities. Finally, for each
of these 40 possibilities, we have three possibilities for dessert (Pie, Cake, and Ice
Cream). Thus we have a total of 5(2)(4)(3) = 120 possibilities for dinner at this
restaurant. The Multiplication Principle is a generalization of the above example.

Theorem 2.1.1 (The Multiplication Principle) Suppose that there are n sets denoted
A1,...,An. If elements can be selected from each set independently, then the number
of ways to select one element from each set is given by |A1| · · · |An|.
Proof Note that this problem is equivalent to selecting an element from the set
A1 × · · · × An. The cardinality of this set is |A1| · · · |An| by Proposition 1.3.10. �
Example 2.1.2 Suppose that we wish to go shopping. There are shopping districts
in the north, east, west, and south side of town. We can take a car, bus, or train to any
one of these destinations. Further, we may choose to take a scenic or a direct route.
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While in the shopping district, we may shop for any one of clothing, groceries, or
movies. While we are out, we may either go to the park, a restaurant, or neither. How
many different shopping trips are possible?

Solution Let A1 be the set of directions we can travel (N, E, W, S). Let A2 denote
the set of transportation options (car, bus, or train). We let A3 be the set {Scenic,
Direct}. A4 will denote the shopping options (clothes, groceries, or movies). Finally,
A5 will be the set of “side trips” (park, restaurant, or no side trip). Thus the number
of different shopping trips is given by |A1||A2||A3||A4||A5| = 4(3)(2)(3)(3) = 216
by the Multiplication Principle. �

Suppose that we want to make a string of n colored beads. Each bead may be one of
m colors and we have unlimited beads of each color. As usual, we want to determine
the number of visually distinct strings. Usually, we would only be interested in
visually distinct strings, in other words, those that cannot be obtained from another
by flipping the string. So, if we are using the colors 1, 2, and 3, then 1223 and
3221 would be considered the same string. However, this is a more difficult problem
and will wait until Chap. 8. For now, we will consider reflections to be different. In
this case, we can think of the string as an n-tuple where the entries come from the
set [m].

Example 2.1.3 How many ways are there to make an n-tuple from the elements of
[m] in such a way that no two adjacent elements of the n-tuple are the same?

Solution There are m choices for the first element of the n-tuple. The ith element
of the n-tuple (i = 2, ..., n) can be anything other than what was used for (i − 1)th
element. Thus the number of acceptable strings is

m

n∏
i=2

(m − 1) = m(m − 1)n−1. �

You may notice that the particular sets change for each of the choices in Example
2.1.3. For instance, suppose that m = 3 and we select 1 for the first entry in the n-
tuple. Our set of options for the second entry is {2, 3}. However, if we select 2 as the
first entry, then our set of options for the second entry is {1, 3}. While these sets are
different, the cardinality of each set is the same. For this reason, the Multiplication
Principle still applies. Further note that in Example 2.1.3, exponentiation appears as
part of our solution. This is also the case in the following corollary.

Corollary 2.1.4 Suppose that we have k distinguishable trophies to distribute to
n people (who are by definition distinguishable). Each person may receive more
than one trophy and some people may not receive a trophy. The number of ways to
distribute the trophies is given by nk .

Proof Let Ai be the set of ways to distribute the ith trophy. Since there are n people,
it follows that |Ai | = n for all i. Since there are k trophies, there are nk ways to
distribute them by the Multiplication Principle. �

Recall that in algebra 00 is undefined. Similarly, the limit form 00 is considered
an indeterminant form in calculus. However, in this book we will always assume
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that 00 = 1. By Corollary 2.1.4, there are 00 = 1 ways to distribute 0 trophies to 0
people, the way in which no one gets anything.

The case of 00 is a special case of an empty product. In an empty product, no terms
are being multiplied. Because an empty product should not change the value of a
product, algebraically an empty product should equal one. Analogously, an empty
sum should be zero.

Corollary 2.1.4 is often referred to as sampling with replacement. Consider the
problem of selecting 5 cards from a standard poker deck of 52 cards. Each time a
card is selected, it is placed back into the deck. Thus there are 525 possible ways
to sample five cards from the deck with replacement, if the order of the cards is
important.

