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Abstract. One of the main goals of recent developments in the Smart
Grid area is to increase the use of renewable energy sources. These
sources are characterized by energy fluctuations that might lead to energy
imbalances and congestions in the electricity grid. Exploiting inherent
flexibilities, which exist in both energy production and consumption, is
the key to solving these problems. Flexibilities can be expressed as flex-
offers, which due to their high number need to be aggregated to reduce
the complexity of energy scheduling. In this paper, we discuss balance
aggregation techniques that already during aggregation aim at balancing
flexibilities in production and consumption to reduce the probability of
congestions and reduce the complexity of scheduling. We present results
of our extensive experiments.
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1 Introduction

The power grid is continuously transforming into a so called Smart Grid. A main
characteristic of the Smart Grid is the use of information and communication
technologies to improve the existing energy services of the power grid and simul-
taneously increase the use of renewable energy sources (RES) [2]. However, the
energy generation by renewable sources, such as wind and solar, is characterized
by random occurrence and thus by energy fluctuations [5]. Since their power
is fed into the power grid and their increased use is a common goal, they may
provoke overload of the power grid in the future, especially in peak demand sit-
uations [4,9]. Moreover, the use of new technologies, such as heat pumps and
electrical vehicles (EV), and their high energy demand could also lead to elec-
tricity network congestions [13].

Within the Smart Grid, the EU FP7 project MIRABEL [3] and the ongoing
Danish project TotalFlex [1] are using the flex-offer concept [17] to balance
energy supply and demand. The concept is based on the idea that the energy
consumption and production can not only take place in specific time slots, but
be flexible and adjustable instead. For instance, an EV is parked during the
night from 23:00 until 6:00. The EV could be charged or alternatively also act
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as an energy producer and feed its battery energy into the grid [15]. So the
EV is automatically programmed to maximally offer 30 % of its current battery
energy to the grid, corresponding to 2 h of discharging. So, in a case of an energy
demand or favorable energy tariffs, the EV will be discharged, e.g. from 1:00 to
2:00, offering 15 % of its battery energy.

In the MIRABEL project, an Energy Data Management System (EDMS) is
designed and prototyped. The EDMS aims at a more efficient utilization of RES
by the use of the flex-offer concept. Such an EDMS is characterized by a large
number of flex-offers that have to be scheduled (assign a specific time and energy
amount) so that balancing supply and demand is feasible. Since it is infeasible to
schedule a large number of flex-offers individually [17], an aggregation process is
introduced, so that the number of flex-offers is decreased and consequently also
scheduling complexity [18]. In the proposed EDMS architecture, the scheduling
component is responsible for properly scheduling the aggregated flex-offers in
order to balance out energy fluctuations. The TotalFlex project additionally
considers balancing goal during aggregation so that imbalances are partially
being handled by the balance aggregation.

The balance aggregation aims to aggregate flex-offers derived from consump-
tion and production in order to create flex-offers with low energy demand and
supply requirements. Thus, violations of the network’s electricity capacities could
be avoided. At the same time, the aggregated flex-offers still maintain flexibility
that could further be used during scheduling to avoid grid congestions, reassure
a normal grid operation, and amplify RES use. For instance, in the above men-
tioned EV example, there could also be another EV that needs 4 h of charging,
corresponding to 70 % of its battery capacity. Charging could take place during
the night from 22:00 to 5:00. So, the energy of the first EV could be used to
partially recharge the second one, for example, from 23:00 to 1:00. Thus, instead
of the two EVs, we consider an aggregated flex-offer that represents the demand
of 2 h charging, corresponding to 40 % of battery capacity and the charge could
take place from 23:00 to 5:00. In this work, we perform an extensive experimental
investigation of the behavior of balance aggregation. We also propose alterna-
tive starting points for the techniques and evaluate the impact of aggregation
parameters.

