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Abstract. This paper studies the unification problem with associative,
commutative, and associative-commutative functions. The parameter-
ized complexity is analyzed with respect to the parameter “number
of variables”. It is shown that both the associative and associative-
commutative unification problems are W [1]-hard. For commutative uni-
fication, a polynomial-time algorithm is presented in which the number
of variables is assumed to be a constant. Some related results for the
string and tree edit distance problems with variables are also presented.

1 Introduction

Unification is an important concept in many areas of computer science such
as automated theorem proving, program verification, natural language process-
ing, logic programming, and database query systems [14,17,18]. The unification
problem is, in its fundamental form, to find a substitution for all variables in
two given terms that make the terms identical, where terms are built up from
function symbols, variables, and constants [18]. As an example, the two terms
f(x, y) and f(g(a), f(b, x)) with variables x and y and constants a and b become
identical by substituting x by g(a) and y by f(b, g(a)). When one of the two
input terms contains no variables, the unification problem is called matching.

Unification has a long history beginning with the seminal work of Herbrand
in 1930 (see, e.g., [18]). It is becoming an active research area again because of
math search, an information retrieval (IR) task where the objective is to find
all documents containing a specified mathematical formula and/or all formu-
las similar to a query formula [16,19,20]. Also, math search systems such as
Wolfram Formula Search and Wikipedia Formula Search have been developed.
Since mathematical formulas are typically represented by rooted trees, it seems
natural to measure the similarity between formulas by measuring the structural
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similarity of their trees. However, methods based on approximate tree matching
like the tree edit distance (see, e.g., the survey in [7]) alone are not sufficient
since every label is treated as a constant. For example, the query x2 + x has the
same tree edit distance to each of the formulas y2 + z and y2 +y although y2 +y
is mathematically the same as x2 + x, but y2 + z is not.

An exponential-time algorithm for the unification problem was given in [22]
and a faster, linear-time algorithm [9,21] appeared a few years later. Various
extensions of unification have also been considered in the literature [5,17,18].
Three of them, unification with commutative, associative, and associative-
commutative functions (where a function f is called commutative if f(x, y) =
f(y, x) always holds, associative if f(x, f(y, z)) = f(f(x, y), z) always holds, and
associative-commutative if it is both associative and commutative), are especially
relevant for math search since many functions encountered in practice have one
of these properties. However, when allowing such functions, there are more ways
to match nodes in the two corresponding trees, and as a result, the compu-
tational complexity of unification may increase. Indeed, each of the associative,
commutative, and associative-commutative unification (and matching) problems
is NP-hard [5,10,17], and polynomial-time algorithms are known only for very
restricted cases [2,5,17]; e.g., associative-commutative matching can be done in
polynomial time if every variable occurs exactly once [5]. Due to the practical
importance of these (and other) extensions of unification, heuristic algorithms
have been proposed, sometimes incorporating approximate tree matching tech-
niques [13,14].

This paper studies the parameterized complexity of associative, commutative,
and associative-commutative unification with respect to the parameter “number
of variables appearing in the input”, denoted from here on by k. (We choose this
parameter because the number of variables is often much smaller than the size of
the terms.) In addition, we introduce and study the string and tree edit distance
problems with variables. The following table summarizes our new results:

Matching Unification DO-matching DO-unification

SEDV W [2]-hard O(|Σ|kpoly) – P (Theorem4)

(Theorem1) (Proposition 1)

OTEDV W [1]-hard – – P (Theorem4)

(Theorem3)

Associative W [1]-hard – P [5] P (Theorem6)

(Theorem5)

(NP-complete [5])

Commutative NP-hard [5] XP P [5] P (Proposition 3)

FPTa (Theorem7) (Theorem8)

Associative and W [1]-hard – P [5] P (Proposition 4)

commutative (Theorem9)

(NP-hard [5])
aUnder the assumption that Conjecture 1 holds
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Here, SEDV = the string edit distance problem with variables, OTEDV = the
ordered tree edit distance problem with variables, and DO = distinct occurrences
of all variables. W [1]-hard and FPT mean with respect to the parameter k. For
simplicity, the algorithms described in this paper only determine if two terms
are unifiable, but they may be modified to output the corresponding substi-
tutions (when unifiable) by using standard traceback techniques. We remark
that associative unification is in PSPACE and both commutative unification
and associative-commutative unification are in NP [6]; although it means that
all problems can be solved in single exponential time of the size of the input,
it does not necessarily mean single exponential-time algorithms with respect to
the number of variables.

