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Abstract. According to some research, comorbidity is reported in 35 to
80% of all ill people [1]. Multiple guidelines are needed for patients with
comorbid diseases. However, it is still a challenging problem to automate
the application of multiple guidelines to patients because of redundancy,
contraindicated, potentially discordant recommendations. In this paper,
we propose a mathematical model for the problem. It formalizes and
generalizes a recent approach proposed by Wilk and colleagues. We also
demonstrate that our model can be encoded, in a straightforward and
simple manner, in Answer Set Programming (ASP) – a class of Knowl-
edge Representation languages. Our preliminary experiment also shows
our ASP based implementation is efficient enough to process the exam-
ples used in the literature.
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1 Introduction

Clinical practice guidelines (CPGs) [2], created by experts and supported by med-
ical evidences, are documents guiding the decisions in specific areas/conditions of
healthcare. It is generally agreed that the use of guidelines can greatly improve
the outcome of clinical medical care. To promote the use of CPGs and increase
their accessibility, an important effort is to build systems that can automatically
execute the guidelines given patients’ information. Most of the early systems are
based on the representation languages such as Asbru, GLIF, GUIDE, EON, PRO-
forma [3–5]. CPGs are usually developed to target a single disease [3], and thus
these systems and languages were focusing on single diseases too.

It has been noted that the majority of elderly patients have multiple co-
morbidities and medications that must be addressed by their patient care team
[6]. When applying multiple CPGs to comorbid patients, as pointed out by
Sittig et al. [7], “the challenge is to create mechanisms to identify and elimi-
nate redundant, contraindicated, potentially discordant, or mutually exclusive
guideline based recommendations for patients presenting with comorbid condi-
tions or multiple medications.”
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As an example, consider an ulcer patient with transient stroke. According to
the ulcer CPG, stop aspirin is a necessary activity in the treatment of ulcer while
start aspirin, according to the transient stroke CPG, is also a necessary activity
under certain situations. In this case, it is desirable for a CPG based system to
identify the inconsistency of the stop aspirin and start aspirin activities resulted
from two distinct CPGs, and then remove the inconsistency by replacing the
activity of start aspirin by start clopidogrel.

Recently several attempts [8–10] have been made to attack the problem (or
a part of it). We are particularly interested in the approach proposed by Wilk
and colleagues [10–12] which consists of two steps. The first step is to identify
the adverse and contradictory activities, i.e., inconsistencies, that are obtained
by applying the CPG to each of the several diseases a patient has. The second
step is to mitigate the inconsistencies. We call the problem introduced by Wilk
et al. guideline reconciling problem.

Wilk and colleagues offered one of the first few automated solutions for the
concurrent application of CPGs to two diseases. However, they only gave a solu-
tion for the problem, based on Constraint Logic Programming program and
pseudo code algorithms, but did not give a mathematical definition of the prob-
lem. As a result of the lack of problem definition, it is not easy to evaluate
how closely this problem models the real problems on the application of two or
more CPGs, and the solution to the reconciling problem may be unnecessarily
restricted (e.g., to the approach used in their work) too.

In the research reported here, we make the following contributions to improve
Wilk and colleagues’ work.

We separate the reconciling problem from its solution(s). We find that graph
theory provides a handy tool for us to develop an explicit mathematical definition
for the reconciling problem. Compared with Wilk et al.’s work, our definition
does not depend on an programming languages or algorithms. We expect the
definition to be more accessible to researchers in the medical area (maybe with
help of computer scientists) and thus makes it easier for them to evaluate its
capacity of modeling the real situation. On the other hand, once the problem is
(mathematically) defined, computer scientists can focus on finding better ways
to solve the problem, without worrying too much about the required medical
background.

In our definition, we also generalize the problem implied by Wilk et al’s
algorithms by allowing OR decision nodes.

