
Chapter 2
Complex Potential and Differentiation

Motivating Problem 2: Extraction of Contaminated Groundwater

Let us revisit Motivating Problem 1. If the contamination is observed at the moni-
toring well, an extraction well is drilled at the location (1, 0), as shown in Fig. 2.1,
to withdraw contaminated groundwater. For the extraction system to be optimized,
a precise evaluation of flow behavior of contaminants is essential.

Task 2-1 Draw the flow paths in the flow domain and predict whether the conta-
minants are detected at the monitoring well.

Task 2-2 Draw the flow paths in the flow domain and evaluate the minimum pump-
ing rate qe/h at the extraction well to avoid the contamination at the
monitoring well.

Task 2-3 Redo Task 2-2 in an analytical manner.

Fig. 2.1 Uniform flow in the
x direction with a pollution
source at (−1, 0), a
monitoring well at (1.5, 1.5),
and an extraction well
at (1, 0)
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20 2 Complex Potential and Differentiation

• Solution Strategy to Motivating Problem 2
Although the velocity potential (or its derivative) provides a rough image of
flow profiles, as seen in Motivating Problem 1, it does not convey sufficient
information to draw exact flow paths. To evaluate the direction of flow,
another mathematical function must be acquired.

The strategy, therefore, is to derive a new function that conveys such
information. Of course, the new function must be consistent with the physical
nature of the velocity potential. This derivation process reveals the reason
why complex variables need to be introduced and the usefulness of complex
analysis in practical engineering.

2.1 Complex Numbers

To perform complex analysis, the real number system needs to be extended to the
complex number system. The algebraic properties and geometric representation of
complex numbers are discussed.

2.1.1 Definition

There is no real number x that satisfies the equation x2 = −1. To manipulate these
types of equations, the set of complex numbers is introduced. By definition, a complex
number z is an ordered pair (x, y) of real numbers x and y, written as

z = (x, y) (2.1)

The ordered pair (0, 1) is called the imaginary unit and is denoted by i as

i = (0, 1) (2.2)

which has the property of
i2 = −1 (2.3)

In practice, a complex number z is expressed in the form

z = x + iy (2.4)

The real numbers x and y are referred to as the real part of z and the imaginary part
of z, respectively, and are written as

{
x = Re z
y = Im z

(2.5)

The complex numbers z with y = 0 are identified with the real numbers x, and thus
the set of complex numbers includes the real numbers as a subset. When x = 0, in
contrast, the complex numbers iy are called the pure imaginary numbers.
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2.1.2 Algebraic Properties

By definition, two complex numbers are equal if and only if they have the same real
parts and the same imaginary parts, that is,

x1 + iy1 = x2 + iy2 if and only if x1 = x2 and y1 = y2 (2.6)

Algebraic properties of complex numbers are the same as for real numbers as
listed below.

Commutative law of addition z1 + z2 = z2 + z1
Commutative law of multiplication z1z2 = z2z1
Associative law of addition z1 + (z2 + z3) = (z1 + z2) + z3
Associative law of multiplication z1(z2z3) = (z1z2)z3
Distributive law z1(z2 + z3) = z1z2 + z1z3
Additive identity The complex number 0 = (0, 0) satisfies z1 + 0 = z1
Multiplicative identity The complex number 1 = (1, 0) satisfies z11 = z1
Additive inverse z = −z1 if z + z1 = 0
Multiplicative inverse z = 1/z1 if z z1 = 1

Operations with complex numbers can be performed as in the algebra of real
numbers and by replacing i2 by −1 when it occurs. Addition of two complex numbers
z1 = x1 + iy1 and z2 = x2 + iy2 becomes

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) (2.7)

and subtraction is

(x1 + iy1) − (x2 + iy2) = (x1 − x2) + i(y1 − y2) (2.8)

Multiplication is given by

(x1 + iy1)(x2 + iy2) = x1x2 + ix1y2 + iy1x2 + i2y1y2

= (x1x2 − y1y2) + i(x1y2 + x2y1) (2.9)

where i2 = −1 is used.
Division of z1 by z2 is obtained by multiplying the numerator and denominator

by x2 − iy2 as

x1 + iy1

x2 + iy2
= (x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
= x1x2 − ix1y2 + iy1x2 − i2y1y2

x2
2 − i2 y2

2

= x1x2 + y1y2

x2
2 + y2

2

+ i
x2y1 − x1y2

x2
2 + y2

2

(2.10)

where i2 = −1 is used.
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Example 2.1 Algebraic operations result in

5 + 10i

3 − 4i
+ 25

4 + 3i
= 5 + 10i

3 − 4i

3 + 4i

3 + 4i
+ 25

4 + 3i

4 − 3i

4 − 3i

= 15 + 20i + 30i + 40i2

9 − 16i2
+ 100 − 75i

16 − 9i2

= −25 + 50i

25
+ 100 − 75i

25
= 3 − i

which is expressed in standard form.

2.1.3 Complex Plane

Let us consider the geometric representation of complex numbers, which is of great
practical importance. As a real number x is often represented by a point on an x line,
it is natural to associate a complex number z = x + iy with a point or a vector in an
xy plane, as shown in Fig. 2.2.

The x and y axes are referred to as the real axis and imaginary axis, respectively, and
the xy plane is referred to as the complex plane or the z plane. A complex number
z = x + iy is plotted as the point with coordinates (x, y). Each complex number
corresponds to one and only one point in the complex plane, and, conversely, each
point in the plane corresponds to one and only one complex number.

The absolute value or modulus of a complex number z = x + iy, denoted by |z|,
is defined by

|z| =
√

x2 + y2 (2.11)

which is the length of the line segment from the origin to z, as shown in Fig. 2.2. If
z is real, the modulus is simply the absolute value of z. The distance between two

Fig. 2.2 Complex plane
representing complex
numbers z and z
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points z1 = x1 + iy1 and z2 = x2 + iy2 is given by

|z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2 (2.12)

which is the length of the vector representing z1 − z2.

Example 2.2 The circle of radius R with its center at z0 can be expressed as

|z − z0| = R

For instance, the equation |z − 1 + 2i| = 3 represents the circle of radius R = 3 with
its center at 1 − 2i.

The complex conjugate of a complex number z = x+iy, denoted by z, is defined by

z = x − iy (2.13)

Geometrically, z is the point (x,−y), obtained by reflecting z = (x, y) in the real axis
as shown in Fig. 2.2.

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) − i(y1 + y2) = (x1 − iy1) + (x2 − iy2) (2.14)

and thus the conjugate of the sum is the sum of the conjugates, that is,

z1 + z2 = z1 + z2 (2.15)

Similarly, the following identities hold:

z1 − z2 = z1 − z2 (2.16)

z1z2 = z1 z2 (2.17)

(
z1

z2

)
= z1

z2
(2.18)

By addition and subtraction, z + z = 2x and z − z = 2yi, and it follows that

⎧⎪⎪⎨
⎪⎪⎩

Re z = z + z

2

Im z = z − z

2i

(2.19)

By multiplication, zz = x2 + y2, and the modulus of z is given by

|z| = √
zz (2.20)
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The inverse of z is then given by

z−1 = 1

z
= z

zz
= z

|z|2 (2.21)

provided z �= 0.

Example 2.3 The circle of radius 1 with its center at z = 1, x2 + y2 − 2x = 0, can
be expressed in terms of conjugate coordinates as

zz − z − z = 0

where the identities zz = x2 + y2 and x = (z + z)/2 are used.

Example 2.4 The general equation for a circle or line in the xy plane is given by

a(x2 + y2) + bx + cy + d = 0

where a, b, c, and d are real constants, and a �= 0 for a circle and a = 0 for a line.
Using the aforementioned identities, it can be rewritten as

azz + b
z + z

2
+ c

z − z

2i
+ d = 0

or, writing a = α, b/2 + c/(2i) = β, and d = γ , it follows that

αzz + βz + βz + γ = 0

which is the general equation for a circle or line in terms of conjugate coordinates.

2.1.4 Polar Form of Complex Numbers

A complex number z can also be expressed in terms of polar coordinates r and θ .
The positive number r is the length of the vector representing z and θ is the angle
that z (as a radius vector) makes with the positive real axis, as shown in Fig. 2.3.

