
Automatic Identification and Localisation
of Potential Malignancies in Contrast-Enhanced
Ultrasound Liver Scans Using Spatio-Temporal

Features

Spyridon Bakas1(B), Dimitrios Makris1(B), Paul S. Sidhu2,
and Katerina Chatzimichail3

1 Digital Imaging Research Centre, Faculty of Science, Engineering and Computing,
Kingston University, London, UK

{S.Bakas,D.Makris}@kingston.ac.uk
2 Department of Radiology, King’s College Hospital, Denmark Hill, London, UK

PaulSidhu@nhs.net
3 Evgenidion Hospital, National and Kapodistrian University, Athens, Greece

Katerina@hcsl.com

Abstract. The identification and localisation of a focal liver lesion (FLL)
in Contrast-Enhanced Ultrasound (CEUS) video sequences is crucial for
liver cancer diagnosis, treatment planning and follow-up management.
Currently, localisation and classification of FLLs between benign and
malignant cases in CEUS are routinely performed manually by radiol-
ogists, in order to proceed with making a diagnosis, leading to subjec-
tive results, prone to misinterpretation and human error. This paper
describes a methodology to assist clinicians who regularly perform these
tasks, by discharging benign FLL cases and localise potential malignan-
cies in a fully automatic manner by exploiting the perfusion dynam-
ics of a CEUS video. The proposed framework uses local variations of
intensity to distinguish between hyper- and hypo-enhancing regions and
then analyse their spatial configuration to identify potentially malignant
cases. Automatic localisation of the potential malignancy on the image
plane is then addressed by clustering, using Expectation-Maximisation
for Gaussian Mixture Models. A novel feature that combines description
of local dynamic behaviour with spatial proximity is used in this process.
Quantitative evaluation, on real clinical data from a retrospective multi-
centre study, demonstrates the value of the proposed method.

Keywords: Localisation · Malignancy identification · Contrast-enhanced
ultrasound · Focal liver lesion · Liver · Perfusion · Clustering

1 Introduction

Contrast-Enhanced Ultrasound (CEUS) is a modality widely accepted for the
detection and characterisation of focal liver lesions (FLLs) [1]. In comparison with
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conventional B-mode ultrasound (US), CEUS enhances the contrast between the
liver and the FLL through the use of intravenously injected contrast agents [2].
CEUS has diagnostic accuracy higher than 95 % for the evaluation of malignant
FLLs [3] and its sensitivity and specificity exceeds that of other modalities, such as
contrast-enhanced computed tomography (CE-CT) and contrast-enhanced mag-
netic resonance imaging (CE-MRI) [4]. It is recognised as the most cost-efficient
imaging solution for distinguishing between benign and malignant FLLs [1], after
an inconclusive US scan. Also it is in the forefront of CEUS scope to help in reduc-
ing the radiation burden to population.

A CEUS liver scan is divided into three different phases over time, namely
arterial, portal venous and late phase. These allow the observation of the flow of
the intravenously injected contrast agent, by intensity changes in the captured
plane. Recording these intensity changes for different tissues during a CEUS
sequence leads to time-intensity curves (TICs). These curves describe the per-
fusion dynamics for different regions and lead to parameters, that allow for
the differentiation of the nature of tissues [1]. Specifically, a tissue that shows
increased perfusion (hyper-enhancing) in comparison with the rest healthy tis-
sue (parenchyma), during the arterial phase, reveals the typical behaviour of a
potentially malignant FLL. This FLL can only be confirmed as a malignancy if
during the late phase its region is darker than the parenchyma [5].

Currently, radiologists routinely detect, localise and classify FLLs in CEUS
data manually, through a time-consuming series of tasks, namely (i) identifica-
tion of a reference frame for (ii) localising a region of interest (ROI), e.g. FLL,
(iii) monitoring of the dynamic behaviour (i.e. brightness intensity changes) of
different ROIs over time, and eventually classifying an FLL as benign or malig-
nant. Each of these tasks requires a high-level of expertise, provides subjec-
tive results and is prone to misinterpretation and human error [1]. Processing of
CEUS data poses a very challenging task due to intensity changes, acoustic shad-
ows, low signal-to-noise ratio, the transducer movement, as well as the patient’s
irregular breathing patterns and the motion of the inner human organs that
affect the ROIs’ apparent 2D size and shapes.