Once the problem is defined, there are many immediate ways to solve the
problem under both declarative and imperative programming paradigms. As
an example, we present a solution based on Answer Set Programming (ASP), a
declarative programming paradigm. ASP is a well developed non-monotonic logic
programming paradigm in the knowledge representation community. The logic
rules of ASP are natural because a good amount of knowledge in guidelines are
in the form of rules. More important, rules in CPGs usually involve exceptions,
which can be addressed very well by the non-monotonicity property of ASP.
Thanks to its declarativeness and non-monotonicity, ASP is elaboration tolerant
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[13,14] (which means that it is convenient to modify a set of facts expressed
in ASP to take into account new phenomena or changed circumstances in the
domain of concern), which is particularly amenable to the constant revision of
guidelines driven by the growth of our knowledge on all aspects of diseases.
Equally important to the expressiveness of ASP, several efficient ASP inference
engines or solvers such as DLV [15] and CLASP [16] have been developed and
maintained in the last decade. They enable the development of efficient ASP
based solutions to application problems. An important note in our decision of
using ASP is there are many aspects of the problem (as a mathematical model
for reconciling CPGs) that need to be improved to address the real life problems.
Those improvements can very well make the problem NP-hard. So, we are not
interested in ad hoc algorithm(s) specifically designed for the problem defined
in its current form.

The encoding of the problem using ASP is natural and simple, almost a
straightforward translation of the problem definition. Our preliminary experi-
ment also shows that the examples mentioned in [10] can be solved efficiently.
As far as we are aware of, there is no system available on applying multiple CPGs
to several diseases. Our ASP program is available publicly and downloadable at
http://redwood.cs.ttu.edu/∼yzhang/temp/KR-14/code-coMorbidity-dlv.lp.

The rest of this paper is organized as follows. We first review the activity
graph representation of clinical practice guidelines and answer set programming
in Sect. 2. The formal definition of the problem of concurrent application of
CPGs to a patient’s comorbid diseases is given in Sect. 3. In Sect. 4, an answer set
programming based solution is presented. We then present the implementation
of the ASP approach and the preliminary evaluation of the program in Sect. 5.
Finally, conclusion is made in the last section of the paper.

2 Preliminary

The work reported in [11,12] focuses on the activity graphs that are used to
represent a major portion of a CPG (e.g., in SAGE [17]). We will recall activity
graphs in the first subsection, and introduce some background knowledge about
Answer Set Programming in the second subsection.

2.1 Activity Graph for CPGs

An activity graph (AG) is a directed graph that consists of context, action and
decision nodes. A context node is the root node of the AG and it defines a clinical
context where the CPG is applied to. As an example, “patient diagnosed with
TIA” is the root node of the AG for transient ischemic attack (TIA) (Fig. 1
right). An action is a clinical action to be performed according to the guideline.
An example is “take aspirin.” A decision step represents a decision point in
a guideline. For example, a decision step in the guideline for TIA is whether
hypoglycaemia is present. Decision nodes can be further divided into OR or
XOR nodes. The former indicates more than one alternative can be resulted

http://redwood.cs.ttu.edu/~yzhang/temp/KR-14/code-coMorbidity-dlv.lp
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Fig. 1. Activity Graphes for DU (left) and TIA (right) (from [12])

from a decision node while the later means that only one alternative can be
resulted from the decision node. Figure 1 left shows an example of the AGs for
duodenal ulcer (DU) and TIA. For every disease (clinical context) we assume
there is one and only one clinical practice guideline for it and one and only one
activity graph for it.

2.2 Answer Set Programming

We now give a brief introduction of answer set programming and refer the inter-
ested reader to the book [14] for more details.