Fig. 2.3 Polar representation
of a complex number z
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Using the identities {
x = r cos θ

y = r sin θ
(2.22)

z can be expressed in polar form as

z = r(cos θ + i sin θ) (2.23)

where r is the modulus of z

r = |z| =
√

x2 + y2 (2.24)

and θ is called the argument of z, denoted by arg z, such that

tan θ = y

x
(2.25)

For a given z �= 0, θ is determined only up to integer multiples of 2π and has any
one of an infinite number of real values, as shown in Fig. 2.4, because of the periodic
nature of cosine and sine with period of 2π .

To specify a unique value of arg z, the principal value Arg z is defined such that

− π < Arg z ≤ π (2.26)

For a positive real number z = x, Arg z = 0, and for a negative real number,
Arg z = π . The argument is given by

arg z = Arg z + 2nπ (2.27)

where n is an integer.

Example 2.5 For z = 1 + i, its polar form is

z = √
2 (cos(π/4) + i sin(π/4))

Fig. 2.4 Argument of
z given by Arg z + 2nπ
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and |z| = √
2, arg z = π/4+2nπ , and Arg z = π/4. For z = −1− i, its polar form is

z = √
2 (cos(−3π/4) + i sin(−3π/4))

and |z| = √
2, arg z = −3π/4 + 2nπ , and Arg z = −3π/4.

The inverse of Eq. 2.25, given by

θ = arctan
y

x
(2.28)

is not always true, and should be used with caution. Since tan θ has period π , the
arguments of z and −z have the same tangent. The quadrant where z lies must be
identified for a proper value.

Example 2.6 For z = 1 + i, it follows that

θ = arctan
1

1
= arctan 1 = π/4

which is correct. On the other hand, for z = −1 − i, it follows that

θ = arctan
−1

−1
= arctan 1 = π/4

which is not correct. However, by knowing z lies in the third quadrant and by using
cos θ = sin θ = −1/

√
2, θ is obtained as −3π/4.

2.1.5 Exponential Form of Complex Numbers

Using the infinite series1 of expansion et = 1+ t + t2/2!+ t3/3!+ · · · of elementary
calculus with t = iθ yields

eiθ =
∞∑

n=0

(−1)n θ2n

(2n)! + i
∞∑

n=0

(−1)n θ2n+1

(2n + 1)! (2.29)

The first infinite series is cos θ and the second is sin θ , and it follows that

eiθ = cos θ + i sin θ (2.30)

which is known as Euler’s formula. Applying this formula to a nonzero complex
number z in polar form results in

z = reiθ (2.31)

which is the exponential form of z.

1 Series representations of complex variables are discussed in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-13063-7_5
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Example 2.7 For z = 1+ i and z = −1− i, the exponential forms are z = √
2e(π/4)i

and z = √
2e−(3π/4)i, respectively.

2.1.5.1 Multiplication in Exponential Form

Operations in exponential form give us a geometrical understanding of multiplica-
tion. Let z1 = r1eiθ1 and z2 = r2eiθ2 , as shown in Fig. 2.5; then it follows that

z1z2 = r1r2ei(θ1+θ2) (2.32)

Taking absolute values on both sides reveals that the absolute value of a product is
equal to the product of the absolute values of the factors:

|z1z2| = |z1||z2| (2.33)

Taking arguments on both sides reveals that the argument of a product is equal to the
sum of the arguments of the factors:

arg(z1z2) = arg z1 + arg z2 (2.34)

Figure 2.5 shows these geometrical relations.

2.1.5.2 Division in Exponential Form

Operations in exponential form give us a geometrical understanding of division,
given by

z1

z2
= r1

r2
ei(θ1−θ2) (2.35)

Fig. 2.5 Arguments of z1,
z2, and z1z2

z1

θ2

z2

θ1

z1z2

θ1+θ2

y

x
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Taking absolute values on both sides reveals that the absolute value of a quotient is
equal to the quotient of the absolute values of the factors:

∣∣∣∣ z1

z2

∣∣∣∣ = |z1|
|z2| (2.36)

Taking arguments on both sides reveals that the argument of a quotient is equal to
the difference between the arguments of the factors:

arg
z1

z2
= arg z1 − arg z2 (2.37)

It should be noted that these properties are not, in general, valid when arg is
replaced by Arg.

Example 2.8 Let us consider z1 = −1 and z2 = i and specify arg z1 = −π and
arg z2 = π/2, then arg(z1z2) = arg(−i) = −π/2 = arg z1 + arg z2. However,
Arg z1 = π and Arg z2 = π/2; thus, Arg z1 + Arg z2 = 3π/2, which is not equal to
Arg(z1z2) = Arg(−i) = −π/2.

Example 2.9 Let us consider a generalization of multiplication.

z1z2 . . . zn = r1r2 . . . rnei(θ1+θ2+···θn)

and if z1 = z2 = · · · = zn = z, then

zn = rn(cos θ + i sin θ)n = rneinθ = rn(cos nθ + i sin nθ)

The identity
(cos θ + i sin θ)n = cos nθ + i sin nθ (2.38)

is known as De Moivre’s theorem.

2.1.6 Roots

Consider a complex number z0 that satisfies zn = z0, where n is a positive integer.
Then to a given z0 �= 0 there corresponds n distinct values of z, each of which is
called an nth root of z0. A set of n different roots is denoted by

z = z1/n
0 (2.39)

which is n-valued. The symbol z1/n
0 denotes n different roots. If z0 is a positive real

number r, r1/n denotes a set of nth roots, which must be distinguished from n√r
which is for a single-valued positive root.
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Let z0 = r(cos θ + i sin θ) and z = R(cos φ + i sin φ); then by De Moivre’s
theorem, zn = z0 is rewritten as

Rn(cos nφ + i sin nφ) = r(cos θ + i sin θ) (2.40)

Equating the absolute values on both sides yields

R = n√
r (2.41)

where n√r denotes the positive nth root of r. Equating the arguments on both sides
yields

φ = θ + 2kπ

n
(2.42)

where the periodic nature of cosine and sine with period of 2π is considered and
k = 0, 1, 2, . . . , n − 1.

The n distinct values of the nth roots of z0 �= 0 are obtained as

z1/n
0 = n√

r

(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
(2.43)

which lie on a circle of radius n√r with its center at the origin and constitute the
vertices of a polygon of n sides. In particular, the root with k = 0 and θ = Arg z0 is
called the principal nth root of z0.

When z0 = 1, it follows that r = 1 and θ = 0, and consequently, the nth roots
are given by

11/n = cos
2kπ

n
+ i sin

2kπ

n
(2.44)

where k = 0, 1, 2, . . . , n − 1 and no further roots exist with other values of k. These
n values are called the nth roots of unity, which lie on the circle of radius 1 with its
center at the origin, called the unit circle.

Let ω denote the value corresponding to k = 1 in Eq. 2.44

ω = cos
2π

n
+ i sin

2π

n
(2.45)

which is called the primitive nth root of unity. Then, according to De Moivre’s
theorem, it follows that

ωk = cos
2kπ

n
+ i sin

2kπ

n
(2.46)

Hence, the n values of 11/n are given by

1, ω, ω2, . . . , ωn−1

where 1 is the principal nth root of unity.
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Fig. 2.6 Roots of unity. a Three cube roots. b Six 6th roots

Figure 2.6 shows the roots of unity for the cases of n = 3 and 6. The three cube
roots of unity are on the vertices of an equilateral triangle and the six 6th roots of
unity are on the vertices of a regular hexagon.

This property can be used to find the nth roots of any nonzero complex number
z0. In general, if α is any particular nth root of z0 (not necessarily the principal root),
then the n distinct values of z1/n

0 are obtained as

α, αω, αω2, . . . , αωn−1

since multiplication of α by ωk corresponds to increasing the argument of α by
2kπ/n.

Example 2.10 Let us find all square roots of −1 = 1(cos π +i sin π). From Eq. 2.43,
it follows that

(−1)1/2 = √
1

(
cos

π + 2kπ

2
+ i sin

π + 2kπ

2

)

where k = 0, 1. The principal square root is i and the other root is −i. From Eq. 2.45,
ω = −1. Hence, if α is a particular square root, −α is the other root.

