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Abstract. We propose a novel classification framework called the video-
specific SVM (V-SVM) for normal-vs-abnormal white-light colonoscopy
image classification. V-SVM is an ensemble of linear SVMs, with each
trained to separate the abnormal images in a particular video from all
the normal images in all the videos. Since V-SVM is designed to capture
lesion-specific properties as well as intra-class variations it is expected to
perform better than SVM. Experiments on a colonoscopy image dataset
with about 10,000 images show that V-SVM significantly improves the
performance over SVM and other baseline classifiers.

1 Introduction

Colorectal cancer is the second most common cause of cancer mortality among
men and women [1]. Colonoscopy remains the gold standard for colorectal cancer
screening because of its high sensitivity and specificity for detecting polyps and
cancer [1]. Adenoma detection rate (ADR), in terms of lesion detection, is a
surrogate marker of quality of colonoscopy [2]. An automated system detecting
abnormalities (including polyps, cancer, ulcers, etc.) in colonoscopy videos would
be a useful tool in improving ADR. Here, we concentrate on normal-abnormal
white-light colonoscopy image classification, a challenging task as abnormalities
in colon vary in size, type, color, and shape (Fig. 1).

While most colonoscopy image classification systems [3–9] focus on designing
various image features, this paper focuses on designing a new classifier. The most
popular classifier adopted in these classification systems is the support vector
machine (SVM). In general, a binary SVM is trained to classify any colonoscopy
image into one of two classes, e.g., normal versus abnormal [3,4,7,8], or nor-
mal versus a specific lesion, e.g., polyp [9]. In order to train a binary SVM for
normal-vs-abnormal classification, a training dataset consisting of labeled nor-
mal and abnormal images need to be obtained in advance. Although each class
of images are highly variable in appearance and textures (e.g., due to different
colon segments, different patients, and different types of lesions in colons), such

c© Springer International Publishing Switzerland 2014
X. Luo et al. (Eds.): CARE 2014, LNCS 8899, pp. 11–21, 2014.
DOI: 10.1007/978-3-319-13410-9 2



12 S. Manivannan et al.

Fig. 1. Example images from the database. Normal (top) and Abnormal (bottom)

intra-class variations were not explored in the previous colonoscopy image classi-
fication systems [3–7,9]. In computer vision, it has been shown that considering
the intra-class variations by learning a set of sub-class classifiers greatly improves
the classification performance over a single classifier for natural images [10–13],
because each sub-class often corresponds to a specific viewpoint or pose of the
same class of objects and may therefore capture more detailed viewpoint-specific
visual properties within the class. An extreme instance is the recently developed
Exemplar SVMs (E-SVM) [14]. E-SVM is an ensemble of linear SVMs, with each
SVM trained on a single positive example and a million of negative examples
(Fig. 2c). However, E-SVM may not be appropriate for colonoscopy image clas-
sification: each SVM in the E-SVM may become highly over-fitting because the
number of similar images for each exemplar positive (i.e., abnormal) image is
often very limited due to the highly intra-class variations (Fig. 3).

In this paper we propose a new classifier, called video-specific SVMs (V-
SVM), which can be considered as a trade-off between the traditional single
SVM and the extreme E-SVM. V-SVM is an ensemble of linear SVMs, with
each trained based on the set of positive images from a particular colonoscopy
video and all the negative images from all the videos (Fig. 2b). Since each video,
if containing lesions, often captures a particular type of lesion under differ-
ent viewpoints and appearance variations, a video-specific SVM may capture
that lesion-specific properties and becomes an expert to classify similar kinds
of lesions under different viewpoints or appearance. Also, since the number of
positive videos (which contain lesions) in the training data is very small com-
pared to the number of positive images, V-SVM dramatically reduces the com-
putational complexity compared to E-SVM. Our main contributions is the new
classification framework called V-SVM, and experimental evidence suggesting
that V-SVM outperforms SVM, E-SVM and some other baseline classifiers in
colonoscopy image classification.

In the following, this paper first introduces the V-SVM (Sect. 2), and then
empirically evaluate of the V-SVM (Sect. 3), followed by conclusions and future
work (Sect. 4).
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2 Video-Specific SVMs

Our objective is to learn a classifier from a set of videos, with each video frame
labeled as abnormal (i.e., positive) or normal (i.e., negative). Assume that we
have a number of V = V + + V − videos, consisting of V + abnormal and V −

normal videos. For each abnormal video, some video frames (i.e., positive images)
contain a certain type of lesion, while the other video frames are normal (i.e.,
negative images). In comparison, all the images in each normal video are normal.
For the v-th video (v = 1, . . . , V ), suppose there are |N+

v | positive images and
|N −

v | negative images, with the index set for positive images denoted by N+
v ,

and the index set for negative images denoted by N −
v . Note that |N+

v | = 0 for
any normal videos.