Answer set programming originates from non-monotonic logic and logic pro-
gramming. It is a logic programming paradigm based on the answer set semantics
[14,18], which particularly offers an elegant declarative semantics to the negation
as failure operator in Prolog. An ASP program consists of rules in the form:

l0| . . . |lk : − lk+1, . . . , lm, not lm+1, . . . , not ln.

where each li for i ∈ [0..n] is a literal of some signature, i.e., an expression of
the form p(t) or ¬p(t) where p is a predicate and t is a term, and not is called
negation as failure or default negation and | epistemic disjunction. A rule without
body is called a fact, and a rule without head is called a denial. The rule is read
as: if one believes lk+1, . . . , and lm and there is no reason to believe lm+1, . . . , and
ln, one must believe l0, l1, . . . , or lk. The answer set semantics of a program P
assigns to P a collection of answer sets, i.e., interpretations of the signature of P
corresponding to possible sets of beliefs (i.e., literals). These beliefs can be built by
a rational reasoner by following the principles that the rules of P must be satisfied
and that one shall not believe anything unless one is forced to believe.
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There have been several research groups developing and maintaining high
quality efficient ASP solvers. Examples include DLV [15], and Clasp [16]. These
solvers have been employed to successfully solve problems ranging from moni-
toring elderly people in nursing homes [19] to decision support systems for the
space shuttle controllers [20].

3 Definition of the Reconciling Problem

In this section, based on graphs, we define the reconciling problem in the concur-
rent application of CPGs to a patient with two diseases. We first define activity
graph obtainable from the CPG for a disease, candidate treatment for a disease
using the activity graph, and valid treatment. We then define point of con-
tention, i.e., conflicts, among candidate treatments and the mitigation operation
to remove the conflicts. Finally, we define the reconciling problem.

3.1 Candidate Treatment

Definition 1 (Activity Graph). An activity graph of a CPG of a disease is a
directed graph with labels on some edges (CN ∪AN ∪DNo∪DNxor, E, l : E → L)
where

– CN,AN,DNo,DNxor, L are disjoint sets,
– CN = {x} and x is called the context node,
– Elements of AN,DNo,DNxor, L are called action nodes, or-decision nodes,

xor-decision nodes, and labels respectively,
– E ⊆ V × V , where V = CN ∪ AN ∪ DNo ∪ DNxor and an element (x, y) of

E is called an edge, an incoming edge of y and an outgoing edge of x, such
that there is no incoming edge for the context node and for any non decision
node there is at most one outgoing edge,

– l, called a labeling function, is a partial function from edges to labels such that
l((x, y)) is always defined if x is a decision node.

The activity graph shown in the left of Fig. 1 is as follows: CN = {du} where
du is the shorthand for “Patient diagnosed with DU” for convenience, AN =
{sa, et, ppi, sc, rs} (note that these names in the figure are in capital letters),
DNo = ∅, DNxor = {htest, uhe} where htest is for “H. pylori test?” and uhe for
“Ulcer healed on endoscopy?”

E = {(du, sa), (sa, htest), (htest, et), (htest, ppi),
(et, uhe), (ppi, uhe), (uhe, sc), (uhe, rs)},

L = {hpp, hpn, uh, unh}, and the labeling function l labels outgoing edges of deci-
sion nodes as follows: l((htest, et)) = hpp, l((htest, ppi)) = hpn, l((uhe, sc)) =
uh, l((uhe, rs)) = unh.

For treatment oriented CPGs, an important task is to follow them to find
a treatment with the given patient information. We now define the candidate
treatment with respect to a CPG of a disease.
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Definition 2 (Candidate Treatment). A candidate treatment is the collec-
tion of actions of a subgraph H of G such that
– the context node of G belongs to H,
– every node of H is reachable from the context node wrt H,
– for every node x of H, there is a node y of H that is a leaf node of G such

that y is reachable from x in H, and
– for every xor-decision-node x of H, its outgoing degree wrt H is one.

H is called an underlying graph of the candidate treatment.

It is worth noting that or-decision may cause two or more decision options to
be satisfied. Therefore, in our definition of candidate treatment we allow parallel
outgoing edges from an or-decision node. We also note an interpretation of or-
decision is that external preference information is usually used to help choose one
of the several outgoing edges. With preference information given, the underlying
graph of a candidate treatment is reduced to a path in the activity graph.