The remainder of this paper is structured as follows. Section 2 is describ-
ing the theoretical foundations and Sect. 3 related work. Section 4 explains how
exactly balance aggregation works. Section 5 discusses results of our extensive
experiments. We conclude in Sect. 6 with a discussion of our future work.

2 Related Work

The unit commitment problem [8,14], where balancing energy demand and sup-
ply is taken into consideration, has been extensively investigated through either
centralized (e.g. [6,16]) or distributed approaches (e.g. [11,12]). Moreover, in [17],
the unit commitment problem has been examined by handling the units as
flex-offers and by using centralized metaheuristic scheduling algorithms. In [17],
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the economic dispatch stage of the unit commitment problem is also elaborated
by applying a cost function and thus confronting potential imbalances.

Furthermore, aggregation that takes into account flexibilities with a flex-
offer use case evaluation has been investigated in [19]. Scheduling aggregated
flex-offers that only represent energy consumption and introducing aggregation
as a pre-step of scheduling has been investigated in [18]. However, in this paper,
we examine aggregation of flex-offers that takes into account one of the goals of
scheduling, i.e., balancing. We do not address imbalances by using a cost function
as in [18], but instead we handle imbalances as an effort to directly balance out
energy amounts derived from supply and demand. To achieve that, we integrate
balancing into the aggregation process. As a result, imbalances are partially han-
dled and flexibility still remains to be used by the scheduling procedure. In this
paper, we evaluate the techniques by taking into consideration energy flexibil-
ity representing not only from consumption as in [18,19] but from production
as well. Moreover, this work provides an extensive experimental evaluation of
balanced aggregation techniques.

3 Preliminaries

We use the following definition based on [19].

Definition 1. A flex-offer f is a tuple f = (T (f ), profile(f )) where T (f) is
the start time flexibility interval and profile(f ) is the data profile. Here, T (f) =
[tes, tls] where tes and tls are the earliest start time and latest start time, respec-
tively.

The data profile profile(f) = s(1), . . . , s(m) where a slice s(i) is a tuple
([ts, te], [amin, amax]) where [amin, amax] is a continuous range of the amount
and [ts, te] is a time interval defining the extent of s(i) in the time dimension.

We consider three types of flex-offers: positive, negative, and mixed ones.
Positive flex-offers have all their amount values of all their slices positive and
correspond to energy consumption flex-offer. Negative flex-offers have all their
amount values of all their slices negative and correspond to energy produc-
tion flex-offers. All the other flex-offers are considered as mixed and express
hybrid flex-offers. Figure 1 illustrates a mixed flex-offer f with four slices, f =
([1, 7], s(1), s(2), s(3), s(4)).

The time is discretized into equal size units, e.g., 15 min and the amount
dimension represents energy. Every slice is represented by a bar in the figure.
The below and above bars of each slice represent the minimum and maximum
amount value, amin and amax, respectively. A flex-offer also supports a lowest
and a highest total amount that represents the minimum and the maximum
energy required respectively [10].

Moreover, as defined in [19], the time flexibility, tf (f ), of a flex-offer f , is
the difference between the latest and earliest start time, the amount flexibility,
af (s), is the sum of the amount flexibilities of all slices in the profile of f , and
the total flexibility of f is the product of the time flexibility and the amount
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flexibility, i.e. flex (f ) = tf(f) · af(s). For instance, the flex-offer in Fig. 1 has
tf (f ) = 7 − 1 = 6, af (s) = (3 − 1) + (4 − 2) + (2 − (−4)) + (−1 − (−3)) = 12,
and total flexibility: 6 ∗ 12 = 72.

Fig. 1. A mixed flex-offer

Furthermore, we consider as aggre-
gation the process in which the
input is a set of flex-offers and the
output is also a set of flex-offers
(aggregated) with a smaller or equal
number of flex-offers. An aggregated
flex-offer encapsulates one or more flex-
offers and is able to describe the flex-
offers that created it. Furthermore, a
measurement that we use to evaluate
the aggregation is the flexibility loss
that is defined according to [19] as the
difference between the total flex-offer
flexibility before and after aggregation.