Example 2.11 Let us find all cube roots of 8 = 8(cos 0 + i sin 0). From Eq. 2.43, it
follows that

81/3 = 3√
8

(
cos

2kπ

3
+ i sin

2kπ

3

)

where k = 0, 1, 2. The principal cube root is 2 and the other two roots are −1 +√
3i

and −1 − √
3i, as shown in Fig. 2.7. It is confirmed that three cube roots are on the

vertices of an equilateral triangle, the arguments of which are different from each
other by 2π/3.
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Fig. 2.7 The point z = 8
and three cube roots: 2,
−1 + √

3i, and −1 − √
3i

2 /3

8

4 /3

y

x

π

π

Example 2.12 Let us find all cube roots of 8i = 8(cos π/2 + i sin π/2). From
Eq. 2.43, it follows that

(8i)1/3 = 3√
8

(
cos

π/2 + 2kπ

3
+ i sin

π/2 + 2kπ

3

)

where k = 0, 1, 2. The principal cube root is
√

3 + i and the other two roots are
−√

3 + i and −2i, as shown in Fig. 2.8.
Knowing that a particular cube root of 8i is α = −2i and

ω =
(

cos
2π

3
+ i sin

2π

3

)
= −1

2
+

√
3

2
i

it follows from Eq. 2.46 that the other two roots are

αω = −2i

(
−1

2
+

√
3

2
i

)
= √

3 + i

Fig. 2.8 The point z = 8i
and three cube roots:

√
3 + i,

−√
3 + i, and −2i

5 /6
/6

3 /2

8i

y

x

π
π

π



32 2 Complex Potential and Differentiation

and

αω2 = −2i

(
−1

2
+

√
3

2
i

)2

= −√
3 + i

which, of course, are consistent with the solutions from Eq. 2.43.

2.2 Functions of a Complex Variable

Functions of a complex variable can be defined in a similar way to functions of a
real variable. However, it should be noted that they operate on a complex variable
rather than a real variable, and consequently exhibit interesting properties not shared
by their real counterparts.

2.2.1 Definition

A function f defined on S, a set of complex numbers, is a rule that assigns to each
value z belonging to S a complex number w. The number w is called the value of f
at z, and this correspondence is denoted by

w = f (z) (2.47)

where z is considered as a complex variable in the set S, called the domain of definition
of f (or briefly the domain of f ). The set of all values of a function f is called the
range of f .

Suppose that w = u + iv is the value of a function f at z = x + iy:

w = u + iv = f (z) = f (x + iy) (2.48)

This relation implies that each of the real values u and v depends on the real variables
x and y, which gives {

u = u(x, y)
v = v(x, y)

(2.49)

where u(x, y) and v(x, y) are the real functions of the real variables x and y.

Example 2.13 If f (z) = z2, then

f (z) = (x + iy)2 = x2 − y2 + 2xyi

and thus {
u(x, y) = x2 − y2

v(x, y) = 2xy

The values of u and v depend on x and y.
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It should be noted that a function f (z), depending on the complex variable z, is
equivalent to a pair of real functions u(x, y) and v(x, y), each depending on the two
real variables x and y. In Example 2.13, a single complex function f = z2 conveys
two kinds of real functions, u = x2 − y2 and v = 2xy. This implies that a function of
a complex variable contains two kinds of information (u and v), which could satisfy
our needs addressed in Solution Strategy.

2.2.2 Elementary Functions

Many of the elementary functions appearing in real-variable calculus have natural
complex extensions. The functions relevant to the engineering problems considered
in this book are reviewed.

2.2.2.1 Polynomial Function

The polynomial function is defined by

w = αnzn + αn−1zn−1 + · · · + α1z + α0 (2.50)

where αn �= 0, αn−1, . . . , α0 are the complex constants and a positive integer n is
the degree of the polynomial function. The domain of definition is the entire z plane.

2.2.2.2 Rational Function

The rational function is defined by

w = f (z)

g(z)
(2.51)

where f (z) and g(z) are the polynomial functions. The function f (z)/g(z) is defined
at each point z except where g(z) = 0.

2.2.2.3 Exponential Function

The exponential function is defined by

w = ez = ex+iy = ex(cos y + i sin y) (2.52)

where e = 2.71828 . . . is the natural base of logarithms. The domain of definition is
the entire z plane. Complex exponential functions have properties similar to those of
real exponential functions, such as ez1+z2 = ez1 ez2 and ez1−z2 = ez1/ez2 .
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2.2.2.4 Logarithmic Function

The inverse of the complex exponential function is the natural logarithmic function
and is defined by

w = ln z = ln r + iθ = ln r + i(θ + 2nπ) (2.53)

where z = reiθ = rei(θ+2nπ). The function ln z is defined at each nonzero point z.
Since infinitely different values of arg z are obtained by successively encircling the
origin z = 0, the complex logarithmic function is infinitely multi-valued. Each of
the multiple functions is called a branch of the logarithmic function.

To keep the function single-valued, an artificial barrier that cannot be crossed is
introduced. This barrier is called the branch cut, the direction of which is arbitrary.
For instance, if the branch cut is set along the negative real half-axis (Fig. 2.9), arg z
becomes single-valued and takes the principal value −π < Arg z ≤ π . The value of
ln z corresponding to the principal value is denoted by Lnz:

Lnz = ln |z| + iArg z (2.54)

The values of arg z differ by integer multiples of 2π , and the other values of ln z is
given by

ln z = Lnz + 2nπ i (2.55)

where n is an integer. The point common to all branch cuts is called the branch point.
The origin is a branch point of the logarithmic function.

Complex logarithmic functions have properties similar to those of real logarithmic
functions, such as ln(z1z2) = ln z1 + ln z2 and ln(z1/z2) = ln z1 − ln z2. It should be
noted that these properties are not, in general, valid when ln is replaced by Ln.

Example 2.14 Let us consider z1 = z2 = −1 and specify ln z1 = π i and ln z2 = − π i,
then ln(z1z2) = ln 1 = 0 and ln z1 + ln z2 = 0, thus the property ln(z1z2) =
ln z1+ln z2 is satisfied. In contrast, if the principal values are used, Lnz1 = Lnz2 = π i
and Lnz1 + Lnz2 = 2π i, which is not equal to Ln(z1z2) = Ln1 = 0. Thus, the
property Ln(z1z2) = Lnz1 + Lnz2 is not always valid.

Fig. 2.9 Branch cut and
branch point

branch cut

branch
point

y

x
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• Alternative Solution to Task 1-1
Using functions of a complex variable, Eq. 1.65 can be rewritten as

Φ(z) = −qu

A
Re z − qs

2πh
Re[ln(z − zs)]

= Re
[
−qu

A
z − qs

2πh
ln(z − zs)

]
(2.56)

Substituting qu/A = 1, qs/h = 6, and zs = −1 yields

Φ(z) = Re

[
−z − 3

π
ln(z + 1)

]

with which the equipotential lines are obtained as shown in Fig. 1.5.

2.3 Complex Differentiation

As is the case with functions of a real variable, the concepts of limit, continuity, and
differentiability are important for functions of a complex variable. In developing a
theory of differentiation for complex functions, the Cauchy–Riemann equations are
introduced, which play a substantial role in complex analysis.

2.3.1 Limit and Continuity

A function f (z) is said to have the limit w0 at a point z = z0 if

lim
z→z0

f (z) = w0 (2.57)

The point w = f (z) can be made arbitrarily close to w0 if the point z is chosen close
enough to z0 but distinct from it. In precise terms, for any positive number ε, some
positive number δ can be found such that

|f (z) − w0| < ε whenever 0 < |z − z0| < δ (2.58)

As shown in Fig. 2.10, for each ε neighborhood2 of w0, there is a deleted δ neigh-
borhood3 of z0 such that every point z in it has an image w lying in the ε neighborhood.

2 An ε neighborhood of a point w0 is the set of all points w such that |w − w0| < ε where ε is any
given positive number.
3 A deleted δ neighborhood of z0 is a neighborhood of z0 in which the point z0 is omitted: 0 <

|z − z0| < δ.

http://dx.doi.org/10.1007/978-3-319-13063-7_1
http://dx.doi.org/10.1007/978-3-319-13063-7_1


36 2 Complex Potential and Differentiation

ε

w0

y

x

v

u

z0

δ

(a) (b)

Fig. 2.10 Limit w0. a Deleted δ neighborhood in the z plane. b ε neighborhood in the w plane

Because Eq. 2.58 applies to all points in the deleted neighborhood, the symbol z → z0
in Eq. 2.57 implies that z may approach z0 from any direction in the complex plane.