While computer-aided solutions have been suggested for the aforementioned
tasks of (i) [6] and (iii) [7–11] in CEUS data, no solution has ever been pro-
posed for the automated localisation of the position and shape of an FLL in
a CEUS recording (task (ii)). Considering the continuously increasing number
of CEUS scans, automation of the localisation procedure is of much interest as
it will assist the diagnostic procedure and the assessment of the repeatability
and reproducibility of the examination on different patients or between different
clinical centres, as it is expected to provide objective results.

Methods suggested thus far for the task of monitoring FLLs in CEUS (task iii)
require the existence of prior manually initialised ROIs (e.g. FLL). A method is
described in [10], which first compensates for rigid motion in CEUS video record-
ings and then displays TICs to assist radiologists to classify an FLL. Motion com-
pensation is based on iterative maximisation of mutual information [12], which is
dependent on an intensity constancy constraint. Another method described in [7],
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creates a non-rigid motion model by combining histogram information from a ROI
with the detection of SIFT keypoints [13]. It then suggests an FLL classification
decision based on obtained TICs. Both methods require the manual delineation
of the ROI and the part of the image that needs re-alignment (e.g. the conical
area of the ultrasonographic image, also named US mask) on a manually identi-
fied frame. Then another method, suggested in [8], proposes an affine transforma-
tion motion model, based entirely on SIFT keypoints [13], to monitor and classify
an FLL based on its TIC. In addition, [8] introduces an automatic delimitation of
the US mask based on an intensity change detection. A pixelwise analysis within
a manually initialised FLL is performed in [11]. Specifically, after compensating
for rigid motion similar to [10], micro-vasculature differences between benign and
malignant FLLs are compared and the FLLs’ spatial heterogeneity is quantified.

Furthermore, segmentation methods for the localisation of lesions have been
applied in CT [14] and MRI [15,16] data. Specifically, these methods require some
manually annotated areas in one slice by an operator, and then they either
encode the pairwise similarity of intensity information between different pixels,
or model the intensity relationship of each pixel to a set of global intensity clus-
ters, across the 3rd dimension of the data (i.e. different depth slice). Even though
the 3rd dimension in volumetric CT and MRI data can be considered relative to
the temporal dimension of CEUS data, in CT and MRI the same tissues are rep-
resented with consistent brightness intensity across the 3rd dimension, making
the localisation task much easier, especially if prior knowledge is included.

The aim of the present study is firstly to identify and categorise hyper- and
hypo-enhancing FLLs in the first phase of a CEUS examination, and then to
localise regions of potential malignancy within the liver region in CEUS video
sequences, in a fully automatic manner and without considering any prior knowl-
edge. This can be ultimately used as an objective initialisation of segmentation
methods, as well as to attract the attention of radiologists in the suggested ROIs
within the US mask that they might have missed.

2 Method

Specifically, this paper considers the problem of identifying and localising a
potential malignancy by clustering together regions with the same dynamic
behaviour (TIC) within the US mask, in a similar manner to the process per-
formed conceptually by radiologists. After compensating for the motion included
within the sequence of a patient’s scan, the US mask is divided into smaller
regions and their local TICs are obtained. Subsequently, dimensionality reduc-
tion is applied on the TICs for each individual patient, and the principal axes
describing more than 90 % of the total variance are used in combination with
location information to form the feature vector for each region. A framework
based on the optimisation technique of Expectation-Maximisation (EM) with a
set of Gaussian Mixture Models (GMM) is then used to segment the US mask
into meaningful ROIs based on these feature vectors, and therefore localise the
hyper-enhancing regions, i.e. potential malignancies. Figure 1 summarises the
whole pipeline of the proposed method.
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Fig. 1. Visual summary of the proposed method.