We will further discuss the aggregation process, introduce balance aggregation,
and two of its techniques in Sect. 4.

4 Balance Aggregation

In order to describe balance aggregation we define the balance, balance(f ),
of a flex-offer f , as the sum of the average amount values of each slice, and
absolute balance, absolute balance(f ) as the sum of the average absolute values
of the amounts for each slice of the flex-offer. For example in Fig. 1, the flex-
offer f = ([1, 6], s(1), s(2)), s(3), s(4)) has balance(f ) = 1 + 3 − 1 − 2 = 1 and
absolute balance(f ) = |1|+ |3|+ |−2|+ |−1| = 9. Goal of the balance aggregation
is to create aggregated flex-offers with low values of absolute balance. In this
section, we sketch the aggregation process and describe approaches to achieve
balance aggregation.

4.1 Flex-Offer Aggregation

In Fig. 2 we present a simple aggregation scenario where we aggregate two flex-
offers, f1 and f2, creating the aggregated flex-offer f1,2. Both f1 and f2, have time
and amount and so does the aggregated one. As illustrated, the time flexibility
(hatched area) of f1 is 2 and of f2 is 3. In the first column of the figure we
show the start alignment aggregation [19]. In that case, we align the two flex-
offers so that their profiles start at the earliest start time and then we sum the
minimum and maximum amounts of each aligned slice. The time flexibility of
the aggregated flex-offer is the minimum flexibility of the non-aggregated flex-
offers. This reassures that all the possible positions of the earliest start time of the
aggregated flex-offer will not violate the time constraint that the non-aggregated
flex-offers have.
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(a) Alignment1 (b) Alignment2 (c) Alignment3

Fig. 2. Different alignments for aggregation

However, because the time flexibility of the aggregated flex-offer depends on
the minimum flexibility of the flex-offers that participate in the aggregation, the
flex-offers are grouped according to 2 different parameters, EST (Earliest Start
time Tolerance) and TFT (Time Flexibility Tolerance) to minimize flexibility
losses [19]. The value of EST represents the maximum difference of the earliest
start times that the flex-offers could have in order to belong to the same group.
The value of TFT represents the maximum time flexibility differences that the
flex-offers could have in order to be grouped together.

As we can see in the second and the third column of Fig. 2, there are different
start time profile combinations for the flex-offers that participate in the aggrega-
tion and result in different aggregated flex-offers. Note that the absolute balance
of the aggregated flex-offer also depends on the start time profile combinations.
For instance, in the second column where we shift the first flex-offer for one time
unit, we see that the absolute balance of the aggregated flex-offer has reduced.
On the other hand, continuing shifting the first flex-offer will increase again the
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absolute balance of the aggregated flex-offer, see third column in Fig. 2. How-
ever, with only two flex-offers there are few combinations and the number of
combinations increases exponentially with the number of flex-offers and larger
time flexibilities. The balance aggregation aims at identifying start time pro-
file combinations and aggregate flex-offer in a manner that will minimize the
absolute balance of the aggregated flex-offer. At the same time, the two balance
aggregation techniques considered in this work do not explore the whole solution
space and thus avoid in-depth search.

4.2 Balance Aggregation

We examine two different approaches of implementing balance aggregation, the
exhaustive greedy and the simple greedy. The techniques are trying to find start
time combinations between positive and negative flex-offers that will lead to an
aggregated one with a minimum absolute balance.

Both these greedy techniques have the same start point but exhaustive greedy
aims to examine a larger solution space than simple greedy. After grouping the
flex-offers according to the grouping parameters, both techniques sort all the
flex-offers inside each group in a descending order regarding their balance and
start the aggregation choosing the one with the minimum balance. The flex-offer
with the minimum balance will be the most negative one representing a flex-
offer derived from production that is usually less flexible than the positive ones.
Afterwards, exhaustive greedy considers the maximum flexibility for the selected
flex-offer and then examines all the possible earliest start time combinations
with all the remaining flex-offers. The technique chooses the alignment of the
flex-offer that provides the minimum absolute balance. It continues until the
absolute balance is no longer reduced. If the absolute balance is not reduced, it
restarts with the remaining flex-offers.

