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Abstract. With the advent of new computing technologies, such as cloud
computing and contemporary parallel processing systems, the building
blocks of computing systems have become multi-dimensional. Traditional
scheduling algorithms based on a single-resource optimization like proces-
sor fail to provide near optimal solutions. The efficient use of new comput-
ing systems depends on the efficient use of all resource dimensions. Thus,
the scheduling algorithms have to fully use all resources. In this paper, we
propose a queuing mechanism based on a multi-resource scheduling tech-
nique. For that, we model multi-resource scheduling as a multi-capacity
bin-packing scheduling algorithm at the queue level to reorder the queue
in order to improve the packing and as a result improve scheduling met-
rics. The experimental results demonstrate performance improvements in
terms of waittime and slowdown metrics.

Keywords: Multi-resource · Queuing mechanism · Resource manage-
ment · Scheduling · Bin-packing · Performance

1 Introduction

From a scheduling and resource view for computing, there can be a few major
issues and problems to consider: low utilization, overloaded systems, poor per-
formance, and resource contention. Solving these issues and problems requires
answering complex questions that start with, “When...,” “Which...,” and
“Where....” For instance, “Which types of applications should be consolidated
together in a server?”, “When should some workloads be migrated to other
servers?”, and “Where should a workload be placed?” These examples are the
type of resource management questions to consider and this list has many more
resource management questions of this type.

Scheduling algorithms based on First-Come First-Served schemes (FCFS)
pack jobs from the job queue into the system in order of their arrival until
a resource is exhausted. If there is a large job at the head of the queue which
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requires more resources than those left available in the system, the job allocation
scheme is blocked from scheduling further jobs until sufficient resources become
available for this large job. This results in potentially large resource fragments
being under-utilized. Back-filling mechanisms overcome this issue by skipping
over jobs that cannot be allocated and by finding smaller jobs that can make
use of remaining resources.

With the advent of new computing technologies such as cloud computing as
a recent development in the field of computing and massively parallel process-
ing systems such as the most recent Cray JK7 system (Titan), the Chinese
Tianhe-1A system (NUDT YH MPP)1, and the quite old SUN E10000 and SGI
O2K systems, the building blocks of computing systems have become
multi-dimensional. The Titan system is installed at Oak Ridge, achieving
17.59 Petaflop/s on the Linpack benchmark with 560,640 processors, including
261,632 NVIDIA K20x accelerator cores2.

Scheduling in older computer systems, such as the massively parallel process-
ing systems TMC CM-5 and the CRAY T3E, were focused on a single resource
dimension allocation (processing nodes) where single capacity bin-packing algo-
rithms were used to solve this problem3.

From the processing point of view, according to the Top500 list, a total
of 62 systems on the Top500 list are using accelerator/co-processor technology
including Titan and the Chinese Tianhe-1A system which uses NVIDIA GPUs
to accelerate its computation. Moreover, Stampede and six other supercomputers
are accelerated by the new Intel Xeon Phi processors (Intel MIC architecture)4.
As a result there are multiple computing elements to be taken into account in
scheduling at the processor level.

In multi-dimensional resource environment a single resource still becomes
exhausted while others remain under-used even with the back-filling strategy as
the scheduling algorithm. This is due to the design of FCFS algorithms which are
restricted in job selection based on their arrival order and not addressing capac-
ity imbalance between resources in a multi-resource environment. Back-filling
strategy is an instance of FCFS mechanism. Thus, single capacity bin-packing
algorithms are inadequate as they are unable to provide optimal scheduling for
multi-dimensional resources of CPU, GPU, memory, shared memory, large disk
farms, I/O channels, bandwidth, network input, network output, and even soft-
ware licenses of current computing system architectures.