For simplicity, we assume that for any candidate treatment, there is a unique
underlying graph without loss of generality. The majority of CPGs have xor-
decision-node only. In this case, a candidate treatment is a path from the context
node to a leaf node. In the left graph of Fig. 1, there are totally four candidate
treatments for patients diagnosed with DU (chronic condition):
– T du

1 : {sa, et, sc} with the underlying path du → sa → hpt → uhd → et → sc.
– T du

2 : {sa, ppi, sc} with the underlying path du → sa → hpt → uhd → ppi →
sc.

– T du
3 : {sa, et, rs} with the underlying path du → sa → hpt → uhd → et → rs.

– T du
4 : {sa, ppi, rs} with the underlying path du → sa → hpt → uhd → ppi →

rs.

The right graph of Fig. 1 presents five candidate treatments for patients with
TIA where tia is for “Patient diagnosed with TIA,” hc is for “Hypoglycaemia?”
nsrtest for “Neurological symptoms resolved?” and rstest for “Risk of stroke?”
– T tia

1 : {ec} with the underlying path tia → ec.
– T tia

2 : {pcs} with the underlying path tia → hc → fast → pcs.
– T tia

3 : {a, pcs} with the underlying path tia → hc → fast → nsrtest → a →
rstest → pcs.

– T tia
4 : {a, d, nc} with the underlying path tia → hc → fast → nsrtest → a →

rstest → d → nc.
– T tia

5 : {ts, nc} with the underlying path tia → hc → fast → nsrtest → ts →
nc.

3.2 Valid Treatment

For a patient with comorbid diseases, inconsistencies are often introduced in the
possible treatments because of the amalgamation of multiple guidelines. We give
the definition of the related concepts as follows.

Given two candidate treatments T1, T2 wrt two activity graphs G1 and G2

respectively, and a collection I of sets, called incompatible sets1, of actions, a
1 Many incompatible sets are known facts are directly from the medical field.
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set AS of actions is a point of contention (POC for short) between T1 and T2 if
every action of AS is an action of T1 or T2 and AS ∈ I.

For example, start aspirin a and stop aspirin sa form an incompatible set2

{sa, a}. Suppose there is an ulcer patient diagnosed with transient ischemic
attack. A point of contention between T du

1 and T tia
3 is {sa, a}.

When there are point of contentions between candidate treatments for two
diseases, one can find ways to mitigate the point of contention. Mitigation oper-
ator is defined by Wilk et al. [12] as follows.

A mitigation operator (MO) for disease d1 and d2 is a tuple (d1, d2, con-
tentions, LHS, RHS, toBeRemoved) where

– d1 is called a base disease and d2 a target disease,
– contentions is a set of actions from the activity graphs for d1 and d2,
– LHS and RHS are a set of elements, called action literals of the form pos(A)

or neg(A) where A is a medical action that may or may not be an action of
activity graphes of d1 or d2,

– toBeRemoved is a set of actions of activity graph of d2.

For example, the following MO1 and MO2 are MOs for TIA and UD address-
ing the point of contention {a, sa}.

– MO1: (tia, du, {sa, a}, {pos(a), neg(d)},{neg(a), pos(cl)}, {sa}).
– MO2: (tia, du, {sa, a}, {pos(a), pos(d)},{pos(a), pos(d), pos(ppi)}, {sa}).

Given candidate treatment T1 and T2 wrt activity graph G1 of disease d1
and activity graph G2 of disease d2, an MO α=(d1, d2, contentions, LHS, RHS,
toBeRemoved) for d1 and d2 is relevant to T1 and T2 if contentions is a subset
of T1 ∪ T2. An MO is applicable to T1 and T2 if it is relevant and for every
pos(A) ∈ LHS, action A ∈ T1, and for every neg(A) ∈ LHS, action A /∈ T1.
Suppose α is applicable to T1 and T2, the modified treatment by applying α to
T1 and T2 is T ′

1 and T ′
2 where

– T ′
1 = {A : pos(A) ∈ RHSor (A ∈ T1 but A occurs neither in LHS nor RHS)},

and
– T ′

2 = T2 − toBeRemoved.