On the other hand, simple greedy also starts the aggregation by choosing
the flex-offer with the minimum balance. However, aggregation continues with
the flex-offer that has the balance which is closest to the opposite (±) balance
of the first one. It examines all the possible start time combinations of the
flex-offer and chooses the aggregation that has the minimum absolute balance.
It also continues the aggregation until the absolute balance of the aggregated
flex-offer is not further reduced. In case the absolute balance is not reduced, it
considers the aggregated flex-offer and continues with the remaining flex-offers.
In Fig. 3 we show how exhaustive greedy and simple greedy work in the same
group of flex-offers. The example is from one of our datasets and in the figure we
show the balance of each flex-offer. We see that both the techniques start their
aggregation by choosing the most negative flex-offer, f5, and aggregate it with
flex-offer f1. However in step 3, exhaustive greedy chooses to aggregate with f3
because it gives a better absolute balance and simple greedy with flex-offer f2
since it is closer to the opposite of the f51 balance. As a result, exhaustive greedy
continues the aggregation separately for f2 and f4 and simple greedy continues
aggregation with f3 leaving f4 non-aggregated. Therefore, the two techniques
lead to different absolute balance values.
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Fig. 3. Exhaustive and simple greedy examples

5 Experimental Evaluation

In this section, we present an extensive experimental evaluation of the balance
aggregation techniques a comparison to start alignment aggregation discussed
in Sect. 4.

5.1 Experimental Setup

For the evaluation of the balance aggregation techniques, we used 4 extensive
experimental setups of 10 groups of 8 datasets, 320 datasets in total. Each setup
is characterized by different time and amount probabilistic distributions corre-
sponding to different energy scenarios.

The first experimental setup is based on the one described in [19]. It con-
sists of 10 groups and each group has 8 datasets, 80 in total. In order to create
each group of the 8 datasets, we first select flex-offers derived from the historical
consumption time series of 5 random customers. Then, we incrementally add
to each dataset flex-offers corresponding to the number of 5 more random cus-
tomers. The last one, the eighth dataset, has flex-offers derived from historical
consumption time series of 40 random customers. Afterwards, for every dataset
we apply start alignment aggregation according to [19], with EST and TFT
equal to zero, resulting in an aggregated positive flex-offer. In every aggregated
flex-offer, a random number of amount slice, between zero and its time flexibility
value is added. Finally, all the positive aggregated flex-offers are converted to
negative ones. As a result, there are always one or more positive flex-offers that
if being aggregated have the same opposite balance as a negative one. Since we
add in each dataset flex-offers derived from five more customers, the datasets
have an incremental number of flex-offers that approximately corresponds to
11 K additional flex-offers for every 5 customers. The way the dataset is created
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reassures that whenever we apply aggregation with the parameters EST and
TFT set to 0, it is feasible to create an aggregated flex-offer with zero absolute
balance. The time flexibility values of the flex-offers follow a normal distribution
N (8, 4) in the range [4, 12] and the number of the slices a normal distribution N
(20, 10) in the ranges [10, 30]. Those profiles are from 2.5 to 7.5 h long, with one
to three hours time flexibility, which could represent flex-offers derived mostly
from EVs. The results of the experiments of this setup are illustrated in the first
row of Figs. 4, 5, 6, 7, 8, 9, 10, and 11.