The scheduling scheme must be free to select any job based on matching all
of the jobs’ resource requirements with the available system resources in order to
address the efficient use of resources in a multi-resource environment. Therefore,
the target of efficient use of new computing architectures depends on efficient
usage of all resource dimensions with the scheduling algorithm fully using all
resources.
1 http://top500.org/lists/2012/11/
2 https://www.olcf.ornl.gov/titan/
3 http://www.top500.org/system/166997
4 https://www.tacc.utexas.edu/stampede/

http://top500.org/lists/2012/11/
https://www.olcf.ornl.gov/titan/
http://www.top500.org/system/166997
https://www.tacc.utexas.edu/stampede/
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In this paper, we investigate research onmulti-resource scheduling by modeling
this problem as amulti-capacity bin-packing problem. We propose a queuing mech-
anism based on multi-resource scheduling technique. We model multi-resource
scheduling as a multi-capacity bin-packing scheduling algorithm at the queue level
to reorder the queue in order to improve the packing and as a result to improve
scheduling metrics.

In summary, our paper makes the following contributions:

– A proposal for multi-capacity bin-packing algorithms for scheduling problem.
– A proposal for queuing mechanism based on multi-capacity bin-packing

scheduling algorithm.
– We show experimentally that our multi-capacity bin-packing queuing policy

performs more efficiently than the back-filling policy as measured by waittime
and slowdown metrics.

The remainder of this paper is organized as follows. Section 2 reviews related
work. Section 3 presents our multi-resource scheduling approach that is mod-
eled based on a multi-capacity bin-packing algorithm. Then, it details a queuing
mechanism based on multi-capacity bin-packing algorithm. Section 4 explains
detailed design and implementation issues such as workload traces, and resource
model for experiments of this paper. After that, it discusses simulation exper-
imentations and experimental results. Finally, Sect. 5 presents our conclusions
and future work.

2 Related Work

Single-and multi-capacity bin-packing problems and their connection to the gen-
eralized scheduling problem have been studied in [5,6,10,11,25].

The two-dimensional vector packing problem [25] consists in orthogonally
packing a subset of a set of rectangular-shaped boxes, without overlapping, into
a single bounding rectangular area, maximizing the ratio between the area occu-
pied by the boxes and the total available area.

The d -capacity bin-packing solution approaches extend the single capacity
bin-packing solutions, i.e., First-Fit (FF), Next-Fit (NF), and Best-Fit (BF),
to deal with the d -capacity jobs (items) and nodes (bins). FF, NF, and BF
are considered as Job-To-Node placement rules. Those d -capacity bin-packing
algorithms that are extensions of the single capacity bin-packing do not scale
well with increasing d since they do not take advantage of the information in the
additional capacities. [2] presents a first-fit approximation algorithm for the bin
packing problem. The algorithm was devised for the single resource problem, but
tips are given about the extension to multiple resources. Orthogonal to the Job-
To-Node placement rules is the job queue preprocessing method used before the
packing operation. For the single capacity bin-packing algorithm sorting the list
based on a scalar value in a non-increasing order with respect to the job resource
requirement improves the performance of the packing. The First-Fit Decreasing
(FFD) algorithm first sorts the list in a non-increasing order and then applies
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the FF packing algorithm. The NF and BF algorithms can be extended in a
similar manner.

Leinberger et al. [15] proposed a d -capacity bin-packing algorithm named
Multi-Capacity Bin Packing (MCBP). It is a particular vector packing algo-
rithm that uses the additional capacity information to provide better packing
by addressing the capacity imbalance. Authors show how their algorithms lead
to better multi-resource allocation and scheduling solutions.

In addition, the problem of optimally mapping virtual machines (VMs) to
servers can be reduced to the bin packing problem [1,20,24]. This problem is
known to be NP-hard, therefore heuristic approaches can only lead to sub-
optimal solutions. With regard to recent work finding a FFD algorithm that
has better execution time [19] provides an algorithm that maximizes the dot
product between the vector of remaining capacities and the vector of remaining
or residual capacities of the current open bin, i.e. subtract from the bin’s capac-
ity the total demand of all the items currently assigned to it. It places the item
that maximizes the weighted dot product with the vector of remaining capacities
without violating the capacity constraint vector of demands for the item. This
bin-centric method did show better performance. This method is an alternative
to our method and is intended for allocation of VM images rather than scientific
job placement. The argument can be made that a VM image can have the same
processing footprint as a long-lived scientific application.