2 Unification of Strings

Let Σ be an alphabet and Γ a set of variables. A substitution is a mapping from
Γ to Σ. For any string s over Σ ∪ Γ and substitution θ, let sθ denote the string
over Σ obtained by replacing every occurrence of a variable x ∈ Γ in s by the
symbol θ(x). (We write x/a to express that x is substituted by a.) Two strings
s1 and s2 are called unifiable if there exists a substitution θ such that s1θ = s2θ.

Example 1. Suppose Σ = {a, b, c} and Γ = {x, y, z}. Let s1 = abxbx, s2 = ayczc,
and s3 = ayczb. Then s1 and s2 are unifiable since s1θ = s2θ = abcbc holds for
θ = {x/c, y/b, z/b}. On the other hand, s1 and s3 are not unifiable since there
does not exist any θ with s1θ = s3θ. �

We shall use the following notation. For any string s, |s| is the length of s. For any
two strings s and t, the string obtained by concatenating s and t is written as s t.
Furthermore, for any positive integers i, j with 1 ≤ i ≤ j ≤ |s|, s[i] is the ith char-
acter of s and s[i . . . j] is the substring s[i] s[i + 1] · · · s[j]. (Thus, s = s[1..|s|].)
The string edit distance (see, e.g., [15]) between two strings s1, s2 over Σ, denoted
by dS(s1, s2), is the length of a shortest sequence of edit operations that trans-
forms s1 into s2, where an edit operation on a string is one of the following three
operations: a deletion of the character at some specified position, an insertion of
a character at some specified position, or a replacement of the character at some
specified position by a specified character.1 For example, dS(bcdfe, abgde) = 3
because abgde can be obtained from bcdfe by the deletion of f , the replacement
of c by g, and the insertion of an a, and no shorter sequence can accomplish this.
By definition, dS(s1, s2) = mined : ed(s1)=s2 |ed| = mined : ed(s2)=s1 |ed| holds,
where ed is a sequence of edit operations.

We generalize the string edit distance to two strings s1, s2 over Σ ∪ Γ by
defining d̂S(s1, s2) = mined : (∃θ) (ed(s1)θ = s2θ) |ed|. The string edit distance prob-
lem with variables takes as input two strings s1, s2 over Σ ∪ Γ , and asks for
the value of d̂S(s1, s2). (To the authors’ knowledge, this problem has not been

1 In the literature, “replacement” is usually referred to as “substitution”. Here, we use
“replacement” to distinguish it from the “substitution” of variables defined above.
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studied before. Note that it differs from the pattern matching with variables
problem [11], in which one of the two input strings contains no variables and
each variable may be substituted by any string over Σ, but no insertions or dele-
tions are allowed.) Let k be the number of variables appearing in at least one of
s1 and s2. Although dS(s1, s2) is easy to compute in polynomial time (see [15]),
computing d̂S(s1, s2) is W [2]-hard with respect to the parameter k:

Theorem 1. The string edit distance problem with variables is W [2]-hard with
respect to k when the number of occurrences of every variable is unrestricted.

Proof. We present an FPT-reduction [12] from the longest common subsequence
problem (LCS) to a decision problem version of the edit distance problem with
variables. LCS is, given a set of strings R = {r1, r2, . . . , rq} over an alphabet Σ0

and an integer l, to determine whether there exists a string r of length l such
that r is a subsequence of ri for every ri ∈ R, where r is called a subsequence
of r′ if r can be obtained by performing deletion operations on r′. It is known
that LCS is W [2]-hard with respect to the parameter l (problem “LCS-2” in [8]).