A function f (z) is said to be continuous at a point z = z0 if

lim
z→z0

f (z) = f (z0) (2.59)

provided this limit and f (z0) exist. With the concept of limit, Eq. 2.59 can be rephrased
that for any positive number ε, some positive number δ can be found such that

|f (z) − f (z0)| < ε whenever |z − z0| < δ (2.60)

If f (z) is continuous at each point in a domain, f (z) is said to be continuous in this
domain.

With z0 = x0 + iy0 and f (z) = u + iv, the real and imaginary parts of Eq. 2.59
can be written as ⎧⎪⎪⎨

⎪⎪⎩

lim
x→x0
y→y0

u(x, y) = u(x0, y0)

lim
x→x0
y→y0

v(x, y) = v(x0, y0)
(2.61)

which states that the real functions u and v are continuous at (x0, y0). A function f (z)
is continuous if and only if its real and imaginary parts, u and v, are continuous.

Example 2.15 Let us consider limz→0(z/z). If the limit is to exist, it must be inde-
pendent of the approaching path of z to 0. Let z → 0 along the x axis (y = 0), then
it follows

lim
z→0

z

z
= lim

x→0

x

x
= 1

On the other hand, if z → 0 along the y axis (x = 0), then it follows that
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lim
z→0

z

z
= lim

y→0

−iy

iy
= −1

which is different from the previous value, and thus, the limit does not exist.

Example 2.16 Let us examine the continuity of z = x − iy. Since u(x, y) = x and
v(x, y) = −y are continuous at each point (x, y), z is continuous everywhere in the
complex plane.

2.3.2 Differentiability

The derivative of a function f (z) at a point z0, denoted by f ′(z0), is defined by

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
(2.62)

provided this limit exists. The function f (z) is said to be differentiable at z0
when its derivative at z0 exists. As addressed in the definition of the limit, z may
approach z0 from any direction in the complex plane. Hence, differentiability at z0
implies that the quotient in Eq. 2.62 always approaches a certain value and all these
values are equal.

With the increment �z = z − z0, Eq. 2.62 takes the form

f ′(z0) = lim
�z→0

f (z0 + �z) − f (z0)

�z
(2.63)

Let w = f (z) and �w = f (z0 + �z) − f (z0), then Eq. 2.63 reduces to

f ′(z0) = dw

dz
= lim

�z→0

�w

�z
(2.64)

where dw = f ′(z0)dz is the differential of w and dz is the differential of z. It should
be noted that dz and dw are not the limits of �z and �w as �z → 0; these limits are
zero whereas dz and dw are not necessarily zero. The differential dw is a dependent
variable determined through dw = f ′(z0)dz with the independent variable dz for a
given z0.

The differentiation rules for functions of a complex variable are the same as in
real-variable calculus. For any differentiable functions f and g, the following rules
are valid.

Linearity rule If w = c1f + c2g, where c1 and c2 are constants, then

w′ = (c1f + c2g)′ = c1f ′ + c2g′ (2.65)
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Product rule If w = fg, then

w′ = (fg)′ = f ′g + fg′ (2.66)

Quotient rule If w = f /g, where g �= 0, then

w′ =
(

f

g

)′
= f ′g − fg′

g2 (2.67)

Chain rule If w = f (χ) and χ = g(z), then

dw

dz
= dw

dχ

dχ

dz
(2.68)

Example 2.17 Let us prove the chain rule. Consider the increments given by

{
�w = f (χ + �χ) − f (χ)

�χ = g(z + �z) − g(z)

where �w → 0 and �χ → 0 as �z → 0. If �χ �= 0, let us define ε as

ε = �w

�χ
− dw

dχ
(2.69)

so that ε → 0 as �χ → 0. Rearranging Eq. 2.69 for �w gives

�w = dw

dχ
�χ + ε�χ (2.70)

If �χ = 0, according to the definition of �w, �w = 0, and ε is set as zero. Hence,
for any �χ (�χ �= 0 or �χ = 0), Eq. 2.70 holds.

Dividing Eq. 2.70 by �z �= 0 and in the limit of �z → 0

lim
�z→0

�w

�z
= dw

dz
= lim

�z→0

(
dw

dχ

�χ

�z
+ ε

�χ

�z

)

= dw

dχ
lim

�z→0

�χ

�z
+ lim

�z→0
ε lim

�z→0

�χ

�z

= dw

dχ

dχ

dz
+ lim

�z→0
ε

dχ

dz

= dw

dχ

dχ

dz

where ε → 0 in the limit of �z → 0 is used, and the chain rule is proved.
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Example 2.18 Let us find the derivative of w = z2. The increment �w is

�w = (z + �z)2 − z2 = z2 + 2z�z + �z2 − z2

= 2z�z + �z2

From Eq. 2.64, it follows that

w′ = lim
�z→0

2z�z + �z2

�z
= 2z

which is identical to the differentiation in real-variable calculus. The power rule of
differentiation

(zn)′ = nzn−1 (2.71)

generally holds for complex functions.

Example 2.19 Let us find the derivative of w = 1/z. The increment �w is

�w = 1

z + �z
− 1

z
= z − z − �z

(z + �z)z

= − �z

(z + �z)z

From Eq. 2.64, it follows that

w′ = − lim
�z→0

�z

�z(z + �z)z
= − 1

z2

which is identical to the differentiation in real-variable calculus. The power rule of
differentiation

(z−n)′ = −nz−n−1 (2.72)

generally holds for complex functions.

2.3.3 Analytic Functions

A function f (z) is said to be analytic at a point z0 when there exists a neighborhood
|z − z0| < δ for all points of which f ′(z) exists. That is to say, if f (z) is analytic at z0,
f (z) must be differentiable not only at z0, but also at all points in some δ neighborhood
of z0. This concept is raised because differentiability of f (z) merely at a single point
z0 is of no practical interest.

When the derivative f ′(z) exists at all points z in a domain, a function f (z) is said
to be analytic in this domain and is referred to as an analytic function. In particular,
if f (z) is analytic at all points in the entire complex plane, then f (z) is referred to as
an entire function.
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Example 2.20 Let us examine the analyticity of w = z2. In Example 2.18, the
derivative is obtained as w′ = 2z and it is obvious that z2 is analytic at all points in
the entire plane. The function z2 is entire.

Example 2.21 Let us examine the analyticity of w = |z|2. The increment �w is

�w = |z + �z|2 − |z|2 = (z + �z)(z + �z) − zz

= z�z + z�z + �z�z

From Eq. 2.64, it follows that

w′ = lim
�z→0

z�z + z�z + �z�z

�z
= z + lim

�z→0

(
z
�z

�z
+ �z

)

If the limit exists, it can be found by letting �z = (�x,�y) approach 0 in any
manner. Setting �y = 0 and letting �z = (�x, 0) approach 0 yields �z = �z,
which gives the value of derivative w′ = z + z. Similarly, setting �x = 0 and letting
�z = (0,�y) approach 0 yields �z = −�z, which gives the value of derivative
w′ = z − z. Since limits are unique, z + z must be equal to z − z, and it follows that
z = 0 and w′ = 0. The function |z|2 has the derivative only at the point z = 0. It is not
differentiable at any point in a neighborhood of z = 0, and thus, |z|2 is not analytic.

Example 2.22 Let us examine the analyticity of w = 1/z. In Example 2.19, the
derivative is obtained as w′ = −1/z2 and it is obvious that 1/z is analytic at all
nonzero points in the complex plane.

If a function f (z) is not analytic at a point z0, but every neighborhood of z0 contains
at least one point where f (z) is analytic, then the point z0 is called the singular point
or singularity of f (z). For instance, the function 1/z has a singular point at z = 0,
since 1/z is analytic at all nonzero points in the complex plane. On the other hand,
the function |z|2 is nowhere analytic and has no singularity.

2.3.4 L’Hospital’s Rule

If f (z) is analytic, Eq. 2.62 can be rewritten as

f (z) − f (z0)

z − z0
− f ′(z) = ε (2.73)

where ε → 0 as z → z0. It follows that

f (z) = f (z0) + f ′(z0)(z − z0) + ε(z − z0) (2.74)
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Now, let us consider analytic functions f (z) and g(z) in a domain containing z0
and suppose that f (z0) = g(z0) = 0 and g′(z0) �= 0. Then, using Eq. 2.74 and the
fact that f (z0) = g(z0) = 0, it follows that

{
f (z) = f ′(z0)(z − z0) + ε1(z − z0)

g(z) = g′(z0)(z − z0) + ε2(z − z0)
(2.75)

where ε1 → 0 and ε2 → 0 as z → z0. Then

lim
z→z0

f (z)

g(z)
= f ′(z0)

g′(z0)
= lim

z→z0

f ′(z)
g′(z)

(2.76)

which is known as L’Hospital’s rule which often converts the quotient to a determinate
form and allows the limit to be evaluated.