Regarding the second experimental setup, we also created 10 groups of 8
datasets. The number of the flex-offers is similar to the one of the previous
dataset. Furthermore, historical consumption time series of customers and the
flex-offer generator tool described in [7] were used to create the datasets. The
flex-offer generator tool was used to generate both positive and negative flex-
offers. For all the datasets the number of the positive (consumption) flex-offers
is twice the number of the negative (production) ones. In addition, the number
of the slices of the positive flex-offers follows the normal distributions N (20, 10)
in the ranges [10, 30] and of the negative flex-offers the normal distributions
N (40, 20) in the ranges [20, 60]. The time flexibility values (tls − tes) of the
positive flex-offers and of the negative flex-offers follow a discrete uniform distri-
bution on the interval [1, 10] and [1, 8] respectively. This setup aims to explore a
scenario in which balancing out energy and production is theoretically feasible.
Thus, the negative flex-offers are half the positive ones but with double pro-
file length. Such negative flex-offers with long profiles and less flexibility than
the flex-offers representing the consumption could simulate RES. On the other
hand, flex-offers characterized by more time flexibility and shorter profiles rep-
resent flex-offers derived from mostly recent technological achievements such as
EVs and heat pumps. The results of the experiments of this setup are illustrated
in the second row of Figs. 4, 5, 6, 7, 8, 9, 10, and 11.

Our third experimental setup is created as the second one. These datasets are
variations of the second one with a deviation regarding the length and the time.
More specifically, the slices of the positive flex-offers follow the same distribution
as before, but the negative flex-offers follow the normal distribution N (50, 10) in
the ranges [40, 60], which makes them longer. The time flexibility values (tls−tes)
of the positive flex-offers and of the negative flex-offers follow a discrete uniform
distribution on the interval [2, 18] and [1, 6] respectively, making the positive flex-
offers much more flexible regarding time. Such kind of flex-offers could represent
not only EVs and heat pumps but also electronic devices as well. The results of
the experiments of this setup are illustrated in the third row of Figs. 4, 5, 6, 7,
8, 9, 10, and 11.

Our last experimental setup is similar to the third one. However, the negative
flex-offers in this setup are characterized by less energy flexible profiles compared
to the positive ones, reflecting a scenario in which the RES are not that flexible
regarding energy. Moreover, the positive flex-offers are twice the number of the
negative ones. More specifically, the number of the slices for the positive and
the negative flex-offers follow the normal distributions N (5, 2) and N (10, 2) in
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Fig. 4. Results of the absolute balance in terms of scalability effect

the ranges [1, 10] and [5, 15], respectively. The energy flexibility values of the
positive flex-offers follow the normal distributions N (30, 10) in the range [0, 50]
and of the negative flex-offer N (20, 10) in the same range over the same amount
of flexibility. The results of the experiments of this setup are illustrated in the
fourth row of Figs. 4, 5, 6, 7, 8, 9, 10, and 11.
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Fig. 5. Results of the absolute balance in terms of grouping parameters effect

In the experiments we investigate the three aggregation techniques regarding
the absolute balance, the flexibility loss, the number of the aggregated flex-offers,
and the processing time. We examine all four aspects in terms of scalability
and grouping parameters, EST, and TFT. In terms of scalability, we set both
the grouping parameters to zero, and examined the techniques in datasets with



Aggregating and Balancing Energy Flexibilities - A Case Study 27

0 2 4 6 8 10
x 10

4

0

10

20

30

40

50

Flex−offer count

F
le

xi
bi

lit
y 

Lo
ss

,% Simple Greedy
Exhaustive Greedy
Start Alignment
Simple Greedy1
Exhaustive Greedy1

0 2 4 6 8 10
x 10

4

0

10

20

30

40

50

Flex−offer count

F
le

xi
bi

lit
y 

Lo
ss

,% Simple Greedy
Exhaustive Greedy
Start Alignment
Simple Greedy1
Exhaustive Greedy1

0 2 4 6 8 10
x 10

4

0

2

4

6

8

Flex−offer count

F
le

xi
bi

lit
y 

Lo
ss

,%

Simple Greedy
Exhaustive Greedy
Start Alignment
Simple Greedy1
Exhaustive Greedy1

0 2 4 6 8 10
x 10

4

0

10

20

30

40

50

Flex−offer count
F

le
xi

bi
lit

y 
Lo

ss
,%

Simple Greedy
Exhaustive Greedy
Start Alignment
Simple Greedy1
Exhaustive Greedy1