Example 2.1.5 The Henry Classification System for fingerprints classifies the print
for each of the ten digits. The possible classifications are plain arch, tented arch,
radial loop, ulnar loop, plain whorl, accidental whorl, double loop whorl, peacock’s
eye whorl, composite whorl, and central packet whorl. How many possible finger
print patterns are possible? Based on this, should we believe that no two people have
the same fingerprints?

Solution There are ten classifications for each of the ten fingers. Hence there are
1010 possible patterns by Corollary 2.1.4. This means that there are 10 billion pos-
sible patterns under this classification system. As this exceeds the almost 7 billion
people currently alive, it is plausible to assume that no two individuals have the same
pattern. �

A necessary condition for a challenging or stimulating game is that there is a
large number of different games. If there is a relatively small number of possible
games, then eventually the player has seen every possibility. For this reason, Tic-tac-
toe (or Naughts and crosses) which has only 26830 possible different games (up to
symmetries on the board) has little appeal except to school children. We will consider
chess. While an exact computation of the number of games of chess is untractable,
we will be satisfied by an approximation. Our approximation will be based on the
estimates used by Shannon [38] and improved upon by Allis [2].

Example 2.1.6 Suppose that on average there are 80 moves made in chess (in other
words, both players make 40 moves). For each player’s first move, there are 20
possibilities (namely, each of the eight pawns can move either one or two spaces and
each of the two knights can jump to the left or the right). For the remaining moves,
each player has an average of 35 choices available at each move. Approximate the
number of possible games of chess.

Solution Each player has 20 moves on their first turn. Thus there are 202 = 400
possibilities for the first two moves. Assuming 35 moves for each of the 78 remaining
moves, there are 3578 possibilities for the remaining turns by Corollary 2.1.4. Thus,
there are 400 ∗ 3578 possible games of chess by the Multiplication Principle. �

Note that 400∗3578 is approximately 10123. For dedicated chess players, this may
be very comforting. If only one in 1023 games is a “good game,” then there are over
10100 “good games” of chess. Therefore, it is very likely that many “good games” of
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chess are yet to be played. To put this number in perspective, there are only 5 × 1020

possible games of checkers and less than 1081 atoms in the universe.
When using the Multiplication Principle, it is important to consider any restrictions

on our choices.

Example 2.1.7 At a particular company, any valid password consists of six lower-
case letters. Further, any valid password must end in a vowel (in other words, ‘a,’
‘e,’ ‘i,’ ‘o,’ or ‘u’) and cannot contain the same letter twice. Find the number of valid
passwords.

Solution As a first attempt at a solution, we might try to put the letters in order from
left to right. It is easy to see we have 26 possibilities for the first letter, 25 for the
second (anything but the first letter used), and so on. However, placing the last letter
is more difficult, as we do not know how many vowels have been used.

To find a solution, we begin with the most restrictive selection we have to make.
Namely, we begin by selecting the last letter. There are five ways of doing this. There
are then 25 ways to select the first letter (anything but the letter used in the last slot).
Similarly, there are 24 ways to select the second letter, 23 ways to select the third, 22
ways for the forth letter, and 21 ways for the fifth letter. Hence the number of valid
passwords is given by 5(25)(24)(23)(22)(21) = 31878000. �

Example 2.1.8 Areas must contain a large number of valid telephone numbers in
order to accommodate their customer base. Further, it is common to restrict which
telephone numbers are assigned to customers. How many seven-digit telephone
numbers:

(i) Are there?
(ii) Do not start with 0 (such a number would dial the operator)?

(iii) Do not contain 911 (such a number would immediately dial emergency
services)?

(iv) Do not contain 911 nor do they start with 0?

Solution

(i) Note that there are 10 possible digits that can be used. Hence there 107 possible
telephone numbers by Corollary 2.1.4.

(ii) First find how many telephone numbers start with 0. There are six remaining
numbers, so there are 106 possibilities. Thus there are 107 − 106 telephone
numbers that do not start with 0 by the Subtraction Principle.
Alternatively, there are nine choices for the first digit, namely anything but
zero. There are then 106 choices for the remaining digits. Hence, there are
9 ∗ 106 = 9000000 telephone numbers that do not start with zero.