Example 2.23 Let us evaluate

lim
z→i

f (z)

g(z)
= lim

z→i

z7 + i

z3 + i

Since f (i) = g(i) = 0 and f (z) and g(z) are analytic at z = i, L’Hospital’s rule can
be applied as

lim
z→i

f ′(z)
g′(z)

= 7i6

3i2
= 7

3
i4 = 7

3

and the limit is obtained as 7/3.

Example 2.24 In the case f ′(z0) = g′(z0) = 0, L’Hospital’s rule can be extended.
Let us evaluate

lim
z→0

f (z)

g(z)
= lim

z→0

1 − cos z

z2

Since f (0) = g(0) = 0 and f (z) and g(z) are analytic at z = 0, L’Hospital’s rule can
be applied as

lim
z→0

f ′(z)
g′(z)

= lim
z→0

sin z

2z

where sin z and 2z are analytic and equal to 0 when z = 0. By applying L’Hospital’s
rule again, it follows that

lim
z→0

f ′′(z)
g′′(z)

= cos 0

2
= 1

2

and the limit is obtained as 1/2.
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2.3.5 Cauchy–Riemann Equations in Cartesian Form

To perform complex analysis on any function, the analyticity of the function is
essential. Let us assume the derivative f ′(z) at z exists as

f ′(z) = lim
�z→0

f (z + �z) − f (z)

�z
(2.77)

By the definition of the limit, �z can approach zero along any path in a neighborhood
of z. If the approaching path is set horizontally, �z = �x, Eq. 2.77 can be written as

f ′(z) = lim
�x→0

f (z + �x) − f (z)

�x

= lim
�x→0

u(x + �x, y) + iv(x + �x, y) − u(x, y) − iv(x, y)

�x

= lim
�x→0

[
u(x + �x, y) − u(x, y)

�x
+ i

v(x + �x, y) − v(x, y)

�x

]

= ∂u

∂x
+ i

∂v

∂x
(2.78)

provided that the partial derivatives exist.
Similarly, if the approaching path is set vertically, �z = i�y, Eq. 2.77 can be

written as

f ′(z) = lim
�y→0

f (z + i�y) − f (z)

i�y

= lim
�y→0

u(x, y + �y) + iv(x, y + �y) − u(x, y) − iv(x, y)

i�y

= lim
�y→0

[
u(x, y + �y) − u(x, y)

i�y
+ i

v(x, y + �y) − v(x, y)

i�y

]

= −i
∂u

∂y
+ ∂v

∂y
(2.79)

where the identity 1/i = −i is used.
For the existence of the derivative f ′(z), the values of Eqs. 2.78 and 2.79 must

be equal. By equating the real and imaginary parts on the right-hand sides of these
equations, necessary conditions for the existence of f ′(z) can be derived as

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂x
= ∂v

∂y
∂u

∂y
= −∂v

∂x

(2.80)

which are known as the Cauchy–Riemann equations.
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These observations imply the necessity of the Cauchy–Riemann equations for a
function to be analytic and can be summarized as follows.

Theorem 2.1 (Cauchy–Riemann equations: Necessity) If f (z) = u + iv is analytic
in a domain, the first-order partial derivatives of u and v with respect to x and y exist
and satisfy the Cauchy–Riemann equations at all points in this domain.

Example 2.25 Let us consider the analytic function f (z) = z2. Since

{
u(x, y) = x2 − y2

v(x, y) = 2xy

the partial derivatives are {
∂u/∂x = 2x
∂u/∂y = −2y

and {
∂v/∂y = 2x
−∂v/∂x = −2y

which satisfy the Cauchy–Riemann equations. The derivative is

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= 2x + 2yi = 2(x + iy) = 2z

which is identical to the differentiation in real-variable calculus. As also noted
in Example 2.18, the power rule of differentiation generally holds for complex
functions.

Example 2.26 Let us consider the function f (z) = |z|2. Since
{

u(x, y) = x2 + y2

v(x, y) = 0

the partial derivatives are {
∂u/∂x = 2x
∂u/∂y = 2y

and {
∂v/∂y = 0
−∂v/∂x = 0

which do not satisfy the Cauchy–Riemann equations except at 0, and thus, f (z) = |z|2
is not analytic. The derivative is

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= 0

only at z = 0.
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In real-variable analysis, the functions x2 and |x|2 are identical and have the same
derivative of 2x. The very different conclusions of Examples 2.25 and 2.26 exemplify
an interesting feature of differentiability of functions of a complex variable.

It should be noted that differentiability of f (z) = u + iv is not ensured by indi-
vidual differentiability of u and v. Functions u and v need to be related through the
Cauchy–Riemann equations. This is different from continuity of f (z), which is equiv-
alent to individual continuity of u and v.

Example 2.27 Let us consider real functions u(x, y) = x and v(x, y) = −y, which
are differentiable. The partial derivatives are

{
∂u/∂x = 1
∂u/∂y = 0

and {
∂v/∂y = −1
−∂v/∂x = 0

which do not satisfy the Cauchy–Riemann equations, and z = x − iy is not analytic.
It should be noted that z is not differentiable anywhere even though its real and

imaginary parts (u and v) are continuous (and therefore z is continuous as shown in
Example 2.16) and differentiable.

Theorem 2.1 states that the Cauchy–Riemann equations are necessary for the
existence of the derivative f ′(z) but does not cover the sufficiency. However, if the
first partial derivatives in Eq. 2.80 are continuous in a domain, then it can be shown
that the Cauchy–Riemann equations are sufficient conditions that f (z) be analytic in
this domain.

Theorem 2.2 (Cauchy–Riemann equations: Sufficiency) If u and v have continuous
first-order partial derivatives with respect to x and y that satisfy the Cauchy–Riemann
equations in a domain, the function f (z) = u + iv is analytic in this domain.

Proof In view of the continuity of the first-order partial derivatives of u with respect
to x and y, the increment �u is given by

�u = u(x + �x, y + �y) − u(x, y)

= u(x + �x, y + �y) − u(x, y + �y) + u(x, y + �y) − u(x, y)

=
(

∂u

∂x
+ εu

)
�x +

(
∂u

∂y
+ ηu

)
�y

= ∂u

∂x
�x + ∂u

∂y
�y + εu�x + ηu�y

where the identity Eq. 2.74 is used with εu → 0 as �x → 0 and ηu → 0 as �y → 0.
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Similarly, in view of the continuity of the first-order partial derivatives of v with
respect to x and y, the increment �v is given by

�v = v(x + �x, y + �y) − v(x, y)

= ∂v

∂x
�x + ∂v

∂y
�y + εv�x + ηv�y

where εv → 0 as �x → 0 and ηv → 0 as �y → 0.
The increment �w is then given by

�w = �u + i�v

=
(

∂u

∂x
+ i

∂v

∂x

)
�x +

(
∂u

∂y
+ i

∂v

∂y

)
�y + ε�x + η�y

where ε = εu + iεv → 0 and η = ηu + iηv → 0 as �x → 0 and �y → 0.
Assuming that the Cauchy–Riemann equations are satisfied, ∂u/∂y is replaced by

−∂v/∂x and ∂v/∂y by ∂u/∂x, and then

�w =
(

∂u

∂x
+ i

∂v

∂x

)
�x +

(−∂v

∂x
+ i

∂u

∂x

)
�y + ε�x + η�y

=
(

∂u

∂x
+ i

∂v

∂x

)
(�x + i�y) + ε�x + η�y

=
(

∂u

∂x
+ i

∂v

∂x

)
�z + ε�x + η�y

Dividing by �z and in the limit of �z → 0

lim
�z→0

�w

�z
= f ′(z) = ∂u

∂x
+ i

∂v

∂x

which indicates that the derivative exists and the function f (z) is analytic. �

Example 2.28 Let us consider the property of a function f (z), when f (z) is analytic
in a domain and |f (z)| is constant in this domain. It follows that

|f (z)|2 = |u + iv|2 = u2 + v2 = constant

Taking the partial derivatives with respect to x and y yields
{

u(∂u/∂x) + v(∂v/∂x) = 0

u(∂u/∂y) + v(∂v/∂y) = 0

From the Cauchy–Riemann equations, it follows that
{

u(∂u/∂x) − v(∂u/∂y) = 0

u(∂u/∂y) + v(∂u/∂x) = 0
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which gives {
(u2 + v2)(∂u/∂x) = 0

(u2 + v2)(∂u/∂y) = 0

This implies that u2 +v2 = 0 or ∂u/∂x = ∂u/∂y = 0. If u2 +v2 = 0, then u = v = 0
and f (z) = 0 = constant. If u2 + v2 �= 0, from the Cauchy–Riemann equations, then
also ∂v/∂x = ∂v/∂y = 0. Hence, u is constant and v is constant; consequently, f (z)
is constant. In either case, if |f (z)| is constant, f (z) is constant.