Moreover, novel job scheduling mechanisms use d -capacity bin-packing algo-
rithms. For instance, [22,23] employ an algorithm based on MCBP proposed by
Leinberger et al. in [15]. In [23], a novel job scheduling approach for homoge-
neous cluster computing platforms is proposed. Its key feature is the use of VM
technology to share fractional node resources in a precise and controlled man-
ner. Other VM-based scheduling approaches have focused primarily on technical
issues or extensions to existing batch scheduling systems, while in [23] authors
take a more aggressive approach and seek to find heuristics that maximize an
objective metric correlated with job performance. They derive absolute perfor-
mance bounds and develop algorithms for the online, non-clairvoyant version
of scheduling problem. Their results demonstrate that virtualization technol-
ogy coupled with lightweight online scheduling strategies can afford dramatic
improvements in performance for executing high performance computing (HPC)
workloads.

Eco4cloud [16] adaptively consolidates the workload using VM migration
and balances the assignment of CPU - and RAM -intensive applications on each
server, which helps to optimize the use of resources. Live migration of VMs
between servers is adopted by the VMware Distributed Power Management
system, using lower and upper utilization thresholds to enact migration pro-
cedures [13]. The heuristic approaches presented in [1] and in [20] use techniques
derived from the Best Fit Decreasing and the First Fit Decreasing algorithms,
respectively. In both cases, the goal is to place each migrating VM on the server
that minimizes the overall power consumption of the data center. On the other
hand, consolidation is a powerful means to improve IT efficiency and reduce
power consumption [3,12,21]. Some approaches - e.g., [4,17] - try to forecast
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the processing load and aim at determining the minimum number of servers
that should be switched on to satisfy the demand, so as to reduce energy con-
sumption and maximize data center revenues. However, even a correct setting of
this number is only a part of the problem: algorithms are needed to decide how
the VMs should be mapped to servers in a dynamic environment, and how live
migration of VMs can be exploited to unload servers and switch them off when
possible, or to avoid SLA violations. In [9] the multi-resource scheduling problem
is tackled by using an linear programming (LP) formulation that gives higher
priority to VMs with more stable workload. ReCon [18] is a tool that analyzes
the resource consumption of various applications, discovers applications which
can be consolidated, and subsequently generates static or dynamic consolidation
recommendations. In ReCon, only CPU utilization is considered, the complete
extension to the multi-resource problem is left to future research.

In comparison, these works are coupled with advanced technologies, like vir-
tualization, to improve scheduling metrics. Our approach is based on optimiza-
tion techniques to improve pure scheduling metrics with simple heuristics. The
framework presented in [7] tackles the consolidation problem by exploiting con-
straint programming paradigm. Rule-based constraints concerning SLA nego-
tiation are managed by an optimizer that adopts a branching approach: the
variables are considered in a priority descending order, and at each step one of
the variables is set to the value that is supposed to guide the solver to a good
solution. The Entropy resource manager presented in [14] performs dynamic con-
solidation based on constraint programming, where constraints are defined on
CPU and on RAM utilization. All these approaches represent important steps
ahead for the deployment of green-aware data centers, but they do not model
multi-resource aspects of scheduling in their problem completely.

Our multi-resource scheduling approach is in line with consolidation
approaches in such a way to increase the number of allocated workloads to a
node. With that we increase the consolidation degree of nodes leading to improve-
ment of resources utilization, and consequently improving energy efficiency.

3 Multi-resource Scheduling

In this section, first we review bin-packing algorithms. We then devise the basics
of a multi-capacity bin-packing algorithm to address the problem of multi-
resource scheduling. After that, we develop this algorithm as part of the queuing
mechanism of the scheduler.