Give the training dataset {(xvi, yvi)|i = 1, . . . , |N+
v | + |N −

v |; v = 1, . . . , V },
where xvi ∈ R

d is the feature representation for the i-th image in the v-th video
and yvi ∈ {−1,+1} represents the label for the image, the traditional (single)
SVM classifier can be trained without considering any video-level information,
e.g., which video does each image come from. Alternatively, an ensemble of
exemplar SVMs (E-SVM) can be trained as proposed by [14]. Different from both
the single SVM and the E-SVM, we propose a new SVM-based classifier, called
video-specific SVM (V-SVM), which can be considered as a trade-off between
the single SVM and the E-SVM.

2.1 The Optimization Function for Video-Specific SVMs

In the V-SVM, an ensemble of V + linear SVM classifiers {fv(x)|v = 1, . . . , V +}
was learned, with each linear classifier fv(x) = wT

v x + bv corresponding to
a specific abnormal video with index v, trying to discriminate all the positive
images {xvi|∀i ∈ N+

v } in the abnormal video v from all the negative images
{xkj |∀j ∈ N −

k ; k = 1, . . . , V } in all the videos including v. Learning the weight
vector wv and the bias bv for a particular video-specific SVM classifier fv(x)
can be achieved by solving the following SVM-like optimization problem, i.e.,

min
wv,bv

‖wv‖2 + C+
∑

i∈N+
v

h
(
wT

v xvi + bv

)
+ C−

V∑

k=1

∑

j∈N−
k

h
(−wT

v xkj − bv

)
(1)

where h is the hinge loss function h(z) = max(0, 1− z), and C+ and C− are the
regularization parameters for the imbalanced positive and negative classes.

With the objective function in Eq. 1, V + linear video-specific SVM classifiers
will be independently trained, each trying to discriminate the positive images in
a particular abnormal video from the negative images in all the videos (Fig. 2b).

2.2 Platt Calibration

The V + independently learned SVM classifiers need to be assembled to gener-
ate a final classifier. Different individual classifiers may have different ranges of
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Fig. 2. Category SVM (a) vs. Exemplar SVMs (b) vs. V-SVMs (c). The video infor-
mation is discarded in the category and exemplar SVMs. In V-SVM we train a set of
SVMs; each separates the positive images of a particular video from all the negative
images of all the videos. (Coloured ellipses group the positive images from each positive
video)

output, making the outputs of video-specific SVM classifiers not directly compa-
rable. As in [14], we use the Platt calibration method [15] to normalize individual
classifiers such that their outputs are more directly comparable. The Platt cali-
bration method [15] maps any SVM output fv(x) with the range [−∞,+∞] to
a posterior probability Pv with the range [0, 1] by a sigmoid function, i.e.,

Pv(y = 1|fv(x)) =
1

1 + exp(avfv(x)+bv)
(2)

where Pv(·) represents the probability of the image (represented by its feature
x) being positive.

To learn the parameters av and bv for each sigmoid function Pv(·), a training
set Tv = {fv(xi), ti} is required, where fv(xi) is the individual SVM classifier’s
output for xi and used as the input to the sigmoid function, and ti is the expected
output of the sigmoid function for the input fv(xi). Although ti could be simply
set by ti = (yi + 1)/2 where yi = −1 for a negative image and yi = +1 for
a positive image, Platt [15] suggested using the regularized expected output to
handle possible imbalance between the number of positive and negative training
images, i.e.,

ti =
M+

v + 1
M+

v + 2
(3)
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when the image xi is positive, and

ti =
1

M− + 2
(4)

when the image xi is negative. M+
v and M− are respectively the number of

positive and negative images in the training set Tv.
To generate the training set Tv, Platt [15] suggested a cross-validation method.

More specifically, the available training dataset for one video-specific classifier is
randomly partitioned into L subsets, and then L− 1 subsets are used to train the
SVM classifier fv. fv is then used to obtain the predicted output scores fv(x) for
all the images {x} in the remaining subset. This process is repeated L times, each
time with a different remaining subset. The union of the predicted SVM scores
and the corresponding ti’s are used to learn the sigmoid function. Such a process
makes full use of the available training data to learn the sigmoid function, therefore
reducing the possibility of over-fitting during sigmoid learning.