Continue the example above. For T du
1 and T tia

3 , there is a point of contention
{a, sa} between them. MO1 is applicable and can be used to modify T du

1 and
T tia
3 . By definition, the modified treatments of applying MO1 to T du

1 and T tia
3

are as follows: T tia
3

′: {cl, pcs} and T du
1

′ = {et, sc}.
We next define treatments targeting a specific patient’s situation.

Definition 3 (Patient Information). We define Patient Information (PI) as
a set of pairs (decision, value) where decision is a decision node and value is
a label of an outgoing edge of the node decision in G. A candidate treatment T
agrees with patient information I, if for every decision node x and every edge
(x, y) of the underlying graph of T , (x, val) ∈ I where val is the label of (x, y).
2 They are logically inconsistent.
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For example, both T tia
3 and T tia

4 agree with PI {(hc, ha), (fast, fp), (nsrtest,
nsr)} (for ha, fp, see the right graph of Fig. 1).

Definition 4 (Valid Treatment). Given PI I of a patient, with two diseases,
and candidate treatments T1 and T2 for these diseases respectively, T1 ∪ T2 is a
valid treatment with respect to I if T1 and T2 agree with I, and there is no point
of contention between T1 and T2.

Definition 5 (Reconciling Problem). Given PI I of a patient with diseases
D1 and D2 and a set of MOs for D1 and D2, the reconciling problem is to find
a valid treatment with respect to I if there exists one, and otherwise find if there
are candidate treatment T1 and T2 such that their modified treatment T ′

1 and T ′
2

by applying some of the MOs are valid.

For example, let the PI of an ulcer patient diagnosed with transient stroke be
{(hc, ha), (fast, fp), (nsrtest, nsr)}. Clearly, the candidate treatments for ulcer
and transient stroke that agree with PI are T tia

3 , T tia
4 and T du

1 , T du
2 , T du

3 , T du
4

respectively. There is no valid treatment for the patient because of a point of
contention {sa, a} between each pair of the candidate treatments. By applying
MO1 to T tia

3 and T du
1 , we get a valid modified treatment T tia

3
′ ∪ T du

1
′ where

T tia
3

′ = {cl, pcs} and T du
1

′ = {et, sc} as illustrated in the earlier example.

4 ASP Based Solution

In this section, we present an ASP based solution of finding a valid (modified)
treatment for patients with comorbid diseases according to the CPGs for these
diseases and mitigation operators.

Representation of an Activity Graph. We first introduce the predicates
needed to represent the activity graph g for a disease d: cNode(g,ct) – ct is the
context node of g, aNode(g,Action) – Action is an action node of g, oNode(g,N)
– N is an or decision node, xNode(g,N) – N is an xor decision node, edge(g, X,
Y) – (X,Y ) is an edge of g, label(g, X, Y, L) – the label on the edge (X,Y )
is L. A given activity graph will be represented as facts using the predicates
above.

Define Candidate Treatments. To specify a valid (modified) treatment, we
first need to define a candidate treatment. In turn we need to construct a sub-
graph H of an activity graph G by Definition 2. By candidateEdge(G, X, Y),
we mean the edge (X, Y) is in H. The following rule is to define H:

candidateEdge(G, X, Y) | ¬candidateEdge(G, X, Y)
:- node(G,X), not decisionNode(G, X).

which reads that any edge (X,Y ) of G can be an edge of H. We will next present
ASP rules to make sure H is the underlying graph of a candidate treatment by
Definition 2.
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First, the context node of an activity graph G must be a node of H. Note that
we know only edges of H but not the nodes of H. Now we need a predicate
nodeInH(G, N) to denote N is a node of H. It can be defined as:

nodeInH(G, X) :- candidateEdge(G, X, Y).
nodeInH(G, Y) :- candidateEdge(G, X, Y).

which can be read as any end of an edge (X,Y ) of H is a node of H.
Now the rule :- cNode(G, CN), not nodeInH(G, CN). says that if CN is

a context node, it must be in H.