3.1 The Multi-capacity Bin-Packing Problem

Due to multiple resource dimensions in computing systems, resource alloca-
tion problem is related to the multi-dimensional bin-packing, or vector packing.
Vector packing is bin-packing with multi-dimensional items and bins. In order
to model the parallel job scheduling problem as a multi-capacity bin-packing
problem the parallel system node is represented by a bin with d capacities,
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e.g.
−→
Bk, corresponding to the multiple resources in the system. And a job (item)

is represented by a d -capacity, e.g.
−→
Ji , resource requirements vector. Jobs are

obtained from a list L, and the total number of jobs to be packed is denoted by n.
In a homogeneous computing system, the capacity of each node is represented

by a d -capacity vector,
−→
C = (C1, ..., Cj , ..., Cd), where Cj , Cj ≥ 0, represents the

j th component capacity, so that
∑d

j=1 Cj > 0. A job is also represented by a

d -capacity vector,
−→
Ji = (Ji1, ..., Jij , ..., Jid), where Jij , 0 ≤ Jij ≤ Cj , denotes the

j -th component requirement of the ith job, and ∀i | 1 ≤ i ≤ n and
∑d

j=1 Jij > 0.
−→
Bk represents node k. A job

−→
Ji can be packed into a node (bin)

−→
Bk, if−→

Bk +
−→
Ji ≤ −→

C , or ∀j | 1 ≤ j ≤ d and Bkj + Jij ≤ Cj , i.e., there is enough
free capacity for all resources in node

−→
Bk for job

−→
Ji placement.

The FF algorithm tries to fit the next job to be placed into any of the
currently non-empty nodes. If the next job cannot fit into any of the current
nodes, then the next node is considered. Or, if it does not fit into any of the nodes,
it will return to queue and it will be considered at the next scheduling cycle.
The BF algorithm adds a further node selection heuristic to the FF algorithm
by scheduling the best-fit job from the queue on a node which minimizes unused
resources.

The NF algorithm takes the next d -capacity job
−→
Ji and attempts to place it

in the current node
−→
Bk. If it does not fit: If Bkj + Jij > Cj for some j, then the

next node
−→
B k+1 is considered. The point being that no node that does not meet

the condition
−→
Bl, 1 ≤ l < k is considered as a candidate for job

−→
Ji .

In d-capacity formulation the jobs are sorted based on a scalar representation
of the d components; that is the summation of d components. Other extensions
include the maximum component, sum of squares of components, etc. The goal
is to somehow capture the relative size of each d-capacity item.

3.2 A Heuristic to the Multi-capacity Bin-Packing Problem

Bin-packing in the computing system scheduling domain is basically an abstrac-
tion of a restricted batch processing scenario in which all jobs arrive before
processing begins and all jobs have the same execution time. The goal is to
process the jobs as fast as possible. Basically, each bin corresponds to a schedul-
ing cycle on the system resources, and the scheduling algorithm must pack jobs
onto the system in an order such that all jobs are scheduled using the fewest
cycles. Thus, the scheduling goal is to partition the list L into as few nodes (bins)
as possible.

At the start of a scheduling cycle, a bin is created in which each component
is initialized to reflect the amount of the corresponding machine resource which
is currently available. Jobs are selected from the job queue (list L) and packed
into the machine until there are not sufficient quantities of resources to fill the
needs of any of the remaining jobs.

The prior Job-To-Node placement rules described in Sect. 2 fails to provide
a near optimal scheduling solution. For example, in the FF algorithm the node
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selection mechanism for job placement ignores the resources’ requirement
(weights) for the job and the current component capacities of the nodes and
its only criteria for job placement is that the job fits. Hence, a single capacity of
a node may fill up sooner than the other capacities, which leads to lower overall
utilization. Based on this analysis, a Job-To-Node placement would provide more
optimized packing if the current relative weights or rankings of d -capacities are
considered; that is, if Bkj has the lowest available capacity, then search for a
job

−→
J i which fits into

−→
B k and has Jij as its smallest component weight. This

reduces pressure on Bkj , which may allow additional jobs to be added to the
node

−→
B k. This heuristic attempts to correct a capacity imbalance in the node.