0 2 4 6 8 10
x 10

4

0

0.2

0.4

0.6

0.8

1

Flex−offer count

F
le

xi
bi

lit
y 

Lo
ss

,%

Simple Greedy
Exhaustive Greedy
Start Alignment
Simple Greedy1
Exhaustive Greedy1

0 2 4 6 8 10
x 10

4

0

10

20

30

40

50

Flex−offer count

F
le

xi
bi

lit
y 

Lo
ss

,%

Simple Greedy
Exhaustive Greedy
Start Alignment
Simple Greedy1
Exhaustive Greedy1

0 2 4 6 8 10
x 10

4

0

0.2

0.4

0.6

0.8

Flex−offer count

F
le

xi
bi

lit
y 

Lo
ss

,%

Simple Greedy
Exhaustive Greedy
Start Alignment
Simple Greedy1
Exhaustive Greedy1

0 2 4 6 8 10
x 10

4

0

10

20

30

40

50

Flex−offer count

F
le

xi
bi

lit
y 

Lo
ss

,%

Simple Greedy
Exhaustive Greedy
Start Alignment
Simple Greedy1
Exhaustive Greedy1

TFT=0, EST=0 TFT=6, EST=0

Fig. 6. Results of the flexibility loss in terms of scalability effect

incremental numbers of flex-offers, starting with minimum 11 K (approximately)
and maximum 90 K (approximately) flex-offers (Figs. 4, 6, 8, and 10). For each
experimental setup, we created 10 groups of datasets that have the same number
of flex-offers to reduce any effect of the randomness that characterizes the dataset
generation. Regarding the effect of the grouping parameters, we used datasets
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Fig. 7. Results of the flexibility loss in terms of grouping parameters effect

with almost 90 K flex-offers and set one of the parameters stable and set to zero,
and varied the other values from zero to six, respectively (Figs. 5, 7, 9, and 11).
For illustrating purposes, we show the average behavior of the similar datasets
that there are in each group.

We also investigate the performance of exhaustive and simple greedy after
alternating their starting point referring to them in all the figures as “exhaustive
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Fig. 8. Results of the aggregated flex-offer count in terms of scalability effect

greedy” and “simple greedy1”. We illustrate their performance when they both
start by selecting the flex-offer with the maximum absolute balance instead of
the one with the minimum balance. In the first row, and the first and second
column of Figs. 4, 6, and 8 there is an overlap between the illustrated lines of
the techniques because the techniques showed similar behavior. The experiments
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Fig. 9. Results of the aggregated flex-offer count in terms of grouping parameters effect

were conducted on a 2.9 GHz Intel core i7 processor with two cores, L2 Cache of
256 KB, L3 Cache of 4 MB and physical memory of 8 GB (4 of 4 GB of 1600 MHz
DDR3).
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Fig. 10. Results of the processing time in terms of scalability effect

5.2 Absolute Balance

The results for absolute balance are shown in Figs. 4 and 5. In Fig. 4, absolute
balance scales almost linearly with the number of input flex-offers. All the tech-
niques, exhaustive greedy, simple greedy and start alignment have almost the
same performance (first row of Fig. 4) in all the setups except the first one.
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Fig. 11. Results of the processing time in terms of grouping parameters effect

In the first setup, the two greedy techniques, exhaustive and simple greedy,
achieve a very low balance, first row of Figs. 4 and 5.

More specifically, we see in the first column of Fig. 4 that both techniques
achieve a very close to zero balance when both EST and TFT are set to zero.
When TFT is set to 6, exhaustive greedy achieves a lower balance than simple
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greedy (first row, second column in Fig. 4), but close to zero for both. Due to the
nature of the first experimental setup, zero absolute balance can be achieved and
therefore the two greedy techniques achieve it. However, we observe that start
alignment achieves the minimum absolute balance among the techniques in the
last three setups when there is a large number of flex-offers, approximately 90 K,
see Fig. 5. In the second to fourth line of Fig. 5 we see that exhaustive greedy and
simple greedy have absolute balance similar to start alignment, with exhaustive
greedy achieving a slightly smaller value between the two greedy techniques.