(iii) If a number contains 911, then there are 104 choices for the remaining digits.
There are five ways to place the sequence 911 within the number, so 5 ∗ 104

telephone numbers contain 911. Thus by the Subtraction Principle there are
107 − 5 ∗ 104 = 9950000 acceptable numbers.

(iv) We must find the numbers that start with 0 and contain 911. If a number contains
both, then there are 103 choices for the remaining digits. There are four choices
as to where to place the 911. Hence there are 4 ∗ 103 numbers that start with
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0 and contain 911. By the Principle of Inclusion and Exclusion, the numbers
of ways that a telephone number can start with 0 and contain 911 is given by
106 + 5 ∗ 104 − 4 ∗ 103. Hence by the Subtraction Principle, the number of
telephone numbers that do not start with 0 nor contain 911 is given by:

107 − (106 + 5 ∗ 104 − 4 ∗ 103) = 107 − 106 − 5 ∗ 104 + 4 ∗ 103 = 8954000.

�

A different kind of restriction is one that considers certain configurations to be
identical. For example, suppose that we want to label the faces of a six -sided die
with distinct elements of [6]. Since a die will be rolled around on a surface, we will
consider two labelings to be identical if one can be obtained from another by rotating
or rolling the die.

Example 2.1.9 Find the number of distinguishable ways to label a six-sided die
with the elements of [6].

Solution Label the top face with 1. This breaks one of the symmetries on the faces
of the cube. The remaining faces are labeled as follows:

(i) Choose one of the remaining numbers to place on the bottom face. There are 5
possibilities.

(ii) Place one of the remaining numbers on the front face. This breaks the final
symmetry.

(iii) Label the right face. There are 3 possibilities.
(iv) Label the back face. There are 2 possibilities.
(v) The final number is the forced on the left face.

Thus by the Multiplication Principle, there are 5 ∗ 3 ∗ 2 = 30 possibilities.

Proposition 2.1.10 The cardinality of the power set of A is 2|A|.

Proof For each element x of A, x must be included in a subset or excluded from the
subset. Thus there are two choices for each element of A. Since there are |A| such
elements, there are 2|A| subsets of A by the Multiplication Principle. �
Example 2.1.11 A particular deli offers sandwiches with a choice of 5 meats, 3
cheeses, 12 vegetables, and 4 condiments. A sandwich may consist of any combi-
nation of these “toppings.” How many possible different sandwiches does the deli
offer?

Solution Let A be the set of sandwich toppings. We note that |A| = 24. The contents
of the sandwich can be thought of as a subset of the available toppings (the empty
set can be thought of a sandwich consisting of only bread). The number of subsets
of A is 224 = 16777216. Hence, there are 1677216 distinct sandwiches. �

An effective tool in examining problems involving the Multiplication Principle
is the tree diagram. In a tree diagram, each “branch” of the “tree” corresponds to a
choice or event taking place. For example, consider flipping a coin (either heads or
tails), drawing a suit from a deck of cards (either spades, hearts, clubs, or diamonds),
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and rolling a six-sided die. The tree diagram corresponding to this chain of events is
given in Fig. 2.1. At the first branch, the coin lands either heads or tails. For each of
these outcomes, the diagram branches further. In particular, for each outcome of the
coin, either a heart, spade, club, or diamond is drawn from the deck. Each of these
branches into six possible leaves, one for each of the possible roll of the die.

We can also use these principles to prove other, more surprising results.

Theorem 2.1.12 If F0 = 1, F1 = 2, and Fn = Fn−1 + Fn−2, then

Fm+n+1 = FmFn + Fm−1Fn−1.

Proof Note that under this indexing, Fm+n+1 counts the number of words of length
m+n+1 from the alphabet {a,b} that have no adjacent a’s (see Theorem 1.6.1). The
right side also counts this by counting two disjoint, exhaustive sets:

(i) The set of words in which the (m+ 1)st letter is ‘b.’ The first m letters comprise
a word of length m from the alphabet {a,b} in which there are no adjacent a’s.
There are Fm such words. Similarly, the remaining n letters comprise a word of
length n from the alphabet {a,b} with no adjacent a’s. There are Fn such words.
Thus by the Multiplication Principle, there are FmFn words in the first set.