2.3.6 Cauchy–Riemann Equations in Polar Form

When complex functions are expressed in polar coordinates, the Cauchy–Riemann
equations in polar form are of practical use. Let us assume the derivative f ′(z) at
z = reiθ exists, which is given by Eq. 2.77. By the definition of the limit, �z can
approach zero along any path in a neighborhood of z. If the approaching path is set
along the ray θ , �z = �reiθ , Eq. 2.77 can be written as

f ′(z) = lim
�r→0

f ((r + �r)eiθ ) − f (reiθ )

�reiθ

= lim
�r→0

u(r + �r, θ) + iv(r + �r, θ) − u(r, θ) − iv(r, θ)

�reiθ

= lim
�r→0

[
u(r + �r, θ) − u(r, θ)

�reiθ + i
v(r + �r, θ) − v(r, θ)

�reiθ

]

= e−iθ
(

∂u

∂r
+ i

∂v

∂r

)
(2.81)

provided that the partial derivatives exist.
Similarly, if the approaching path is set along the circle r, �z = r(ei(θ+�θ) −eiθ ),

Eq. 2.77 can be written as

f ′(z) = lim
�θ→0

f (rei(θ+�θ)) − f (reiθ )

r(ei(θ+�θ) − eiθ )

= lim
�θ→0

u(r, θ + �θ) + iv(r, θ + �θ) − u(r, θ) − iv(r, θ)

reiθ�θ

�θ

ei�θ − 1

= lim
�θ→0

[
u(r, θ + �θ) − u(r, θ)

reiθ�θ
+ i

v(r, θ + �θ) − v(r, θ)

reiθ�θ

]
�θ

ei�θ − 1

= e−iθ
(

1

r

∂u

∂θ
+ i

1

r

∂v

∂θ

)
1

i
= e−iθ

(
−i

1

r

∂u

∂θ
+ 1

r

∂v

∂θ

)
(2.82)

where L’Hospital’s rule is used to obtain lim�θ→0 �θ/(ei�θ − 1) = 1/i.
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For the existence of the derivative f ′(z), the values of Eqs. 2.81 and 2.82 must
be equal. Equating the real and imaginary parts on the right-hand sides of these
equations yields ⎧⎪⎪⎨

⎪⎪⎩

∂u

∂r
= 1

r

∂v

∂θ

1

r

∂u

∂θ
= −∂v

∂r

(2.83)

which are the Cauchy–Riemann equations in polar form.

Example 2.29 Let us consider the function f (z) = ln z = ln r + iθ . Since
{

u(r, θ) = ln r

v(r, θ) = θ

the partial derivatives are {
∂u/∂r = 1/r

(1/r)(∂u/∂θ) = 0

and {
(1/r)(∂v/∂θ) = 1/r

−∂v/∂r = 0

which satisfy the Cauchy–Riemann equations, and f (z) = ln z is analytic. The deriv-
ative is

f ′(z) = e−iθ (∂u/∂r + i∂v/∂r) = e−iθ (1/r) = 1/(reiθ ) = 1/z

which is identical to the differentiation in real-variable calculus.

Example 2.30 Let us consider the function f (z) = 1/z = r−1e−iθ . Since

{
u(r, θ) = cos θ/r

v(r, θ) = − sin θ/r

the partial derivatives are
{

∂u/∂r = − cos θ/r2

(1/r)(∂u/∂θ) = − sin θ/r2

and {
(1/r)(∂v/∂θ) = − cos θ/r2

−∂v/∂r = − sin θ/r2
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which satisfy the Cauchy–Riemann equations, and f (z) = 1/z is analytic. The
derivative is

f ′(z) = e−iθ (∂u/∂r + i∂v/∂r) = e−iθ
(
− cos θ/r2 + i sin θ/r2

)

= −e−iθ e−iθ /r2 = −1/(reiθ )2 = −1/z2

which is identical to the differentiation in real-variable calculus.

2.4 Harmonic Functions

As discussed in Chap. 1, Laplace’s equation occurs in many engineering problems
and plays a central role in potential theory. Functions that fulfill Laplace’s equation
are called harmonic functions, which are discussed in this section. In particular,
analyticity of complex functions and the existence of a harmonic conjugate are of
great practical importance.

2.4.1 Analyticity of Elementary Functions

Analyticity of the elementary functions reviewed in Sect. 2.2.2 is examined.

2.4.1.1 Polynomial Function

The power rule of differentiation (identical to that in real-variable calculus) holds
for functions of a complex variable, and thus

d(αnzn + αn−1zn−1 + · · · + α1z + α0)

dz

= nαnzn−1 + (n − 1)αn−1zn−2 + · · · + α1 (2.84)

and the polynomial function is analytic in the entire complex plane.

2.4.1.2 Rational Function

The quotient rule of differentiation (identical to that in real-variable calculus) holds
for functions of a complex variable, and thus

d

dz

f (z)

g(z)
= f ′(z)g(z) − f (z)g′(z)

g(z)2 (2.85)

and the rational function is analytic except at the points where g(z) = 0.

http://dx.doi.org/10.1007/978-3-319-13063-7_1
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2.4.1.3 Exponential Function

By definition (Eq. 2.52), w = ex(cos y + i sin y) = u + iv, then

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂x
= ex cos y = ∂v

∂y

∂u

∂y
= −ex sin y = −∂v

∂x

(2.86)

indicating the Cauchy–Riemann equations are satisfied. Hence, the required deriva-
tive exists and is given by

d

dz
ez = ∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ez (2.87)

which is identical to the result in real-variable calculus and the exponential function
is analytic in the entire complex plane.

2.4.1.4 Logarithmic Function

Let w = ln z, then z = ew and dz/dw = ew = z, thus

d

dz
ln z = dw

dz
= 1

dz/dw
= 1

z
(2.88)

which is identical to the result in real-variable calculus and consistent with
Example 2.29. The logarithmic function is analytic except at the branch point, z = 0,
and on the branch cut, the negative real half-axis. The origin and each point on the
negative real half-axis are the singular points of ln z.

2.4.2 Laplace’s Equation in Cartesian Form

If a function f (z) = u + iv is analytic in a domain, the Cauchy–Riemann equations
are satisfied in this domain. As is to be proved in Chap. 4 (Corollary 4.3), it is possible
to assume that u and v have continuous second partial derivatives.

Differentiating both sides of the first Cauchy–Riemann equation in Cartesian form
(Eq. 2.80) with respect to x and both sides of the second with respect to y yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂x2 = ∂2v

∂x∂y

∂2u

∂y2 = − ∂2v

∂x∂y

(2.89)

http://dx.doi.org/10.1007/978-3-319-13063-7_4


50 2 Complex Potential and Differentiation

Adding these two equations gives Laplace’s equation in terms of u:

∂2u

∂x2 + ∂2u

∂y2 = 0 (2.90)

Similarly, differentiating both sides of the first Cauchy–Riemann equation with
respect to y and both sides of the second with respect to x yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂x∂y
= ∂2v

∂y2

∂2u

∂x∂y
= −∂2v

∂x2

(2.91)

Subtracting the second equation from the first gives Laplace’s equation in terms of
v:

∂2v

∂x2 + ∂2v

∂y2 = 0 (2.92)

Solutions of Laplace’s equation having continuous first and second partial deriva-
tives are called harmonic functions. Hence, the real and imaginary parts of an analytic
function are harmonic functions, as seen with Eqs. 2.90 and 2.92.

Theorem 2.3 (Harmonic function) If a function f (z) = u+iv is analytic in a domain,
its component functions u and v are harmonic in this domain.