In the last three experimental setups (second to fourth row in Figs. 4 and 5),
there is an overlap in all the slices between the positive and the negative flex-
offers since the profiles of the negative flex-offers have at least double profile
length in comparison to the positive ones. As a result, start alignment achieves
a low absolute balance and the two greedy techniques do not take advantage of
the exploration of the solution space since all the differences in absolute balance
between each possible aggregation are very low. They are very low because even
if there might be an earliest start time combination between a positive and a
negative flex-offer that reduces the total absolute balance of the mixed flex-offer,
the percentage will be too low because the absolute balance is mostly reflected
by the long profiles of the negative flex-offer. This fact combined with the large
number of aggregated flex-offers that the two greedy techniques produce after
aggregation in all the datasets, (Figs. 8 and 9) produce a lower balance for start
alignment.

The number of the flex-offers that is produced by aggregation influences the
result of the absolute balance. The fewer flex-offers participate in the aggrega-
tion, the more aggregated are produced. As a result less compensations between
positive and negative slices take place and that leads to a higher absolute bal-
ance. Furthermore, start alignment shows a decreasing behavior of the produced
absolute balance when the values of the grouping parameters are greater than
zero, first row of Fig. 9. This occurs because when the values of the grouping
parameters increase, more flex-offers participate in the aggregation and thus
more positive and negative flex-offers are aggregated, achieving a lower absolute
balance.

5.3 Flexibility Loss

Another aspect that we examine for the aggregation is the flexibility loss. In
Figs. 6 and 7 we see that the techniques show a divergent behavior in all the
different setups. We see, in the first column of Fig. 6, that start alignment has
zero absolute balance when TFT = 0, followed by exhaustive greedy that has
a small difference to simple greedy. The flexibility loss is mainly affected by the
time flexibility and since both EST and TFT are set to zero, it means that in
each group the flex-offers have the exact same earliest start time and the same
time flexibility as well. That leads to no time flexibility loss for start alignment
and thus no flexibility loss at all. Furthermore, we notice a low percentage of
flexibility loss for exhaustive and simple greedy in the three last setups (second
column, second and third row of Fig. 6 and first column, second and third row
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of Fig. 7). The low time flexibility of the negative flex-offers of the third and the
fourth setups reassures a low flexibility loss. This happens because the solution
space is narrowed down, low time flexibility leads to fewer combinations, and that
TFT set to 0 reassures that all the flex-offers in the group have the same low
time flexibility. A higher percentage of flexibility loss for both greedy techniques
is shown in the second setup (second row of Figs. 6 and 7), because in this dataset
the time flexibility of the flex-offers is higher.

Both exhaustive and simple greedy behave similarly to start alignment, pro-
ducing almost the same number of aggregated flex-offers (first column of Fig. 8).
However, we notice a high percentage of the flexibility loss for both greedy and
simple greedy in the first setup (first row of Figs. 6 and 7). We see that start
alignment has, as before, zero flexibility loss, and the nature of the setup favors
an exploration of the solution space for both greedy techniques. Eventually, the
greedy techniques identify aggregations that lead to less time flexibility and thus
to flexibility loss.