Thus, the capacities are all kept balanced, so that more jobs will likely fit into
the node which gives a multi-capacity aware approach and is the basis of this
paper.

Our proposed heuristic attempts to find jobs in which the largest components
are exactly ordered with respect to the ordering of the corresponding smallest
elements in the current node. For instance, in the case of d = 5 with the capacities
of the current node

−→
B k ordered as follows:

Bk1 ≤ Bk3 ≤ Bk4 ≤ Bk2 ≤ Bk5

In this instance, the algorithm would first search the list L for a job in which
the resource requirements were ranked as follows:

Ji1 ≥ Ji3 ≥ Ji4 ≥ Ji2 ≥ Ji5

which is exactly opposite of the current node state. Adding
−→
J i to

−→
B k has the

effect of increasing the capacity levels of the smaller components more than it
increases the capacity levels of the larger components. If no jobs were found with
this relative ranking between their components, then the algorithm searches the
list again, relaxing the ordering of the smallest components first, working up to
the largest components. For example, the next two job rankings that would be
searched for are:

Ji1 ≥ Ji3 ≥ Ji4 ≥ Ji5 ≥ Ji2
and
Ji1 ≥ Ji3 ≥ Ji2 ≥ Ji4 ≥ Ji5
... and finally,
Ji5 ≥ Ji2 ≥ Ji4 ≥ Ji3 ≥ Ji1

The algorithm searches each logical sublist in an attempt to find a job which fits
into the current node. If no job is found in the current logical sublist, then the
sublist with the next best ranking match is searched, and so on, until all lists
have been searched.

In summary, these heuristics match jobs to hosts, based on sorting the host
resources according to their capacity, and the jobs requirements in the oppo-
site order, such that the largest requirement would correspond to the highest
capacity.
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3.3 Multi-capacity Queuing Mechanism

In this paper, we focus on queuing mechanism of scheduling system. We extend
the proposed packing technique of the multi-capacity bin-packing algorithm
developing a multi-capacity bin-packing queuing mechanism.

Our multi-capacity bin-packing queuing mechanism heuristic orders jobs
based on the free capacity ordering of nodes. Free capacities at the next schedul-
ing cycle are considered by sorting the resources of the nodes based on their free
capacity; that is, from highest to lowest free capacity. The mechanism then tran-
sits the resource ordering for the nodes evaluating the best match of job resource
requirements to a node by summing the differences between job resource require-
ments. This summation reflects the degree to which it is feasible to use a node
based on the capacity imbalance for a job. This step attempts to correct a capac-
ity imbalance.

The pseudo code of multi-capacity aware queuing mechanism is represented
in the algorithm 1. t as an input parameter is the next scheduling cycle. Some
description about the data structures used in the algorithm 1 are as the following:

– A slot table is essentially just a collection of resource reservations. It tracks
the capacity of the physical nodes on which jobs can be scheduled, contains
the resource reservations of all the jobs, and allows efficient access to them.

– A particularly important operation with the slot table is determining the
“availability window” of resources starting at a given time. Availability win-
dow provides easier access to the contents of a slot table by determining the
availability in each node starting at a given time.

– getAvailabilityWindow function creates an availability window starting at a
given time.

In brief, an availability window provides a convenient abstraction over the
slot table, with methods to answer questions such as:

– “If I want to start at least at time T, are there enough resources available to
start the job?”

– “Will those resources be available until time T+t?”
– “If not, what is the longest period of time those resources will be available?”

and so on.