Second, every node of H is reachable from the context node in H. We first define
the reachability (reachable(G, X, Y) denotes that node Y is reachable from
X in H) in a standard way:

reachable(G, X, X):- cNode(G,X).
reachable(G, X, Y):- candidateEdge(G,X,Y).
reachable(G, X, Y):- reachable(G,X,Z), candidateEdge(G,Z,Y).

The rule below restricts that for every node X of H, X must be reachable
from the context node Cn:

:- nodeInH(G, X), cNode(G, Cn), not reachable(H, Cn, X).

Thirdly, every node of H reaches a leaf node. It is not hard to define a leaf node
and use reachable to express this constraints. Rules are omitted here due to
lack of space.

Finally, for every xor node of H, its outgoing degree must be one. We first
define the existence of an outgoing edge for a node X:

existsOutgoingEdge(G, X) :- candidateEdge(G, X, Y).

Since there is at most one outgoing edge from an action node in any activity
graph, the rule

:- nodeInH(G, X), xNode(G, X),
not existsOutgoingEdge(H, X).

is sufficient to restrict that for any node X of H, it has one outgoing edge.
Now we are in a position to define a candidate treatment using H. It is not

hard to write a rule to define action InH(G, X) which holds if X is an action
node of H. We omit the rule here.

Define Valid Treatments. Given a patient information I, we present the ASP
rules that encode patient information, the agreement of a candidate treatment to
patient information, and the points of contention and finally a valid treatment,
in terms of the corresponding definitions given in the previous section.

Patient Information. We use bDisease(d 1) to denote that d 1 is the base dis-
ease, tDdisease(d 2) to denote d 2 is the target disease, and patientInfo(x,l)
to denote the value of the decision node x is l. The patient information is repre-
sented as facts using the predicates above.
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Agreement of a Candidate Treatment to the Patient Information. For every deci-
sion node, it should agree with the patient information on this node, i.e., for any
or-decision node X and any patientInfo(X, L) with (X, Y) labeled by L, (X,
Y) must be a candidate edge:

:- decision Node(G, X), nodeInH(G, X), patientInfo(X,L),
label(AG, X, Y, L), not candidateEdge(G, X, Y).

Note here for any or-decision node, its outgoing edges in H correspond to a
superset of the values on this node given by the patient information.

Incompatible Sets. For every incompatible set, we assign an id (index) for it and
include in the program the fact incompSet(index). For every action a in the
incompatible set with id index, we have the fact ncompSetAction(index, a).

POC of Two Treatments. We need a notion of active action here. An action is
active if it is in a candidate treatment wrt a disease:

active(X):- action InH (H, X).

An incompatible set is active if all its actions are active. Clearly, an active
incompatible set is a POC. We first define a non active incompatible set non
ActiveIncompSet which is then used to define POC using default negation.

nonActiveIncompSet(Index) :-
not active(X),
incompSetAction(Index, X).

isPOC(Index) :-
incompSet(Index),
not nonActiveIncompSet(Index).

We use existsPOC to denote the occurrence of a POC between two candidate
treatments:

existsPOC :- isPOC(Index).

Valid Treatment. The last condition for candidate treatments to be valid is that
they are POC free:

:∼ existsPOC.
Here we use a new ASP construct called weak constraints first introduced in

DLV. This weak constraint means that there should not be existsPOC in any
answer set if it is possible at all. However, existsPOC is allowed to be in an
answer set if there is no other choice.

Valid Modified Treatments. In this part, we present the ASP rules that apply
mitigation operators to eliminate the points of contention between two candidate
treatments.