Based on the second column of Fig. 6, the first and partially the second
column of Fig. 7, we notice that for all the techniques, when the grouping para-
meters are increased, the flexibility loss is also increased. This happens because
flex-offers with different time flexibilities are in the same group. For start align-
ment, this will lead to an aggregated flex-offer with the lowest time flexibility and
hence to flexibility loss. Regarding exhaustive and simple greedy, larger group-
ing parameters result in a larger solution space since more flex-offers participate
in the aggregation and more earliest start time combinations exist. As a result,
the techniques will most probably create an aggregated flex-offer with a lowest
absolute balance and a lowest time flexibility. However, no matter how much
we increase the value of the EST parameter, the fact that TFT is zero will
reassure the maintenance of the time flexibility for start alignment and thus no
flexibility loss will occur. In almost all the datasets, start alignment shows the
best behavior compared to the other two techniques. In the third and the fourth
experimental setup, we see that while the number of the flex-offers increases and
especially while TFT increases (third and fourth row of Fig. 7), the two greedy
techniques show a result that is competitive to start alignment result and even
better, achieving a lower flexibility loss. The low flexibility losses occur due to
the high value of the time flexibility that the positive flex-offers are character-
ized with, compared to the negative ones in the third and the fourth setup.
Therefore, there are flexibility losses for start alignment, since the aggregated
flex-offers have the lowest time flexibility.

The two greedy techniques achieve a lower flexibility loss because some of
the flex-offers in the group do not participate in the grouping. Hence, exhaustive
and simple greedy create more aggregated flex-offers than start alignment (Figs. 8
and 9), thus fewer flex-offers participate in the aggregation and less flexibility
loss will occur.



Aggregating and Balancing Energy Flexibilities - A Case Study 35

5.4 Execution Time and Aggregated Flex-Offers Count

Regarding the processing time of all the techniques, we see in Figs. 10 and 11
that start alignment has the best performance followed by simple greedy and
exhaustive greedy. Start alignment is the fastest one since it always applies
only one aggregation. It is also possible for start alignment to achieve better
execution times, see third row, second column of Fig. 11, when the grouping
parameters are high and thus fewer groups are created. On the other hand,
exhaustive greedy demands the most execution time because it creates more than
one aggregated flex-offers as simple greedy does, but explores a larger solution
space than simple greedy. This results to larger execution times for exhaustive
greedy, leaving simple greedy in the second place. Regarding the number of
the aggregated flex-offers, we see in Figs. 8 and 9 that in all the experimental
setups, start alignment has a lower number of aggregated flex-offers than the
two greedy techniques. This is a result of the implementation of the techniques
because start alignment will always create one aggregated flex-offer when it
is applied to a set of a flex-offers. On the other hand, exhaustive and simple
greedy will create at least one aggregated flex-offer if absolute balance is not
reduced during the aggregation. Regarding the alternative exhaustive and simple
greedy we see no difference for the first experimental setup. However, in all the
other setups, the alternate techniques achieve a better absolute balance, higher
flexibility losses, and fewer aggregated flex-offers when the grouping parameters
are set to values greater than zero for larger number of flex-offers (second to
fourth row of Figs. 5, 7, and 9). On the other hand, since they create fewer
aggregated flex-offers, they have a bigger solution space to examine and thus
they are slower than the original ones (Figs. 10 and 11).

6 Conclusion and Future Work

In this paper, we elaborated on aggregation techniques that take into account
balancing issues. The techniques discussed in Sect. 4 reduce the number of the
flex-offers that will be the input of the scheduling process and at the same time
consider one of its main goals, i.e., achieving balance between energy supply and
demand. We conclude through an extensive experimental evaluation that achiev-
ing the minimum balance is feasible, but there is always a trade off between
balance, flexibility loss and processing time. We show that in order to achieve
a good balance, we have to sacrifice time flexibility and also spend more time
on processing. The comparisons of the balance techniques with start alignment
aggregation showed as well that there are scenarios in which start alignment
can achieve very good balance in faster processing times than the greedy tech-
niques. However, flexibility loss between the techniques depends on the grouping
parameters without providing a clear winner.

In our future work, we aim to improve the grouping phase that takes place
in order to maximize the flexibility that the aggregated flex-offers will have and
at the same time improve the balance. It seems also interesting to examine
the balance that aggregation will achieve during hierarchical aggregation that
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is important for an EDMS. In such a scenario, balance aggregation seems more
suitable since the input will be mixed flex-offers.
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