(ii) The set of words in which the (m + 1)st letter is ‘a.’ Note that the mth letter
and the (m + 2)nd letter must both be ‘b.’ The first m − 1 letters comprise a
word of length m− 1 from the alphabet {a,b} in which there are no adjacent a’s.
There are Fm−1 such words. Similarly, the remaining n letters comprise a word
of length n − 1 from the alphabet {a,b}. There are Fn−1 such words. Thus by
the Multiplication Principle there are Fm−1Fn−1 words in the second set.

The result then follows by the Addition Principle. �
The above theorem gives an efficient method for computing large Fibonacci num-

bers. This method is actually more efficient than using the closed form discussed in
the previous chapter.

Recall that in linear algebra, an n × n matrix is invertible if and only if

(i) No row is composed entirely of zeros and
(ii) The rows are linearly independent. In other words, if r1,...,rn are the rows of

this matrix and a1r1 + · · · + anrn = 0, then a1 = · · · = an = 0 [5].

Example 2.1.13 Find the number of invertible n × n matrices in which the entries
are from the field of order q.

Solution Note that if the entries are from the field of order q, then there are qn

possible rows by the Multiplication Principle. However, one of these rows is the zero
row, hence there are qn − 1 choices for the first row.

Further note that there are q rows that are linearly dependent on this one. Hence
there are qn − q choices for the second row.

In general, if we determined the first k rows, any linearly dependent (k + 1)st row
will be of the form:

rk+1 = a1r1 + · · · + akrk ,
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Fig. 2.1 A tree diagram
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where the ai are elements of the field of order q. Since there are q choices for each
ai , there are qk rows that are linearly dependent on r1,..., rk . So there are qn − qk

choices for the (k + 1)st row.
Thus, the number of invertible n × n matrices from the field of order q is given

by:

(qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1). �

Exercise 2.1.14 The city council contains 8 clergy, 4 scientists, 5 lawyers, 3 doctors,
and 10 lay persons. How many possible five person committees are there if the
committee must contain one person from each group and no one is in two groups?

Exercise 2.1.15 A particular pizza parlor advertises that they have over a million
possible pizza combinations. How many different toppings must they offer if their
advertisement is true?

Exercise 2.1.16 Show that the number of bit strings of length n is 2n.

Exercise 2.1.17 The snake cube puzzle consists of 17 joints, each of which can take
four positions. How many configurations are possible?

Exercise 2.1.18 Suppose that we assume that the game of Go has an average of 150
moves. Further suppose that at each move, the player has an average of 250 choices
per move. Approximately how many games of Go are there?

Exercise 2.1.19 A palindrome is a word that is spelled the same forward and back-
wards (for example, “civic” or “radar”). Find the number of n letter words that are
not palindromes. Hint: Consider two cases, one where n is odd and the second when
n is even.

Exercise 2.1.20 In a particular state, the standard license plates for personal
vehicles consists of three numbers followed by three letters.

(i) How many possible license plates are there?
(ii) In this state, no license plate may begin with 9 as these plates are to be reserved

for emergency vehicles. How many plates do not start with 9?
(iii) Many people complain that certain plates contain offensive words. To minimize

this, the state is considering discontinuing plates that have a vowel (in other
words, ‘a,’ ‘e,’ ‘i,’ ‘o,’ and ‘u’) as the second letter. How many plates do not have
a vowel as the second letter?

(iv) How many plates do not start with 9 nor have a vowel as the second letter?

Exercise 2.1.21 In a particular state, the standard license plates for personal vehi-
cles consists of three numbers followed by three letters. Specialty plates consists of
two letters followed by four numbers. How many specialty plates are possible? How
many license plates are possible?

Exercise 2.1.22 At a particular company, any valid password starts with six lower
case letters followed by two digits.
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(i) How many valid passwords are there?
(ii) How many valid passwords do not start with a?

(iii) How many valid passwords do not end with 88?
(iv) How many valid passwords do not start with a nor end with 88?

