The Non-confusing Travel Groupoids on a Finite Connected Graph

Jung Rae Cho¹, Jeongmi Park^{1(\boxtimes)}, and Yoshio Sano²

¹ Department of Mathematics, Pusan National University, Busan 609-735, Korea {jungcho,jm1015}@pusan.ac.kr

² Division of Information Engineering, Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan sano@cs.tsukuba.ac.jp

Abstract. The notion of travel groupoids was introduced by L. Nebeský in 2006 in connection with a study on geodetic graphs. A travel groupoid is a pair of a set V and a binary operation * on V satisfying two axioms. For a travel groupoid, we can associate a graph. We say that a graph G has a travel groupoid if the graph associated with the travel groupoid is equal to G. A travel groupoid is said to be non-confusing if it has no confusing pairs. Nebeský showed that every finite connected graph has at least one non-confusing travel groupoid.

In this note, we study non-confusing travel groupoids on a given finite connected graph and we give a one-to-one correspondence between the set of all non-confusing travel groupoids on a finite connected graph and a combinatorial structure in terms of the given graph.

Keywords: Travel groupoid \cdot Confusing pair \cdot Non-confusing travel groupoid \cdot Geodetic graph \cdot Spanning tree

2010 Mathematics Subject Classification: 20N02, 05C12, 05C05.

1 Introduction

A groupoid is the pair (V, *) of a nonempty set V and a binary operation * on V. The notion of travel groupoids was introduced by L. Nebeský [5] in 2006 in connection with his study on geodetic graphs [1–3] and signpost systems [4]. First, let us recall the definition of travel groupoids.

A travel groupoid is a groupoid (V, *) satisfying the following axioms (t1) and (t2):

(t1) (u * v) * u = u (for all $u, v \in V$),

(t2) if (u * v) * v = u, then u = v (for all $u, v \in V$).

Yoshio Sano—This work was supported by JSPS KAKENHI grant number 25887007.

DOI: 10.1007/978-3-319-13287-7_2

Jung Rae Cho—This research was supported for two years by Pusan National University Research Grant.

[©] Springer International Publishing Switzerland 2014

J. Akiyama et al. (Eds.): JCDCGG 2013, LNCS 8845, pp. 14–17, 2014.

A geodetic graph is a connected graph in which there exists a unique shortest path between any two vertices. Let G be a geodetic graph, and let V := V(G). For two vertices u and v of G, let $A_G(u, v)$ denote the vertex adjacent to u which is on the unique shortest path from u to v in G. Define a binary operation * on V as follows: For all $u, v \in V$, let $u * v := A_G(u, v)$ if $u \neq v$ and u * v := u if u = v. This groupoid (V, *) is called the *proper groupoid* of the geodetic graph G. Remark that the proper groupoid of any geodetic graph is a travel groupoid.

Let (V, *) be a travel groupoid, and let G be a graph. We say that (V, *) is on G or that G has (V, *) if V(G) = V and $E(G) = \{\{u, v\} \mid u, v \in V, u \neq v, \text{ and } u * v = v\}$. Note that every travel groupoid is on exactly one graph.

Let (V, *) be a travel groupoid. For $u, v \in V$, we define $u *^0 v := u$ and $u *^{i+1}v := (u *^i v) * v$ for every nonnegative integer *i*. It is clear that $(u *^j v) *^k v = u *^{j+k}v$ holds for any nonnegative integers *j* and *k*. Note that, for any two distinct elements *u* and *v* in *V*, it holds that $u * v \neq u$ (see [5, Proposition 2 (2)]) and that $u *^2 v \neq u$ by (t2). An ordered pair (u, v) of two distinct elements of *V* is called a *confusing pair* in (V, *) if there exists an integer $i \geq 3$ such that $u *^i v = u$. A travel groupoid (V, *) is said to be *non-confusing* if there is no confusing pair in (V, *).

Nebeský gave a characterization of non-confusing travel groupoids on a finite graph.