Given any instance of LCS, we construct an instance of the string edit dis-
tance problem with variables as follows. Let Σ = Σ0 ∪{#}, where # is a symbol
not appearing in r1, r2, . . . , rq, and Γ = {x1, x2, . . . , xl}. Clearly, R has a com-
mon subsequence of length l if and only if there exists a θ such that x1x2 · · · xlθ
is a common subsequence of R. Now, construct s1 and s2 by setting:

s1 = x1x2 · · · xl#x1x2 · · · xl# · · · #x1x2 · · · xl

s2 = r1#r2# · · · #rq

where the substring x1x2 · · · xl occurs q times in s1. By the construction, there
exists a θ such that x1x2 · · · xlθ is a common subsequence of R if and only if there
exists a θ such that s1θ is a subsequence of s2. The latter statement holds if and
only if d̂S(s1, s2) = (

∑q
i=1 |ri|) − ql. Since k = l, this is an FPT-reduction. �

The above proof can be extended to prove the W [1]-hardness of a restricted
case with a bounded number of occurrences of each variable (omitted in the
conference proceedings version).

Theorem 2. The string edit distance problem with variables is W [1]-hard with
respect to k, even if the total number of occurrences of every variable is 2.

Note that in the special case where every variable in the input occurs exactly
once, the problem is equivalent to approximate string matching with don’t-care
symbols, which can be solved in polynomial time [3].

On the positive side, the number of possible θ is bounded by |Σ|k. This
immediately yields a fixed-parameter algorithm w.r.t. k when Σ is fixed:

Proposition 1. The string edit distance problem with variables can be solved in
O(|Σ|kpoly(m,n)) time, where m and n are the lengths of the two input strings.
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3 Unification of Terms

We now consider the concept of unification for structures known as terms that
are more general than strings [18]. From here on, Σ is a set of function symbols,
where each function symbol has an associated arity, which is an integer describing
how many arguments the function takes. A function symbol with arity 0 is called
a constant. Γ is a set of variables. A term over Σ ∪ Γ is defined recursively as:
(i) A constant is a term; (ii) A variable is a term; (iii) If t1, . . . , td are terms and
f is a function symbol with arity d > 0 then f(t1, . . . , td) is a term.

Every term is identified with a rooted, ordered, node-labeled tree in which
every internal node corresponds to a function symbol and every leaf corresponds
to a constant or a variable. The tree identified with a term t is also denoted
by t. For any term t, N(t) is the set of all nodes in its tree t, r(t) is the root
of t, and γ(t) is the function symbol of r(t). The size of t is defined as |N(t)|.
For any u ∈ N(t), tu denotes the subtree of t rooted at u and hence corresponds
to a subterm of t. Any variable that occurs only once in a term is called a DO-
variable, where “DO” stands for “distinct occurrences”, and a term in which all
variables are DO-variables is called a DO-term [5]. A term that consists entirely
of elements from Σ is called variable-free.

Let T be a set of terms over Σ ∪Γ . A substitution θ is defined as any partial
mapping from Γ to T (where we let x/t indicate that the variable x is mapped to
the term t), under the constraint that if x/t ∈ θ then t is not allowed to contain
the variable x. For any term t ∈ T and substitution θ, tθ is the term obtained
by simultaneously replacing its variables in accordance with θ. For example,
θ = {x/y, y/x} is a valid substitution, and in this case, f(x, y)θ = f(y, x).

Two terms t1, t2 ∈ T are said to be unifiable if there exists a θ such that
t1θ = t2θ, and such a θ is called a unifier. In this paper, the unification problem
is to determine whether two input terms t1 and t2 are unifiable. (Other versions
of the unification problem have also been studied in the literature, but will not
be considered here.) Unless otherwise stated, m and n denote the sizes of the two
input terms t1 and t2. The unification problem can be solved in linear time [9,21].
The important special case of the unification problem where one of the two input
terms is variable-free is called the matching problem.

Example 2. Let Σ = {a, b, f, g}, where a and b are constants, f has arity 2, and g
has arity 3, and let Γ = {w, x, y, z}. Define the terms t1 = f(g(a, b, a), f(x, x)),
t2 = f(g(y, b, y), z), and t3 = f(g(a, b, a), f(w, f(w,w))). Then t1 and t2 are
unifiable since t1θ1 = t2θ1 = f(g(a, b, a), f(x, x)) holds for θ1 = {y/a, z/f(x, x)}.
Similarly, t2 and t3 are unifiable since t2θ2 = t3θ2 = f(g(a, b, a), f(w, f(w,w)))
with θ2 = {y/a, z/f(w, f(w,w))}. However, t1 and t3 are not unifiable because
it is impossible to simultaneously satisfy x = w and x = f(w,w). �

Similar to what was done in Sect. 2, we can combine the tree edit distance
with unification to get what we call the tree edit distance problem with vari-
ables. Let dT (t1, t2) be the tree edit distance between two node-labeled (ordered
or unordered) trees t1 and t2 (see [7] for the definition). We generalize
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dT (t1, t2) to two trees, i.e., two terms, over Σ ∪ Γ by defining d̂T (t1, t2) =
mined : (∃θ) (ed(t1)θ = t2θ) |ed|. The tree edit distance problem with variables takes
as input two (ordered or unordered) trees t1, t2 over Σ ∪ Γ , and asks for the
value of d̂T (t1, t2).

As before, let k be the number of variables appearing in at least one of t1
and t2. By combining the proofs of Theorems 2 and 5 below, we obtain:

Theorem 3. The tree edit distance problem with variables is W [1]-hard with
respect to k, both for ordered and unordered trees, even if the number of occur-
rences of every variable is bounded by 2.

As demonstrated in [5], certain matching problems are easy to solve for
DO-terms. The next theorem, whose proof is omitted in this version, states that
the ordered tree edit distance problem with variables also becomes polynomial-
time solvable for DO-terms. (In contrast, the classic unordered tree edit distance
problem is already NP-hard for variable-free terms; see, e.g., [7].)

Theorem 4. The ordered tree edit distance problem with variables can be solved
in polynomial time when t1 and t2 are DO-terms.

4 Associative Unification

A function f with arity 2 is called associative if f(x, f(y, z)) = f(f(x, y), z)
always holds. Associative unification is a variant of unification in which func-
tions may be associative. This section assumes that all functions are associative
although all results are valid by appropriately modifying the details even if usual
(non-associative) functions are included.

Associative matching was shown to be NP-hard in [5] by a simple reduction
from 3SAT. However, the proof in [5] does not show the parameterized hardness.

Theorem 5. Associative matching is W [1]-hard with respect to the number of
variables even for a fixed Σ.

Proof. As in the proof of Theorem 1, we reduce from LCS.
First consider the case of an unrestricted Σ. Let ({r1, . . . , rq}, l) be any

given instance of LCS. For each i = 1, . . . , q, create a term ui as follows:
ui = f(yi,1, f(x1, f(yi,2, f(x2, · · · f(yi,l, f(xl, f(yi,l+1, g(#,#))) · · · )))), where #
is a character not appearing in r1, . . . , rq. Create a term t1 by replacing the
last occurrence of # in each ui by ui+1 for i = 1, . . . , q − 1, thus concatenating
u1, . . . , uq, as shown in Fig. 1. Next, transform each ri into a string r′

i of length
1 + 2 · |ri| by inserting a special character & in front of each character in ri,
and appending & to the end of ri, where each & is considered to be a distinct
constant (i.e., & does not match any symbol but can match any variable). Repre-
sent each r′

i by a term ti defined by: ti = f(r′
i[1], f(r′

i[2], f(r′
i[3], f(· · · , f(r′

i[1 +
2 · |r′

i|], g(#,#)) · · · )))). Finally, create a term t2 by concatenating t1, . . . , tq.
(Again, see Fig. 1.) Now, t1 and t2 are unifiable if and only if there exists a
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Fig. 1. Illustrating the reduction in Theorem 5. Here, s1 = aab, s2 = aba, and l = 2.

common subsequence of {r1, . . . , rq} of length l. Since the number of variables
in t1 is (l + 1)q + l = lq + l + q, it is an FPT-reduction and thus the problem is
W [1]-hard.

For the case of a fixed Σ, represent each constant by a distinct term using a
special function symbol h and binary encoding (e.g., the 10th symbol among 16
symbols can be represented as h(1, h(0, h(1, 0)))). �

We next consider associative unification for DO-terms, which has some similar-
ities with DO-associative-commutative matching [5]. For any term t, define the
canonical form of t (called the “flattened form” in [5]) as the term obtained by
contracting all edges in t whose two endpoints are labeled by the same func-
tion symbol. For example, both f(f(a, b), f(g(c, f(d, f(e, h)), e)) and f(a, f(b, f
(g(c, f(f(d, e), h)), e))) are transformed into f(a, b, g(c, f(d, e, h)), e). As another
example, the canonical form of f(g(a, b), f(c, d)) is f(g(a, b), c, d). It is known [5]
that the canonical form of t can be computed in linear time.