4 Experiments

In this section, we present simulation experiments to evaluate the multi-capacity
bin-packing queuing policy in terms of scheduling metrics. For that, we first
describe resource model and workload characteristics, then we present workload
traces explored. In closing we give specific and precise configuration used.
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Algorithm 1. MultiCapacityQueuingMechanism(t: the next scheduling cycle)
multi capacity queue = []
job res req = {}
job res req[RES CPU ] = 0
job res req[RES MEM ] = 0

job res req[RES IO] = 0
job res req[RES NETIN ] = 0
job res req[RES NETOUT ] = 0
node free capacity norm = {}
node free capacity res ordering = {}
for res ∈ job res req.keys() do

node res capacity[res] = slottable.nodes[1].capacity.get by type(res)
end for
aw = slottable.get availability window(t)
for node id ∈ slottable.nodes.keys() do

node free capacity norm[node id] = {}
for res ∈ job res req.keys() do

node free capacity norm[node id][res] =
aw.get availability(t, node id).get by type(res)/node res capacity[res]

end for
node free capacity norm items[node id] = node free capacity norm[node id].items()
<Sorting resources for a node id based on the free resource capacity, in

descending order.>
node free capacity norm items[node id].sort()
node free capacity res ordering[node id] = [ res for res, capacity in

node free capacity norm items[node id]]
end for
while Queue is not empty do

<Get the job at the head of the queue.>
job = queue.dequeue()
score = 0
<Traversing all nodes and evaluating the job score.>
for node id ∈ slottable.nodes.keys() do

for r1 ∈ node free capacity res ordering[node id] do
del node free capacity res ordering[node id][0]
for r2 ∈ node free capacity res ordering[node id] do

if node free capacity norm[node id][r1] >
node free capacity norm[node id][r2] then
score+ = job res req[r1] − job res req[r2]

end if
end for

end for
end for
multi capacity queue.append((job, score))

end while
<Sorting the multi-capacity queue based on the job score in descending order
and moving the best matched jobs to the head of the queue.>
multi capacity queue.sort()
multi capacity queue = [l for (l, s) in multi capacity queue]
<Copying the multi-capacity queue into the wait queue.>
for l ∈ multi capacity queue do

queue.enqueue(l)
end for
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4.1 Resource Model and Workload Characteristics

We consider commodity cluster infrastructure as resource model in this study
each physical node has CPU, Memory, IO, Network input, and Network output as
resource types and conventional interconnection between them. Furthermore, the
simulated cluster of a configuration is modeled after the corresponding workload
trace’s cluster.

4.2 Workload Traces

For this paper, we construct workloads by adapting the SDSC Blue Horizon
cluster job submission trace5 from the Parallel Workloads Archive. We alter
these derived traces to incorporate all resource dimensions requirements. For
that, we simply add Net-in, Net-out, and IO resource types to jobs resource
requirements that were missing, and set their resource requirements based on
a random uniform distribution to present a random use of resources for jobs.
This is to present multi-dimensional resource requirements for jobs. We treat
all resource types the same. That is a job can be allocated to a node if all its
resources requirements will be satisfied by the node.

4.3 Configurations

We conduct a number of experiments over a wide range of derived traces. We
extract all 30 -day traces from SDSC Blue Horizon to build derived traces for
our experiments. Specifically, the extract is from the beginning of day 300 until
day 330. This would be trace one. From day 330 to day 360 would be trace
two, and so on. In sum, we build 21 derived traces from day 300 until day 960 in
increments of 30 days. For each trace, we carry out two experiments: one for the
multi-capacity queuing policy(MCBP), and the other for back-filling queuing
policy(BKFL).

In addition to the variable parameters, we have fixed parameters such as an
intermediate back-filling strategy as the packing mechanism. Thus, the schedul-
ing function periodically evaluates the queue, using an intermediate back-filling
algorithm to determine whether any job can be scheduled. In sum, we compare
a multi-capacity-enabled back-filling queuing policy against a pure back-filling
queuing policy.

4.4 Results

In simulation experiments, we explore the impact of the multi-capacity bin-
packing queuing mechanism on the waittime, and slowdown metrics. We per-
formed experiments on the 21 derived workload traces of SDSC Blue Horizon
according to configurations above.
5 http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc blue/index.html

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_blue/index.html
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Fig. 1. Average of simulation results for experiments 300 to 750

For each experiment, for each job, we collected time values: ta, the arrival
time, or time when the job request is submitted; ts, the start time of the job;
and te, the time the job ends. At the end of an experiment, we compute the
following metrics:
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Fig. 2. Average of simulation results for experiments 780 to 960

– Waittime: This is time ts−ta, the time a job request must wait before it starts
running. The time units are in minute.