Represent an MO. For every mitigation operator of the form (bD, tD, POC=
{a1, . . . , ak}, LHS={aL1, ..., aLn}, RHS={aR1, ..., aRm}, toBeRemoved={a11,
..., a1i}), we associate a unique identifier id for it, which is represented by the fact:
moId(id). The base disease and target disease in the MO with id are represented
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by: moBD(id, bD) and moTD(id, tD) respectively. For every action in the POC of
the MO with id, we have moPOC(id, a). For every action literal aL of LHS and aR
of RHS of the MO with id, we have moLHS(id, aL) and moRHS(id, aR). For every
action a in toBeRemoved of the MO with id, we have moToBeRemoved(id, a).

A Relevant MO. We use a method similar to that for active POC to define
relevant MO’s. The rules are omitted here. We use relevant(I, ID) to denote
that the active POC with id I is relevant to the MO with id ID.

Applicability of an MO. Atom applicable(I, ID) denotes that an MO with id
ID is applicable to a POC with id of I. The method for defining active POC can
be used to define the applicability too. Rules again are not included here due to
lack of space.

Generate MO’s to Address POC. Let atom applyMO(I, ID) denote that the
MO with id ID will be applied to mitigate the POC with id I. It is defined by

1{applyMO(I, ID): applicable(I, ID)}1 :- isPOC(I).

The new ASP construct 1{applyMO(I, ID): applicable(I, ID)}1 means
that for a POC I, we may choose to apply any applicable MO to the POC
with id I.

Apply an MO to the Candidate Treatments. Since we do not know the POC
beforehand, our generator will “guess” an MO to apply to the POC if there is
any. Atom applyMO(I, ID) denotes that the MO with id ID will be applied to
mitigate the POC with id I. We use modifiedTreatment(D, A) to denote that
A is an action for the disease D after applying the MOs. By the definition of
modified treatment, we have the rule for the modified treatment for the target
disease (rules for base disease are omitted):

modifiedTreatment(TD, Action) :-
actionInH (TD, Action),
applyMO(Index, MOID),
moTD(MOID, TD),
not moToBeRemoved(MOID, Action).

Valid Modified Treatments. Similarly to the definition of the POCs of candidate
treatments, we can write similar rules to define POCs between the modified treat-
ments. Rules are omitted here. Let existsPOC M denote the existence of POC
between modified treatments. To have free POCs between modified treatments,
we need rule:

:- existsPOC M.

Proposition 3. Given patient information I of a patient with diseases d1 and
d2, let Π be the program obtained from the discussion above. Assume there is
no valid treatment for d1 and d2. T ′

1 and T ′
2, without any POC between them,

are the modified treatment resulted from the application of some MOs to some
candidate treatments T1 and T2 which agree with I, if and only if there is an
answer set S of Π such that T ′

1 = {a : modifiedTreatment(d1, a)} ∈ S, and
T ′
2 = {a : modifiedTreatment(d2, a) ∈ S}.
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5 Evaluation

We have implemented the proposed ASP approach using DLV. A major reason
to use DLV, instead of other ASP solvers, is its capacity to represent weak
constraints which are convenient for this application. However, since DLV does
not support choice rules yet, in our implementation, we have translated the choice
rules using epistemic disjunctions. The translation technique is well known in
the ASP community [21].

The program consists of two parts. The first part is the general knowledge,
shared by all CPGs, to generate candidate treatments, identify POC’s, and find
relevant and applicable MO’s, if there is a POC, and apply them to obtain a valid
modified treatment. The second part consists of the representation of activity
graphs of the CPGs, MO’s, and patient information.

The DLV implementation of the ASP solution is straightforward. In contrast,
we are not aware of experimental results in the existing work.

To evaluate the program, we consider the CPGs for duodenal ulcer (DU)
and transient ischemic attack (TIA) that are used by Wilk et al. in [12]. These
CPGs (Fig. 1) include only the crucial actions and decision nodes of the guide-
lines published by the National Institute for Health and Clinical Excellence, UK
(NICE) [10].

As for mitigated operators for patients with both DU and TIA, we use MO1
and MO2, in the section of the definition of the reconciling problem, in our
implementation.