We begin with the simplest case in which every term is variable-free.

Proposition 2. Associative unification for variable-free terms can be done in
linear time.

Proof. Transform the two terms into their canonical forms in linear time as
above. Then it suffices to test if the canonical forms are isomorphic. The rooted
ordered labeled tree isomorphism problem is trivially solvable in linear time. �

To handle the more general case of two DO-terms t1 and t2, we transform them
into their canonical forms t1 and t2 and apply the following procedure, which
returns ‘true’ if and only if t1 and t2 are unifiable. See Fig. 2 for an illustration.
The procedure considers all u ∈ N(t1), v ∈ N(t2) in bottom-up order, and
assigns D[u, v] = 1 if and only if (t1)u and (t2)v are unifiable.
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Fig. 2. An example of associative unification. The DO-terms t1, t2 are transformed into
their canonical forms and then unified by θ = {y/h(a, d), z/f(g(b, b), a), w/f(x, c)}.

Procedure AssocMatchDO(t1, t2)
for all u ∈ N(t1) do /* in post-order */

for all v ∈ N(t2) do /* in post-order */
if (t1)u or (t2)v is a constant then

if (t1)u and (t2)v are unifiable (#)
then D[u, v] ← 1 else D[u, v] ← 0;

else if (t1)u or (t2)v is a variable then
D[u, v] ← 1;

else /* (t1)u = f1((t1)u1 , . . . , (t
1)up

), (t2)v = f2((t2)v1 , . . . , (t
2)vq

) */
if f1 = f2 and 〈(t1)u1 , . . . , (t

1)up
〉 can match 〈(t2)v1 , . . . , (t

2)vq
〉

then D[u, v] ← 1 else D[u, v] ← 0;
if D[r(t1), r(t2)] = 1 then return true else return false.

Step (#) takes O(1) time because here (t1)u and (t2)v are unifiable if and
only if they are the same constant or one of (t1)u and (t2)v is a variable.

When both u and v are internal nodes, we need to check if 〈(t1)u1 , . . . , (t
1)up

〉
and 〈(t2)v1 , . . . , (t

2)vq
〉 can be matched. This may be done efficiently by regarding

the two sequences as strings and applying string matching with variable-length
don’t-care symbols [4], while setting the difference to 0 and allowing don’t-care
symbols in both strings. Here, (t1)ui

(resp., (t2)vj
) is regarded as a don’t-care

symbol that can match any substring of length at least 1 if it is a variable, oth-
erwise (t1)ui

can match (t2)vj
if and only if D[ui, vj ] = 1 (details are omitted

in this version). It is to be noted that a variable in a term may partially match
two variables in the other term. For example, consider the two terms f(t1, x, t2)
and f(y, z). Here, θ = {x/f(t3, t4), y/f(t1, t3), z/f(t4, t2)} is a unifier. How-
ever, in this case, a simpler unifier is θ′ = {x/t3, y/f(t1, t3), z/t2} because each
variable occurs only once. Therefore, we can use approximate string matching
with variable-length don’t-care symbols, which also shows the correctness of the
algorithm.

The for-loops are iterated O(mn) times and string matching with variable-
length don’t-care symbols takes polynomial time, so we obtain:

Theorem 6. Associative unification for DO-terms takes polynomial time.
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5 Commutative Unification

A function f with arity 2 is called commutative if f(x, y) = f(y, x) always holds.
Commutative unification is a variant of unification in which functions are allowed
to be commutative. Commutative matching was shown to be NP-hard in [5] (by
another reduction from 3SAT than the one referred to above).

First note that commutative unification is easy to solve when both t1 and t2
are variable-free because in this case, it reduces to the rooted unordered labeled
tree isomorphism problem which is solvable in linear time (see, e.g., p. 86 in [1]):

Proposition 3. Commutative unification for variable-free terms can be done in
linear time.