Theorem 1 ([5, Theorem 3]). Let (V, *) be a travel groupoid on a finite graph G. Then, (V, *) is non-confusing if and only if, for all distinct elements u and v in V, there exists a positive integer k such that the sequence $(u*^{0}v, \ldots, u*^{k-1}v, u*^{k}v)$ is a path from u to v in G.

Nebeský also showed a result on the existence of non-confusing travel groupoids. Note that a travel groupoid (V, *) is said to be *simple* if it satisfies the following axiom (t3) if $v * u \neq u$, then u * (v * u) = u * v (for all $u, v \in V$).

Theorem 2 ([5, Theorem 4]). For every finite connected graph G, there exists a simple non-confusing travel groupoid on G.

By Theorem 2, we know that every finite connected graph has always at least one non-confusing travel groupoid.

In this note, we study non-confusing travel groupoids on a given finite connected graph and we give a one-to-one correspondence between the set of all non-confusing travel groupoids on a finite connected graph and a combinatorial structure in terms of the given graph.

2 Main Result

To describe the structure of non-confusing travel groupoids on a graph, we define the following.

Definition. For a vertex v of a graph G, a v-tree is a spanning tree of G which contains all the edges incident to v. We denote by $S_G(v)$ the set of all v-trees in G.

Lemma 3. Let (V, *) be a non-confusing travel groupoid on a finite connected graph G. For an element v of V, let T_v be the graph defined by

$$V(T_v) := V \text{ and } E(T_v) := \{\{u, u * v\} \mid u \in V \setminus \{v\}\}.$$

Then, T_v is a v-tree of G.

Proof. Since (V, *) is on G, for any two distinct elements u and v in V, $\{u, u*v\}$ is an edge of G. Therefore, we have $E(T_v) \subseteq E(G)$. Moreover, $V(T_v) = V = V(G)$. So T_v is a spanning subgraph of G. By the definition of the graph T_v , we have $|E(T_v)| \leq |V| - 1$. Since (V, *) is non-confusing, it follows from Theorem 1 that any vertex u of T_v distinct from v is connected to the vertex v by a path P_{uv} in G, where P_{uv} is of the form $(u*^0v, \ldots, u*^kv)$ for some positive integer k. Since $u*^{i+1}v = (u*^iv)*v$, the edge $\{u*^iv, u*^{i+1}v\}$ of the path P_{uv} is also an edge of T_v for any $i \in \{0, 1, \ldots, k-1\}$. Therefore, the path P_{uv} from u to v in G is also a path in T_v . So we can conclude that T_v is connected. Since T_v is a connected graph with $|E(T_v)| \leq |V(T_v)| - 1$, T_v is a tree. Thus, T_v is a spanning tree of G. For each vertex x which is adjacent to the vertex v in G, we have x*v = vand therefore $\{x, v\} \in E(T_v)$. So, all the edges incident to the vertex v in G are contained in T_v . Hence, the graph T_v is a v-tree of G. □

The following theorem is our main result.

Theorem 4. Let G be a finite connected graph. Then, there exists a one-to-one correspondence between the set $\prod_{v \in V(G)} S_G(v)$ and the set of all non-confusing travel groupoids on G.

Proof. Let V := V(G), and let \mathcal{N}_G be the set of all non-confusing travel groupoids on G. Note that, since G is finite, both the sets $\prod_{v \in V} \mathcal{S}_G(v)$ and \mathcal{N}_G are finite.