2.3 Ensemble of Video-Specific SVM Posteriors

Once all video-specific SVMs have been calibrated, they can be easily assembled
to generate the final ensemble classifier g(x). Since each calibrated SVM classifier
Pv is only responsible for a specific video and therefore only valid to recognize a
small part of positive images, the appropriate assembling choice is the maximum
operation over all the video-specific classifiers when predicting the class of any
new image [14], i.e.,

g(x) = 11{max
v

(Pv(x)) > τ}, (5)

where 11{·} is the indicator function. As proposed by Platt [15] the optimal
threshold τ is set to τ = 0.5. This means, a new image x is predicted positive
(i.e., g(x) = 1) if at least one video-specific SVM classifier predicts that the
image is positive. Otherwise, the image is predicted as negative.

3 Experiments

The proposed V-SVM was evaluated on a colonoscopy image dataset by compar-
ing with the baseline methods including SVM, E-SVM, bagging-based ensemble
of SVMs, and clustering-based ensemble of SVM.

3.1 Experimental Setup

Nine abnormal and ten normal videos (with the length of 8−15 min for each)
were originally obtained from Hospital Universitario del Valle Evaristo Garcia
ESE, Cali, Colombia. Each video was manually divided into non-overlapping
normal and abnormal segments by clinical annotators. Due to high redundancy
in visual information within each video (e.g., neighboring video frames are often
very similar), each video was uniformly sampled at the rate of 3 images per
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Fig. 3. The abnormal images from a particular video shows the variations in
appearance.

second, and then a subset of representative images were further selected from
the initially sampled images using K-means clustering. More specifically, if the
initially sampled images from a video include N1 positive images and N2 neg-
ative images, K-means was applied to form N1

2 clusters for positive images and
N2
4 clusters for the negative images. One frame per cluster is selected for the

final dataset. In total, 10,658 images were selected from the nineteen videos to
represent the final dataset, with 1856 images being positive and the rest being
negative. All images were rescaled by preserving their row to column aspect ratio
to make their maximum size (row or column) is 300 pixels. Some example images
from the final dataset are shown in Figs. 1 and 3.

Each image in the dataset was represented based on sparse coding of two
types of features, root-SIFT (rSIFT) [16] and multi-resolution local patterns
(mLP) [17,18]. To learn a dictionary of visual words for each type of feature,
300,000 local features were randomly sampled from the training images, and then
clustered into 2000 clusters using K-means, with each cluster center representing
a visual word in the dictionary. To represent an image, patches with size 16×16
pixels were densely sampled from the image, with the sampling step being 4
pixels along both horizontal and vertical directions. Then, both rSIFT and mLP
were extracted from each color channel for each image patch. Finally, for each of
the two feature types, Locality Constrained Linear coding (LLC) [19] together
with max-pooling was applied to all the local features (of the same type) to
generate a 2000-dimensional feature vector.

When comparing the proposed V-SVM with other baseline classifiers, P per-
cent of both positive and negative images were randomly selected from each
video (but note that there is no positive image in normal videos) for training
and the rest of the images for testing, where P ∈ {10, 20, . . . 90}. Liblinear [20]
was used to train the SVM classifiers. In all the experiments, the parameters C+

and C− (Eq. 1) was empirically set C+ = 50 and C− = |N+
v |

∑V
k=1 |N−

k |C
+ for the

v-th video-specific SVM, where |N+
v |

∑V
k=1 |N−

k | was used to deal with the imbalanced
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Fig. 4. V-SVM with and without Platt calibration. Vertical bars on each curve repre-
sent the standard devision of MCA over 10 runs.

dataset for two classes. For all other classifiers, SVM parameters were learned
based on a 3-fold cross validation on the training set. For each exemplar SVM
in E-SVM, 10 images with the highest exemplar SVM scores are considered as
positive and used to learn the Platt function. Due to the imbalanced dataset,
the average over true positive rate (or sensitivity) and true negative rate (or
specificity), namely mean class accuracy (MCA), was used to evaluate each clas-
sifier’s performance. All the experiments were repeated 10 times and the MCA
results were averaged over all the 10 runs.

3.2 Effect of the Platt Calibration

To evaluate the effectiveness of the Platt calibration, the proposed V-SVM is
compared with its variant version without the Platt calibration. In the variant
V-SVM version, the ensemble classifier will classify a test image as positive if
at least one video-specific SVM gives a positive output score. Figure 4 shows
that inclusion of Platt calibration in V-SVM performs better than without Platt
calibration for different sizes of training data. This is probably because Platt
calibration can reduce the over-fitting issue which happened in individual video-
specific SVMs (Sect. 2.2).