Next, we consider commutative matching. We will show how to construct a 0-1
table D[u, v] for all node pairs (u, v) ∈ N(t1) × N(t2), such that D[u, v] = 1
if and only if (t1)u and (t2)v are unifiable, by applying bottom-up dynamic
programming. It is enough to compute these table entries for pairs of nodes with
the same depth only. We also construct a table Θ[u, v], where each entry holds
a set of possible substitutions θ such that (t1)uθ = (t2)v.

Let θ1 = {xi1/ti1 , . . . , xip/tip} and θ2 = {xj1/tj1 , . . . , xjp/tjq} be substitu-
tions. θ1 is said to be compatible with θ2 if there exists no variable x such that
x = xia = xjb but tia �= tjb . Let Θ1 and Θ2 be sets of substitutions. We define
Θ1 �� Θ2 = {θi ∪ θj : θi ∈ Θ1 is compatible with θj ∈ Θ2}. For any node u,
uL and uR denote the left and right child of u. The algorithm is as follows:

Procedure CommutMatch(t1, t2)
for all pairs (u, v) ∈ N(t1) × N(t2) with the same depth
do /* in bottom-up order */
if (t1)u is a variable then

Θ[u, v] ← {{(t1)u/(t2)v}}; D[u, v] ← 1
else if (t1)u does not contain any variables then

Θ[u, v] ← ∅;
if (t1)u = (t2)v then D[u, v] ← 1 else D[u, v] ← 0

else if γ((t1)u) �= γ((t2)v) then
Θ[u, v] ← ∅; D[u, v] ← 0 /* recall: γ(t) is a function symbol of r(t) */

else
Θ[u, v] ← ∅; D[u, v] ← 0;
for all (u1, u2, v1, v2) ∈ {(uL, uR, vL, vR), (uR, uL, vL, vR)} do (#)
if D[u1, v1] = 1 and D[u2, v2] = 1 and Θ1[u1, v1] �� Θ2[u2, v2] �= ∅
then Θ[u, v] ← Θ[u, v] ∪ (Θ1[u1, v1] �� Θ2[u2, v2]); D[u, v] ← 1;

if D[r(t1), r(t2)] = 1 then return true else return false.

Let Bi denote the maximum size of Θ[u, v] when the number of (distinct)
variables in (t1)u is i. Then, we have the following conjecture.

Conjecture 1. B1 = 1 and Bi+j = 2BiBj hold, from which Bi = 2i−1 follows.
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Theorem 7. If Conjecture 1 holds, commutative matching can be done using
O(2kpoly(m,n)) time, where k is the number of variables in t1.

Proof. The correctness follows from the observation that each variable is sub-
stituted by a term without variables and the property f(x, y) = f(y, x) is taken
into account at step (#). As for the time complexity, first consider the number
of elements in Θ[u, v]. A crucial observation is that if (t1)uL

does not contain a
variable then |Θ[u, v]| ≤ max(|Θ[uR, vL]|, |Θ[uR, vR]|) holds (and analogously for
(t1)uR

). Assuming that Conjecture 1 is true, Θ1[u1, v1] �� Θ2[u2, v2] can be com-
puted in O(2kpoly(m,n)) time by using ‘sorting’ as in usual ‘join’ operations.
Thus, the total running time is also O(2kpoly(m,n)). �

Finally, we consider the case where both t1 and t2 contain variables. As in [21], we
represent two variable-free terms t1 and t2 by a directed acyclic graph (DAG)
G(V,E), where t1 and t2 respectively correspond to r1 and r2 of indegree 0
(r1, r2 ∈ V ). Then, testing whether r1 and r2 represent the same term takes
polynomial time (in the size of G) by using the following procedure, where tu
denotes the term corresponding to a node u in G:

Procedure TestCommutIdent(r1, r2, G(V,E))
for all u ∈ V do /* in post-order */
for all v ∈ V do /* in post-order */

if u = v then D[u, v] ← 1; continue;
if tu or tv is a constant then
if tu = tv then D[u, v] ← 1 else D[u, v] ← 0;

else
Let u = f1(uL, uR) and v = f2(vL, vR);
if f1 = f2 then
if (D[uL, vL] = 1 and D[uR, vR] = 1) or

(D[uL, vR] = 1 and D[uR, vL] = 1)
then D[u, v] ← 1 else D[u, v] ← 0

else D[u, v] ← 0;
if D[r1, r2] = 1 then return true else return false.