2.4.3 Laplace’s Equation in Polar Form

For analytic functions expressed in polar coordinates, Laplace’s equation in polar
form (rather than Cartesian form) is of practical use. Differentiating both sides of the
first Cauchy–Riemann equation in polar form (Eq. 2.83) with respect to r and both
sides of the second with respect to θ yields

⎧⎪⎪⎨
⎪⎪⎩

r
∂2u

∂r2 + ∂u

∂r
= ∂2v

∂r∂θ

1

r

∂2u

∂θ2 = − ∂2v

∂r∂θ

(2.93)

Adding these two equations gives

1

r

∂

∂r

(
r
∂u

∂r

)
+ 1

r2

∂2u

∂θ2 = 0 (2.94)

which is Laplace’s equation in terms of u in polar form.
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Similarly, differentiating both sides of the first Cauchy–Riemann equation with
respect to θ and both sides of the second with respect to r yields

⎧⎪⎪⎨
⎪⎪⎩

∂2u

∂r∂θ
= 1

r

∂2v

∂θ2

∂2u

∂r∂θ
= −∂v

∂r
− r

∂2v

∂r2

(2.95)

Subtracting the second equation from the first gives

1

r

∂

∂r

(
r
∂v

∂r

)
+ 1

r2

∂2v

∂θ2 = 0 (2.96)

which is Laplace’s equation in terms of v in polar form.

2.4.4 Harmonic Conjugate

When two harmonic functions u and v satisfy the Cauchy–Riemann equations
(Eq. 2.80 or 2.83) in a domain, v is said to be a harmonic conjugate of u in this
domain. It is evident that if a function f (z) = u + iv is analytic in a domain, v is a
harmonic conjugate of u, and conversely, that if v is a harmonic conjugate of u in a
domain, the function f (z) = u + iv is analytic in this domain.

Theorem 2.4 (Harmonic conjugate) A function f (z) = u + iv is analytic in a
domain if and only if v is a harmonic conjugate of u.

Example 2.31 Let us consider real functions u(x, y) = x2 − y2 and v(x, y) = 2xy.
Since these functions are respectively the real and imaginary parts of the analytic
function f (z) = z2, v is a harmonic conjugate of u.

In contrast, the function f (z) = v + iu is not analytic, since the partial derivatives

{
∂v/∂x = 2y

∂v/∂y = 2x

and {
∂u/∂y = −2y

−∂u/∂x = −2x

do not satisfy the Cauchy–Riemann equations, and thus, u is not a harmonic conjugate
of v.

If v is a harmonic conjugate of u in some domain, it is not, in general, true that u
is a harmonic conjugate of v in this domain. Instead, it is true that if v is a harmonic
conjugate of u, −u is a harmonic conjugate of v, that is, f (z) = v − iu is analytic.
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This can be understood by noting that f (z) = u + iv is rewritten as −if (z) = v − iu
and that f (z) is analytic if and only if −if (z) is analytic.

Proposition 2.1 (Existence of a harmonic conjugate) If a function u is harmonic,
there exists a harmonic conjugate v such that f = u + iv is an analytic function.

Proof A harmonic conjugate v satisfies the Cauchy–Riemann equations ∂v/∂y =
∂u/∂x and ∂v/∂x = −∂u/∂y. Integrating ∂v/∂y = ∂u/∂x with respect to y while
keeping x constant gives

v =
∫

∂u

∂x
dy + t(x)

where t(x) is a real function of x. Substituting this into the second Cauchy–Riemann
equation yields

∂

∂x

∫
∂u

∂x
dy + t′(x) = −∂u

∂y

Since u is harmonic, differentiating this equation with respect to y results in Laplace’s
equation, revealing that a formula for t′(x) involves x alone and t(x) can be obtained
by integration of t′(x). �

Example 2.32 Let us consider a real function u(x, y) = y3−3x2y. The second partial
derivatives are {

∂2u/∂x2 = −6y

∂2u/∂y2 = 6y

which satisfy Laplace’s equation ∂u2/∂x2 + ∂u2/∂y2 = 0 and the function u is
harmonic. From the Cauchy–Riemann equations, it follows that

{
∂v/∂y = ∂u/∂x = −6xy

∂v/∂x = −∂u/∂y = −3y2 + 3x2

Integrating the first equation with respect to y while keeping x constant gives

v = −3xy2 + t(x)

where t(x) is an arbitrary real function of x. Substituting this into the second equation
above yields

−3y2 + t′(x) = −3y2 + 3x2

which results in t′(x) = 3x2, and thus, t(x) = x3 + constant. Hence, the harmonic
conjugate of u is found as

v = −3xy2 + x3 + constant
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and it follows that

f (z) = y3 − 3x2y + i(−3xy2 + x3 + constant)

= iz3 + constant

which is analytic.

2.5 Stream Function and Complex Potential

Finally, Solution Strategy is accomplished in this section. By virtue of Proposition 2.1,
another mathematical function in addition to the velocity potential is constructed. It
is shown that the function so created has the properties required to solve Motivating
Problem 2.

2.5.1 Definition

The velocity potential Φ satisfies Laplace’s equation, as shown in Chap. 1, and there-
fore, is harmonic. From Proposition 2.1, it follows that there must exist a harmonic
conjugate, denoted by Ψ , such that

Ω = Φ + iΨ (2.97)

is analytic. The function Ψ is called the stream function, since Ψ is related to fluid
streams as revealed in the later section. The analytic function Ω is called the complex
potential.

Here, the properties of the velocity potential and stream function are sum-
marized. As the vector function ∇Φ is conservative, the vector function ∇Ψ is
also conservative; thus, the properties associated with conservative fields, such
as path independence of line integrals and the exactness of the differential form
(Appendix C.2), hold for the stream function Ψ .

The complex potential Ω is analytic, and its component functions Φ and Ψ are
harmonic, satisfying Laplace’s equation:

{
∇2Φ = 0

∇2Ψ = 0
(2.98)

Laplace’s equation in terms of Φ is physically derived in Chap. 1. Although a physical
derivation is also possible, Laplace’s equation in terms of Ψ has immediately been
derived through a mathematical manipulation.

http://dx.doi.org/10.1007/978-3-319-13063-7_1
http://dx.doi.org/10.1007/978-3-319-13063-7_1
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In addition, Φ and Ψ are related through the Cauchy–Riemann equations
⎧⎪⎪⎨
⎪⎪⎩

∂Φ

∂x
= ∂Ψ

∂y
∂Φ

∂y
= −∂Ψ

∂x

(2.99)

in Cartesian form or ⎧⎪⎪⎨
⎪⎪⎩

∂Φ

∂r
= 1

r

∂Ψ

∂θ

1

r

∂Φ

∂θ
= −∂Ψ

∂r

(2.100)

in polar form.
As illustrated in Example 2.32, given a harmonic function (velocity potential Φ),

the corresponding harmonic conjugate (stream function Ψ ) can be obtained through
the Cauchy–Riemann equations. In Chap. 1, the velocity potential for uniform flow
and that for a source or sink are derived, to which the corresponding stream functions
can be derived through the property of harmonic functions.

2.5.2 Uniform Flow

The velocity potential for uniform flow in the x direction is given by Eq. 1.55 as

Φ(x) = −qu

A
x + Φ0 (2.101)

From the Cauchy–Riemann equations in Cartesian form (Eq. 2.99), it follows that

⎧⎪⎪⎨
⎪⎪⎩

∂Ψ

∂y
= ∂Φ

∂x
= −qu

A

∂Ψ

∂x
= −∂Φ

∂y
= 0

(2.102)

Integrating the first equation with respect to y while keeping x constant gives

Ψ = −qu

A
y + t(x) (2.103)

where t(x) is an arbitrary real function of x. Substituting this equation into the second
equation of Eq. 2.102 gives t′(x) = 0 or t(x) = constant. Hence, the stream function
for uniform flow is obtained as

Ψ = −qu

A
y + Ψ0 (2.104)

where Ψ0 is an arbitrary additive constant.

http://dx.doi.org/10.1007/978-3-319-13063-7_1
http://dx.doi.org/10.1007/978-3-319-13063-7_1
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Substituting Eqs. 2.101 and 2.104 into Eq. 2.97 yields the complex potential for
uniform flow

Ω = −qu

A
z (2.105)

where for simplicity a constant is omitted without essential loss of generality. This
immediately shows that Ω is analytic in the entire complex plane.