Initially, the US mask is automatically segmented on each patient’s case by
considering an intensity change detection, as described in [8], in order to remove
all the irrelevant information - notably textual data provided for the CEUS
operator. This US mask is then applied to every frame of the sequence, select-
ing only the relevant information, whilst removing the aforementioned artefacts.
Then the optimal reference frame at time t0 is automatically identified, as pro-
posed in [6]. According to radiologists, this frame is expected to be the one with
the maximum contrast between FLL and parenchyma.

Any present motion between the liver and the US transducer affects nega-
tively the processing outcome and therefore the frames of each sequence need
to be spatially realigned to compensate for any in-plane movements. Assuming
there is only motion within –instead of across– the plane, and a simple trans-
lation is sufficient to describe the level of relative motion between the liver and
the US transducer, the point-based registration technique of Compact And Real-
time Descriptors (CARD) keypoints [17] is employed to automatically estimate
the motion between all the frames and realign them according to the reference
frame. This is done by first registering keypoints every two successive frames
of the acquired sequence and then matching correspondent keypoints by using
the Nearest Neighbour Distance Ratio in the descriptor space. The translation
between every pair of successive frames is then estimated as the average displace-
ment of the matched correspondences between them. The motion compensated
video data can then be processed as a 3D volume, where the 3rd dimension
depicts information from the temporal domain.

2.1 Local Time-Intensity Curves

Obtaining information from the brightness intensity of a single pixel (fine-grained
resolution) is considered susceptible to speckle noise (i.e. very sensitive to “out-
liers” – excessively bright and dark pixels). Therefore, the spatial averaging
through more coarse-grained resolutions was considered essential, by subdivid-
ing the US mask into B non-overlapping local neighbourhoods (“patches”) of
n × n pixels and avoid such an effect, where n is small compared with the over-
all size of the image. The pixel brightness intensity values are then averaged over
each of these patches.
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p̄b(t) =
1
n2

n2∑

ib=1

pib(t). (1)

where pib(t) is the intensity of the ith pixel within the bth block at time t.
The changes of the average brightness intensities of each patch (p̄b) over

time (i.e. its dynamic behaviour) can lead to information similar to that used by
radiologists. Such information are encompassed in the TICs of the local patches,
by estimating the p̄b for each frame in the sequence.

TICb = [p̄b(1), p̄b(2), . . . , p̄b(T )] . (2)

where T refers to the number of frames of the CEUS video sequence.

2.2 Early Exclusion of Hypo-enhancement

A foreground mask is produced including only patches where potential malig-
nancies may exist. Specifically, a patch is included in the mask if it is enhancing
more than a certain proportion (ψ) of the maximum intensity value of the whole
3D volume. In addition, a morphological opening is used as noise removal, to
exclude any patches that are not connected with any other neighbouring patches,
or even if connected, the area that they cover is smaller than the size (φ) of the
structuring element used for the morphological opening.

The resulting foreground mask for a hyper-enhancing case is expected to be
solid, as the FLL would have enriched as much as the parenchyma until the
end of the arterial phase. On the other hand, for a hypo-enhancing case, this
mask is expected to have a ‘hole’ either in the middle or at the side of the
mask, depending on where the FLL is located in relation to the parenchyma.
This property is exploited to automatically discharge hypo-enhancing cases by
separating them from hyper-enhancing cases after applying a specified threshold
on the overlap metric of the Jaccard index between the foreground mask and its
convex hull.

2.3 Feature Extraction and Clustering

Information of the dynamic behaviour of the foreground patches is essential to
be considered in the clustering of the data. However, because T is large (see
Sect. 3.1), the data included in each TIC is represented as a high-dimensional
vector. Thus, principal component analysis (PCA) by eigenvalue decomposition
is employed to reduce the dimensionality of the data and the computational
complexity, as well as to create more meaningful feature vectors. The number
of dimensions (d) is chosen such that the variance in the data accounted for by
these d dimensions (vd), exceeds a specified proportion, typically 90%, of the
total variance vT (vd > 0.9 · vT , for 1 ≤ d ≤ T ). The coordinates of the centre
of each patch (xcb , ycb) are also included in each feature vector along with the
PCA dimensions of the local TIC, such that each feature vector may represent
both the spatial proximity and the dynamic behaviour of the local patch.
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The optimisation technique of Expectation-Maximisation (EM) is used with a
set of Gaussian Mixture Models (GMM) to perform the clustering of the feature
vectors. This is done in an attempt to cluster together patches with similar
dynamic behaviour. To find the optimal number of clusters for each case, an
overestimated initial number of clusters is used to initialise a Bayesian Classifier
with the functionality of a GMM Probability Distribution Function, based on
the Figueiredo-Jain algorithm [18].