Exercise 2.1.23 A five digit number cannot start with zero.

(i) Find the number of five digit numbers.
(ii) Find the number of five digit numbers in which no digit appears twice.

(iii) Find the number of five digit odd numbers in which no digit appears twice.
(iv) Find the number of five digit even numbers in which no digit appears twice.

Exercise 2.1.24 Let F0 = 1, F1 = 1, and Fn = Fn−1 + Fn−2. Show that Fm+n =
FmFn + Fm−1Fn−1. Hint: See Exercise 1.6.5, Exercise 1.6.6, and Theorem 2.1.12.

2.2 The Addition Principle

We have already looked at two rules dealing with the cardinality of the union of
two sets. In particular, Proposition 1.3.6 states that if A and B are disjoint sets, then
|A ∪ B| = |A| + |B|. As a generalization of this, Theorem 1.3.8 states that if A

and B are any sets then |A ∪ B| = |A| + |B| − |A ∩ B|. In this section, we expand
Proposition 1.3.6 to an arbitrary number of sets. We will not generalize Theorem 1.3.8
until Chap. 7.

Throughout the remainder of this book, we will use the notation

∪n
i=1Ai = A1 ∪ · · · ∪ An

to denote the union of the sets A1, ..., An.

Theorem 2.2.1 (The Generalized Addition Principle) If A1, ..., An are mutually
disjoint sets, then:

| ∪n
i=1 Ai | =

n∑
i=1

|Ai |.

Proof We proceed by induction on n. If n = 1, then the claim is obvious. Assume
that for some n, the mutually disjoint sets A1,...,An satisfy:

| ∪n
i=1 Ai | =

n∑
i=1

|Ai |.

Let A1,...,An, and An+1 be mutually disjoint sets. Thus, ∪n
i=1Ai and An+1 are disjoint

sets. Hence, by Proposition 1.3.6, we have that

| ∪n+1
i=1 Ai | = | ∪n

i=1 Ai | + |An+1|.
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Applying the inductive hypothesis yields

| ∪n+1
i=1 Ai | = | ∪n

i=1 Ai | + |An+1|

=
n∑

i=1

|Ai | + |An+1| =
n+1∑
i=1

|Ai |.

Alternatively, if x ∈ Ai , then x /∈ Aj for j �= i. Therefore, x is counted once by
| ∪n

i=1 Ai | and once by
∑n

i=1 |Ai |. Similarly, if x /∈ Ai for all i, then x is counted
zero times by both sides of the equation. �

Theorem 2.2.1 can be summarized as follows: Suppose that there are n events.
The ith event can occur in ai ways. If no two events can occur simultaneously (in
other words, they are disjoint), then there are ai + · · · + an ways that exactly one of
the events can occur.

Example 2.2.2 Suppose that you can go to one of five small restaurants for dinner.
No two restaurants offer the same menu items. The first restaurant offers 8 menu
items, the second restaurant offers 6 items, the third restaurant offers 11 items, the
fourth restaurant offers 4 items, and the final restaurant offers 20 items. How many
meals are possible?

Solution Let Ai be the set of all menu choices in the ith restaurant. Since no two
restaurants offer the same menu items, these sets are disjoint. So by the Addition
Principle, we have

|A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5| = |A1| + |A2| + |A3| + |A4| + |A5|
= 8 + 6 + 11 + 4 + 20 = 49. �

Example 2.2.3 Find the number of non-negative integer solutions to x + y ≤ 6.

Solution Let Ai denote the set of non-negative integer solutions to x+y = i, where
i = 0, 1, ..., 6. Note that the Ai are disjoint sets. So we have:

A0 = {(0, 0)}.
A1 = {(1, 0), (0, 1)},

A2 = {(2, 0), (1, 1), (0, 2)},
A3 = {(3, 0), (2, 1), (1, 2), (0, 3)},

A4 = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)},
A5 = {(5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5)},

A6 = {(6, 0), (5, 1), (4, 2), (3, 3), (2, 4), (1, 5), (0, 6)}.
Thus by the Addition Principle, we have:

|A0 ∪ A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6|
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