– Slowdown: If tu is the time the job would take to run on a dedicated physical
system, the job’s slowdown is (te − ta)/tu. If tu is less than 10 seconds, the
slowdown is computed the same way, but assuming tu to be 10 seconds [8].

The optimization of these two metrics is a minimization problem. We analyze
simulation results for each experiment based on mean and standard deviation
statistics measure. Mean statistics are illustrated in Figs. 1, 2, and standard devi-
ation are illustrated in Figs. 3, 4. In order to compare two policies, we normalize
MCBP results to BKFL results, i.e., MCBP/BKFL. All values presented in
the graphs are based on this normalized value. This is to better present and
compare two policies with a value.

In general, we have got better results for both metrics in terms of mean
statistic measure. However, in terms of standard deviation waittime metric gets
higher values for MCBP policy, while slowdown gets lower values. While on
average we have got better results for waittime and slowdown metrics, we have
more discrepancy of waittime values for MCBP policy respect to BKFL pol-
icy. Nonetheless, we have got more concentrated values for slowdown metric for
MCBP policy. This observation implies that in total we have better scheduling
with MCBP policy respect to BKFL policy. This means that with MCBP total
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Fig. 3. Standard deviation of simulation results for experiments 300 to 750

jobs get allocated to the system faster (as it is also demonstrated with statistics
measure over all experiments in Table 1). In sum, MCBP outperforms BKFL
policy in terms of both scheduling metrics.
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Table 1. Statistics measures of simulation results over all experiments

(a) Mean

Config Waittime (minute) Slowdown

BKFL 324.58 48.03
MCBP 270.31 30.02

(b) Standard deviation

Config Waittime (minute) Slowdown

BKFL 606.40 149.24
MCBP 723.23 133.29

In addition, Table 1 presents the outcome of mean and standard deviation
statistics measures over all experiments. These results demonstrate that the
multi-capacity queuing approach provides a consistent performance improve-
ment over the back-filling one. More specifically, in total we have 54 minutes
improvement for the waittime metric, and 18 unit improvement of the slow-
down metric.

5 Conclusions and Future Work

The building blocks of contemporary computing systems are multi-dimensional.
Therefore, architecture of these systems and algorithms which deal with these
systems have to take into account this shift from single-dimension resource
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model. In this paper, we considered scheduling aspects of such a systems. Tradi-
tional scheduling algorithms based on single-resource optimization cannot pro-
vide optimal solutions. As a result, the efficient utilization of new computing
systems depends on the efficient use of all resource dimensions. The scheduling
algorithms have to fully utilize all resources. To address this problem, we have
proposed a multi-resource scheduling mechanism at the queuing mechanism. For
that, we studied multi-capacity bin-packing queuing policy.

Through exhaustive simulation experimentation on 21 derived workload
traces of SDSC Blue Horizon, we have demonstrated that the multi-capacity
bin-packing queuing policy addresses multi-dimensional scheduling aspects of
computing system resources to achieve improved waittime, slowdown. In addi-
tion, this approach provides better consolidation degree, that is, it increases the
number of allocated workloads to a node leading to an improvement of resources
utilization, and energy efficiency.

In this paper we conducted experiments with homogeneous systems based
on realistic simulation while our multi-capacity bin-packing queuing policy can
support more general instances. In addition, our solution can be integrated with
real frameworks, like Nimbus Toolkit, and OpenNebula resource managers.

In this paper, we studied multi-capacity bin-packing queuing policy for each
single job. We can apply this heuristic at a group of jobs to address capacity
imbalance. For example, as a future work we plan to study how to schedule a
group of jobs at the queue based on the multi-capacity heuristic.
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