2.4 Region Selection

Radiologists extract various parameters from a TIC to describe different aspects
of a ROI’s perfusion and determine its functional features [1]. However, most of
these parameters require a continuous sequence throughout the three phases
of the exam. Due to the provided data comprising only a short sequence of
the exam, including at most a small part of the portal venous phase, the only
parameters possible to extract are: the peak intensity (PI), the time to reach
the PI (TPI) and the regional blood flow (RBF), which is the area under the
TIC from time zero until TPI. RBF is considered as the most useful parameter
for the scope of this work as it implicitly includes information about the PI, the
TPI and the slope of the TIC.

Sorting the identified clusters in descending order of their RBF is expected
to reveal first the cluster with the most hyper-enhancing behaviour. In case of
an actual hyper-enhancing FLL this cluster can provide sufficient information
for the location, size, shape and nature of the FLL, whilst if it is an actual
hypo-enhancing case, then the proposed method is expected to identify regions
of the parenchyma that have a hyper-enhancing behaviour in relation to the rest
of the image, if not a second FLL. For example, in Fig. 2, cluster depicted by
(a) shows the largest RBF, which is typical of a malignant FLL. Furthermore,
as the chosen cluster might include some irrelevant pixels (i.e. artefacts) on
the image plane (Fig. 2), a proportion of the cluster’s pixel population is used

Fig. 2. Clusters obtained from a clinical case, during arterial phase, sorted in descend-
ing order of their regional blood flow. The first row depicts the clusters visualised in the
image space and the second row depicts the corresponding TICs, where the vertical and
horizontal axes denote brightness intensity and time, respectively. Each of the curves
depicts a different patch and the dark dotted curve in the middle of each of the 8 graphs
is the average/centroid for each cluster.
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(e.g. the 1st quartile) to automatically provide the location of the potential
malignancy on the image plane. This location can ultimately be used as an
initialisation seed-point to an existing segmentation method.

3 Experiments and Results

3.1 Materials

The proposed method is evaluated through being applied to real clinical data of
63 case studies, of patients in different physical condition. These cases comprise
34 hyper- and 29 hypo-enhancing FLLs during the arterial phase of a CEUS scan
and in most cases information from the portal venous phase was also included.
Each case includes one sequence of duration between 3 and 82 s. The imaging
plane was chosen such that most of the motion is within –instead of across– the
plane, allowing for its compensation.

All data was acquired using Siemens ACUSON Ultrasound (US) systems
(Mountainview CA). Specifically, 49 cases were captured at King’s College Hos-
pital in the UK, using an S2000 US system equipped with 4 (or) 6 MHz curvi-
linear transducer at spatial resolution 1024 × 768 pixels, and the remaining 14
cases were captured at Evgenidion Hospital in Greece, using a Sequoia C512
US system equipped with 6-2 MHz curvilinear transducer, at spatial resolution
768 × 576 pixels. In all examinations the second generation contrast medium
SonoVue [19] (Bracco S.p.A., Italy) was used in a 2.4 ml bolus intravenous injec-
tion (into an arm vein). Specific acquisition parameters of the equipment, such
as the transducer’s field of view and gain, for each patient are unknown, as
they were set by the radiologist individually at the start of each examination.
The acquisition method of this data reflects true clinical practice and leads to
increased variability. Examinations were performed by radiologists with 13–16
years of experience using CEUS. All data were obtained without prior knowledge
of subsequent processing by a software tool and without any specific instructions
being given to the radiologist beforehand, hence reflecting true clinical practice.
Appropriate ethics and confidentiality procedures have been followed at all times.