To cope with terms involving variables, we need to consider all possible map-
pings from the set of variables to N(t1) ∪ N(t2). For each such mapping, we
replace all appearances of the variables by the corresponding nodes, resulting
in a DAG to which we apply TestCommutIdent(r1, r2, G(V,E)). The following
pseudocode describes the procedure for terms with variables:

Procedure CommutUnify(t1, t2)
for all mappings M from a set of variables to nodes in t1 and t2 do

if there exists a directed cycle (excluding a self-loop) then continue;
Replace each variable having a self-loop with a distinct constant symbol;
Replace each occurrence of a variable node u with node M(u);

/* if M(u) = v and M(v) = w then u is replaced by w */
Let G(V,E) be the resulting DAG;
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Let r1 and r2 be the nodes of G corresponding to t1 and t2;
if TestCommutIdent(r1, r2, G(V,E)) = true then return true;

return false.

In summary, we have the following theorem, which implies that commutative
unification belongs to the class XP [12].

Theorem 8. Commutative unification can be done in O((m + n)k+2) time.

Proof. The correctness of TestCommutIdent(r1, r2, G(V,E)) follows from the
fact that f1(t1, t2) matches f2(t′1, t

′
2) if and only if f1 and f2 are identical function

symbols and either (t1, t2) matches (t′1, t
′
2) or (t1, t2) matches (t′2, t

′
1). It is clear

that this procedure runs in O(mn) time. Therefore, commutative matching of
two variable-free terms can be done in polynomial time.

Next, we consider CommutUnify(t1, t2). For an illustration of how it works,
see Fig. 3. To prove the correctness, it is straightforward to see that if there
exists some mapping M which returns ‘true’, then t1 and t2 are commutatively
unifiable and such a mapping gives a substitution θ satisfying t1θ = t2θ. Con-
versely, suppose that t1 and t2 are commutatively unifiable. Then there exist
unifiable non-commutative terms t′1 and t′2 that are obtained by exchanging
the left and right arguments in some terms in t1 and t2. Let θ be the sub-
stitution satisfying t′1θ = t′2θ. Then, t1θ = t2θ holds. We assign distinct con-
stants to variables appearing in t1θ. We also construct a mapping from the
remaining variables to N(t1) ∪ N(t2) by regarding x/t ∈ θ as a mapping of x
to t. We construct G(V,E) according to this mapping. Then, it is obvious that
TestCommutIdent(r1, r2, G(V,E)) = true holds.

Since the number of possible mappings is bounded by (m+n)k, where k is the
number of variables in t1 and t2, CommutUnify(t1, t2) runs in O((m + n)k+2)
time. �

6 Associative-Commutative Unification

Associative-commutative unification is the variant of unification in which some
functions can be both associative and commutative. The next theorem, whose
proof is omitted in this version, shows that associative-commutative matching
is W [1]-hard even if every function is associative and commutative.

Theorem 9. Matching is W [1]-hard with respect to the number of variables even
if every function symbol is associative and commutative.

On the other hand, associative-commutative matching can be done in polynomial
time if t1 is a DO-term [5]. We can extend this algorithm to the special case
of unification where both terms are DO-terms by adding a condition in the
algorithm that f((t1)u1 , . . . , (t1)up

) and f((t2)v1 , . . . , (t2)vq
) can be unified if

(t1)ui
and (t2)vj

are variables for some i, j. This yields:

Proposition 4. Associative-commutative unification can be done in polynomial
time if both t1 and t2 are DO-terms.
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Fig. 3. Example of a DAG G(V, E) for CommutIdent and for the proof of Theorem 8.

7 Concluding Remarks

This paper has studied the parameterized complexity of unification with asso-
ciative and/or commutative functions with respect to the number of variables.
Determining whether each of commutative unification and the matching version
of Theorem 2 (i.e., where all variables occur in one of the strings and the number
of occurrences of each variable is at most 2), is W [1]-hard or FPT and whether
associative unification is in XP, as well as any nontrivial improvements of the
presented results, are left as open problems.
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