3.3 Performance of V-SVM

To evaluate the performance of V-SVM, the two most relevant classifiers, SVM
and E-SVM, were used to compare with V-SVM with different sizes of training
data. In all the following experiments Wilcoxon rank sum test at the signifi-
cance level 0.01 was used to compare the difference in classification performance
between the proposed V-SVM classifier and any other baseline classifier.

Figure 5 shows that V-SVM performs significantly better than SVM and E-
SVM regardless of feature types. For example, the p-value is 1.8 × 10−4 when
comparing the V-SVM with the linear SVM for P = 30. Similar significance
results were obtained for other conditions (when P ≥ 20) as demonstrated in
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Fig. 5. Comparison of SVM, E-SVM and V-SVM (MCA ± std).

Fig. 5. Note that V-SVM performs better even than Chi-square kernel SVM,
probably due to the capability of capturing intra-class variations and lesion-
specific properties of V-SVM. Linear SVM and Chi-square kernel SVM showed
similar performance, which has also been observed in natural image classification
when LLC encoding was used to represent images [21]. Another observation is
that E-SVM performs significantly worse than SVM and V-SVM. In E-SVM,
similar positive images of an exemplar are necessary to learn the Platt function
[14]. The high variations in visual properties with each video (Fig. 3) make it
difficult to find enough number of similar images for each exemplar positive
image, which probably makes Platt calibration difficult and therefore leads to a
worse performance of E-SVM. In addition, Fig. 5(c) also shows that combining
the two features improves the performance of all the classifiers. Therefore in the
following experiments only the combined features are considered.

3.4 Effect of Video-Specific Classifier Training

V-SVM is basically an ensemble classifier. To demonstrate that the better per-
formance of V-SVM is not solely from the assembling of multiple classifiers, two
other ensembles of classifiers were used to compare with V-SVM. One is the Bag-
ging classifier [22], where a set of SVM classifiers are trained independently, with
each trained based on a randomly chosen subset (here 80%) of training images.
The majority voting from all the individual SVM classifiers are used to predict
the class of any new image [22]. We call this classifer ‘bagging-SVM’. In our test,
different number of SVM classifiers {5, 10, 15, 20} in bagging are tried and the
best performance is reported. Figure 6 shows that V-SVM performs significantly
better than bagging-SVM when P ≥ 20 (p-value = 1.8 × 10−4), suggesting that
soley assembling of mutliple classifiers cannot explain the better performance of
V-SVM.

Another baseline ensemble classifier is ‘clustering-SVM’. For the proposed V-
SVM, its better performance might come from (1) clustering the positive images
into a set of clusters and (2) then learning a classifier to separate each cluster
of positive images from all the negative images. To investigate this possibility,
the positive images in the training dataset were clustered into V + clusters using



Video-Specific SVMs for Colonoscopy Image Classification 19

Fig. 6. Comparison of V-SVM with
bagging-SVM and clustering-SVM
(MCA ± std).

Fig. 7. Visualizations of positive (red) and
negative (blue) images in 2D feature space.
Positive images from three different videos
usedfor V-SVM (first row) and three dif-
ferent positive clusters used for clustering-
SVM (second row) (Color figure online).

k-means, and then V + linear SVM classifiers are trained as in V-SVM. The only
difference between the ‘clustering-SVM’ and the proposed V-SVM is in the ways
to cluster positive images for each individual SVM classifier. Again, Fig. 6 shows
that V-SVM performs significantly better than the clustering-SVM for all differ-
ent P (p-value < 0.01), suggesting that the better performance of V-SVM is not
solely from the clustering of positive images into multiple subsets for subsequent
classifier learning. Actually, by reducing feature vectors of all images into a 2D
feature space via PCA and then visualizing the distribution of each set of pos-
itive images together with the distribution of all negative images, we observed
that although positive images used for each individual SVM in the clustering-
SVM are locally clustered (Fig. 7, second row), the positive images used for each
video-specific SVM in the V-SVM are not clustered in local feature space (Fig. 7,
first row). Such un-clustered property in the feature space may somehow help
V-SVM identify more detailed lesion properties during the training, leading to
better performance during testing.

4 Conclusions

This paper proposed a new ensemble classifier called V-SVM, which can be
considered as a trade-off between single SVM and the E-SVM. Evaluations on
a colonoscopy dataset shows that V-SVM performs significantly better than
SVM, E-SVM, and other relevant ensemble classifiers. Future work will explore
the possible empirical and theoretical reasons which cause better performance
of V-SVM.
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