3.2 Results

For evaluating the automatic identification of hyper-enhancing (i.e. potentially
malignant) cases, the measures of true positive rate (sensitivity) and false posi-
tive rate (1-specificity) are used, in the range [0,1]. The positive and the negative
samples refer to the hyper- and the hypo-enhancing cases, respectively. From the
clinical point of view, the true positive (TP) rate should ideally be kept equal
to 1, so no single potentially malignant case is missed. At the same time, the
proposed method should discharge as many hypo-enhancing cases as possible,
keeping the false positive (FP) rate low.

According to [1] the duration of the arterial phase is at least 10 s. This
justifies our results, shown in Fig. 3(a), where the FP rate is as high as 0.8 (speci-
ficity = 0.2) when sequences with acquisition duration (AD) less than 10 s are con-
sidered. Then for sequences with AD more than 10 s, the FP rate drops to 0.46
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.b.a

Fig. 3. Graph (a) denotes values of FP rate (y axis) for the acquisition duration of
sequences being more than a certain number of seconds (x axis), whilst TP rate is equal
to 1. Graph (b) shows the ROC curves for cases with duration ≥ 10 & 14 s.

(specificity = 0.54). The best FP rate is equal to 0.38 (specificity = 0.62) and
obtained when the AD is at least 14 s. Furthermore, two ROC curves are shown
in Fig. 3(b) to assess the possible change of the FP rate in relation to the TP rate,
for both AD above 10 and 14 s.

For evaluating the automatic localisation of the potential malignancies on
the image plane, first the boundaries of the FLL have been manually annotated
by a radiologist in the reference frame providing its ground truth (GT). The
performance of the method is then assessed based on whether the location point
provided by the proposed method (described in Sect. 2.4) is within the GT, or
not. To measure this performance a correct localisation rate is used, over the
number of hyper-enhancing cases with AD above 10 and 14 s, separately.

To provide some comparative results, a baseline approach is considered based
on automatically thresholding the reference frame, using the Otsu’s method [20].
This is expected to provide a foreground population of pixels that describe mostly
the hyper-enhancing FLL. Then, similarly to the proposed method, a proportion
of this population is used to obtain the location of the potential malignancy.

The best correct localisation rate achieved is 80 % and obtained for the 40 %
of the chosen cluster’s population (Table 1). On the other hand, the best result
for the baseline method is 62.07 % after using 40 % of its mask’s population.

Table 1. Correct localisation rate for a seed-point within the actual FLL.

Method Population’s proportion Duration thr≥10” Duration thr≥14”

Baseline (25%) 31.03% 25%

Baseline (40%) 62.07% 55%

Proposed method (25%) 51.72% 60%

Proposed method (40%) 65.52% 80%
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4 Conclusions and Future Work

This paper demonstrates that the task of identifying and localising a potentially
malignant FLL can be performed in a fully automatic manner. Specifically, the
proposed framework firstly distinguishes between hyper- and hypo-enhancing
cases by using only a video sequence of the arterial phase as input, and then
automatically localises potential malignancies on the image plane. The first step
is addressed by assessing local intensity variations and analysing their spatial
configuration. Then, for the localisation step, a novel feature vector that encom-
passes the local dynamic behaviour and combines it with the spatial proximity
is used in a clustering approach, using EM-GMM.

Experimental results show that the proposed method appears to perform
adequately on identifying and localising FLLs with hyper-enhancing behaviour
during the arterial phase. Such lesions are of significant importance to radiol-
ogists, as they may account for malignancies. FLLs of typical hypo-enhancing
behaviour during the arterial phase are benign and therefore of less importance
to radiologists.

Further improvements of the proposed framework should include the reduc-
tion of the FP rate, making the identification of potential malignancies more
specific. Also coupling the proposed localisation approach with an iterative seg-
mentation method might lead to a fully automated and precise approximation
of the FLL boundaries, allowing the radiologists to use an automatic delineation
of the FLL for its assessment.
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