For any $(T_v)_{v \in V} \in \Pi_{v \in V(G)} S_G(v)$, we define a groupoid on V as follows: For two distinct elements u and v in V, u * v is defined to be the vertex adjacent to u which is on the unique path from u to v in the tree T_v . If u = v, then let u * v = u. We show that this groupoid (V, *) is a non-confusing travel groupoid. First, we check that (V, *) satisfies the axioms (t1) and (t2). Take any two distinct elements u and v in V. Let w := u * v. Then $\{u, w\} \in E(G)$. Therefore $\{w, u\} \in E(T_u)$ and we have (u * v) * u = w * u = u. Moreover, if u = v, then (u * v) * u = (u * u) * u = u * u = u. Thus the axiom (t1) holds. Again, take any two distinct elements u and v in V. If u and v are adjacent (i.e. $\{u, v\} \in E(G)$), then $\{u, v\} \in E(T_v)$ and therefore $(u * v) * v = v * v = v \neq u$. If u and v are not adjacent, then $u * v \neq v$ and the element (u * v) * v is not the element u. Thus the axiom (t2) holds. So, (V, *) is a travel groupoid. Second, we check that (V, *) is non-confusing. Take any two distinct elements u and v in V. Let k be the length of the path from u to v in T_v . Then, it follows from the definition of (V,*) that $u*^k v = v$ and that $(u*^0 v, \ldots, u*^k v)$ is the path from u to v in T_v . Therefore, $(u*^0 v, \ldots, u*^k v)$ is a path from u to v in G. By Theorem 1, the travel groupoid (V,*) is non-confusing. Now, we define a map $\Phi: \prod_{v \in V} S_G(v) \to \mathcal{N}_G$ by $\Phi((T_v)_{v \in V}) = (V,*)$, where (V,*) is the non-confusing travel groupoid defined as above for $(T_v)_{v \in V}$.

Next, let (V, *) be a non-confusing travel groupoid on a finite connected graph G. For each $v \in V(G)$, we define a graph T_v by $V(T_v) := V$ and $E(T_v) :=$ $\{\{u, u * v\} \mid u \in V \setminus \{v\}\}$. By Lemma 3, T_v is a v-tree of G, i.e., $T_v \in \mathcal{S}_G(v)$. Therefore, $(T_v)_{v \in V} \in \prod_{v \in V} \mathcal{S}_G(v)$. Now, we define a map $\Psi : \mathcal{N}_G \to \prod_{v \in V} \mathcal{S}_G(v)$ by $\Psi((V, *)) = (T_v)_{v \in V}$, where $(T_v)_{v \in V}$ are v-trees defined as above for (V, *).

Then, we can check that $\Psi \circ \Phi((T_v)_{v \in V}) = (T_v)_{v \in V}$ holds for any $(T_v)_{v \in V} \in \Pi_{v \in V} \mathcal{S}_G(v)$ and that $\Phi \circ \Psi((V, *)) = (V, *)$ holds for any $(V, *) \in \mathcal{N}_G$. Hence the map Φ is a one-to-one correspondence between the sets $\Pi_{v \in V} \mathcal{S}_G(v)$ and \mathcal{N}_G .

Corollary 5. Let G be a finite connected graph. Then, the number of nonconfusing travel groupoids on G is equal to $\prod_{v \in V(G)} |\mathcal{S}_G(v)|$.

Proof. It follows from Theorem 4.

References

- Nebeský, L.: An algebraic characterization of geodetic graphs. Czech. Math. J. 48(123), 701–710 (1998)
- Nebeský, L.: A tree as a finite nonempty set with a binary operation. Mathematica Bohemica 125, 455–458 (2000)
- Nebeský, L.: New proof of a characterization of geodetic graphs. Czech. Math. J. 52(127), 33–39 (2002)
- Nebeský, L.: On signpost systems and connected graphs. Czech. Math. J. 55(130), 283–293 (2005)
- 5. Nebeský, L.: Travel groupoids. Czech. Math. J. 56(131), 659-675 (2006)

http://www.springer.com/978-3-319-13286-0

Discrete and Computational Geometry and Graphs 16th Japanese Conference, JCDCGG 2013, Tokyo, Japan, September 17–19, 2013, Revised Selected Papers Akiyama, J.; Ito, H.; Sakai, T. (Eds.) 2014, VIII, 191 p. 104 illus., Softcover ISBN: 978-3-319-13286-0