We assume a patient has both conditions of DU and TIA. We consider two
scenarios based on the report in [10]. The first is that the patient has a positive
result for the H. Pylori test, negative result for hypoglycemia test, and neg-
tive result for the FAST test. In this scenario, there is no POC. Our program
output one valid treatment (by guessing a result for decision nodes whose result
is unknown) for DU: {sa (stop aspirin if used), et (start eradication
therapy), sc (self care)}, and one valid treatment for TIA:

{pcs (refer to primary care specialist)}.

In the second scenario, some adverse interaction is present. The patient has
a negative result for the H. pylori test, negative result for the hypoglycemia test,
positive result for the FAST test, and has had neurological symptoms resolved.
In this scenario, there is an adverse interaction between the actions of stop-
ping aspirin and starting aspirin. Some relevant mitigation operator has to be
employed to find a new valid treatment. A valid treatment found by our pro-
gram for DU is {ppi (start PPI), sc (self care)}, and that for TIA is {cl
(clopidogrel), pcs (refer to primary care specialist)} where aspirin
is replaced by clopidogrel.

We run the program on a Sony Vaio laptop with Intel i5 CPU at 2.53GHz,
4GB memory and Windows 7. The DLV solver we used is the version of build
BEN/Dec 21 2011. The real time to run the above two scenarios is 0 second
(i.e., not detectable by DLV solver).

The program together with the two scenarios is downloadable at http://
redwood.cs.ttu.edu/∼yzhang/temp/KR-14/code-coMorbidity-dlv.lp.

http://redwood.cs.ttu.edu/~yzhang/temp/KR-14/code-coMorbidity-dlv.lp
http://redwood.cs.ttu.edu/~yzhang/temp/KR-14/code-coMorbidity-dlv.lp
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6 Related Work and Conclusion

We note some recent work on the study of treatment of comorbid patients. The
first one by Riano and Collado [22] focuses on using rules to represent the MO’s
and acquiring these rules for Hypertension, Diabetes Mellitus and Heart Failure.
In both Wilk et al’s and our work, we assume the MO’s are given. The second one
is by Lopez-Vallverdu et al. [23]. They propose a model combining treatments
based on the seriousness, evolution and acuteness of the patients’ condition and
examine a specific case for Hypertension and Heart Failure. However, they did
not cover POC’s and their mitigation.

The main ideas underlying the reported work here are from Wilk et al.’s work
in identifying the point of contention between two treatments and employing
MO’s to mitigate the contention [10,12].

The major difference between our work and Wilk et al.’s lies in the separation
of the definition of the problem from programming languages and algorithms.
Specifically, we present a mathematical definition of the problem of mitigating
the point of contention that may occur in treatments for two diseases when two
CPGs for these diseases are used. We then offer a purely declarative ASP based
solution which naturally models the original problem. The major advantages of
our proposal is as follows. First, it is more accessible for the medical researchers
to evaluate how closely the defined problem models the real problems involved in
comorbidities. Second, the formal definition of the problem allows the discussion
of the correctness of the proposed solutions. Our ASP based solution facilitates
the proof of its correctness. Thirdly, our ASP based solution will benefit from
the the well developed and maintained efficient ASP solvers. Fourthly, some key
issues, such as dealing with more parallel paths, raised by Wilk et al. [10] can
be addressed in a natural way by our approach. For example, the parallel paths
problem has been addressed in our current problem definition and solution.

The proposed ASP based solution is easy to implement and efficient to
address some scenarios reported in the literature. Clearly the current defini-
tion of the reconciling problem does not include the temporal information and
how to balance the treatment to maximize the patients’ outcome. In the next
step, we will work with medical professionals to refine the problem definition to
better reflect the real practice in solving the problems related to comorbidity
issues. We also plan to write ASP program for a complete CPG, which will help
us further understand the limitations of the ASP approach and investigate how
to address those challenges.
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(eds.) AIME 2013. LNCS, vol. 7885, pp. 11–16. Springer, Heidelberg (2013)
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