2.5.3 Sources and Sinks

The velocity potential for sources and sinks is given by Eq. 1.58 as

Φ(r) = − qw

2πh
ln r + Φ0 (2.106)

From the Cauchy–Riemann equations in polar form (Eq. 2.100), it follows that
⎧⎪⎪⎨
⎪⎪⎩

1

r

∂Ψ

∂θ
= ∂Φ

∂r
= − qw

2πh

1

r
∂Ψ

∂r
= −1

r

∂Φ

∂θ
= 0

(2.107)

Integrating the first equation with respect to θ while keeping r constant gives

Ψ = − qw

2πh
θ + t(r) (2.108)

where t(r) is an arbitrary real function of r. Substituting this equation into the second
equation of Eq. 2.107 gives t′(r) = 0 or t(r) = constant. Hence, the stream function
for sources and sinks is obtained as

Ψ = − qw

2πh
θ + Ψ0 (2.109)

where Ψ0 is an arbitrary additive constant.
Substituting Eqs. 2.106 and 2.109 into Eq. 2.97 yields

Ω = − qw

2πh
(ln r + iθ) = − qw

2πh
ln z (2.110)

where for simplicity a constant is omitted without essential loss of generality. When
a source or sink is located at zw = (xw, yw), the radius r is the distance between z
and the source or sink, r = |z − zw| and the argument θ is the angle that z − zw
(as a radius vector) makes with the positive real axis, θ = arg(z − zw). Hence, the
complex potential for a source or sink at zw can be written as

Ω = − qw

2πh
ln(z − zw) (2.111)

http://dx.doi.org/10.1007/978-3-319-13063-7_1
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where a positive qw corresponds to emanating flow from a source and a negative qw
corresponds to converging flow toward a sink. The complex potential Ω is analytic
except at z = zw and on the branch cut.

Example 2.33 Let us confirm that the stream functions satisfy Laplace’s equation.
For uniform flow

∇2Ψ = ∂2Ψ

∂y2 = − ∂

∂y

qu

A
= 0

For a source or sink, using Eq. A.12

∇2Ψ = 1

r2

∂2Ψ

∂θ2 = − 1

r2

∂

∂θ

qw

2πh
= 0

The stream function for uniform flow and that for a source or sink indeed satisfy
Laplace’s equation.

2.5.4 Streamlines

Streamlines represent the paths of imaginary fluid particles in a flow domain and are
defined as the instantaneous curves that are at every point tangent to the direction
of the velocity at that point. Along a streamline, an element of arc dr = (dx, dy) is
parallel to the velocity V = (Vx, Vy), as shown in Fig. 2.11.

The mathematical expression defining a streamline is therefore given by

dx

Vx
= dy

Vy
(2.112)

or equivalently
Vydx − Vxdy = 0 (2.113)

where Vx and Vy are the velocity components in the x and y directions, such that a
function V = Vx + iVy corresponds to the velocity vector V.

Fig. 2.11 An element of arc
dr along a streamline and the
velocity vector V streamline

Vx

x

y

Vy
V

V

dy

dx

dr
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According to Darcy’s law, Eq. 1.33 (or Eq. 1.24 in general), the velocity compo-
nents are given as minus the gradient of Φ:

⎧⎪⎪⎨
⎪⎪⎩

Vx = −∂Φ

∂x

Vy = −∂Φ

∂y

(2.114)

Applying the Cauchy–Riemann equations (Eq. 2.99) to Eq. 2.114 yields another
expression for the velocity components in terms of Ψ :

⎧⎪⎪⎨
⎪⎪⎩

Vx = −∂Ψ

∂y

Vy = ∂Ψ

∂x

(2.115)

Now, substituting Eq. 2.115 into 2.113 gives

∂Ψ

∂x
dx + ∂Ψ

∂y
dy = 0 (2.116)

Since the exactness of the differential form (Eq. C.9 in Appendix C.2) holds for the
stream function, the left-hand side of Eq. 2.116 is the exact differential form of Ψ ;
thus, along a streamline, it follows that

dΨ = 0 (2.117)

Equation 2.117 implies that, in the same way as equipotential lines are obtained
as curves of constant velocity potential Φ (Sect. 1.3.3), streamlines are obtained by
setting Ψ equal to a constant in the equation

Ψ = Ψ (x, y) = constant (2.118)

which describes a family of curves, for various values of the constant. That is, the
level curves of Ψ are the streamlines.

Example 2.34 Figure 2.12 shows the streamlines of uniform flow given by Eq. 2.104
(or the imaginary part of Eq. 2.105) and a source or sink at zw given by Eq. 2.109 (or
the imaginary part of Eq. 2.111). For uniform flow, the streamlines are straight lines
parallel to the flow direction which are all the same distance apart. For a source or
sink, the streamlines are rays of constant θ emanating from or converging toward zw.

Note that these figures are respectively drawn by contouring the values of Ψ

computed within the domain. In Fig. 2.12b, a streamline is overlapped by the thick
line from the source or sink in the negative x direction, which is caused by the jump
on the contour plot and corresponds to the branch cut.

http://dx.doi.org/10.1007/978-3-319-13063-7_1
http://dx.doi.org/10.1007/978-3-319-13063-7_1
http://dx.doi.org/10.1007/978-3-319-13063-7_1
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(a) (b)

Fig. 2.12 Streamlines. a Uniform flow. b Source or sink

2.5.5 Complex Velocity

The velocity components Vx and Vy can be obtained by complex differentiation.
From Eq. 2.78, the derivative of Ω with respect to z is given by

dΩ

dz
= ∂Φ

∂x
+ i

∂Ψ

∂x
= −Vx + iVy (2.119)

where Eqs. 2.114 and 2.115 are used. The complex velocity W is defined by

W = −dΩ

dz
= Vx − iVy (2.120)

from which the velocity components Vx and Vy are directly obtained. The magnitude
of velocity |V| is also obtained as

|V| =
√

V2
x + V2

y = |W | (2.121)

The velocity components in Cartesian and polar coordinates are related as
{

Vx = Vr cos θ − Vθ sin θ

Vy = Vr sin θ + Vθ cos θ
(2.122)

where Vr and Vθ are the velocity components in the r and θ directions, respectively.
Hence, the complex velocity in polar coordinates is given by

W = Vr cos θ − Vθ sin θ − i(Vr sin θ + Vθ cos θ)

= (Vr − iVθ )e
−iθ (2.123)
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A point where both Vx and Vy vanish is called a stagnation point. From Eqs. 2.78
and 2.79, it follows that

W = −dΩ

dz
= −∂Φ

∂x
− i

∂Ψ

∂x
= i

∂Φ

∂y
− ∂Ψ

∂y
= 0 (2.124)

at the stagnation point. Since ∂Ψ/∂x = 0 and ∂Ψ/∂y = 0, streamlines can intersect
each other or abruptly change direction at the stagnation point.

Example 2.35 For uniform flow Ω = −(qu/A)z, the complex velocity is

W = −dΩ

dz
= qu

A

Thus, Vx = qu/A and Vy = 0. There is no stagnation point in uniform flow. For a
source at the origin Ω = −(qw/2πh) ln z, the complex velocity is

W = −dΩ

dz
= qw

2πh

1

z

By using the exponential form z = reiθ , W becomes

W = qw

2πh

1

r
e−iθ = (Vr − iVθ )e

−iθ

Thus, Vr = (qw/2πh)/r and Vθ = 0. The origin is a singular point, where W is
indeterminate.

• Solution to Task 2-1
The complex potential for uniform flow with a source can be obtained by applying
the principle of superposition to Eqs. 2.105 and 2.111. When the source with a flow
rate qs is located at zs, the solution is

Ω(z) = −qu

A
z − qs

2πh
ln(z − zs) (2.125)

Substituting qu/A = 1, qs/h = 6, and zs = −1 into the solution yields

Ω(z) = −z − 3

π
ln(z + 1)

with which the corresponding complex potentials are computed. The real and imagi-
nary parts of Ω(z) yield the velocity potential and stream function, respectively, and
the equipotential lines and streamlines are obtained as shown in Fig. 2.13.

Since Eq. 1.65 is the real part of Eq. 2.125, the equipotential lines shown in
Fig. 2.13a coincide with those in Fig. 1.5, which are of little use to trace the con-
taminants. On the other hand, the streamlines shown in Fig. 2.13b visually reveal

http://dx.doi.org/10.1007/978-3-319-13063-7_1
http://dx.doi.org/10.1007/978-3-319-13063-7_1
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monitoring
well

(a) (b)

Fig. 2.13 Uniform flow with a source (qs/h = 6). a Equipotential lines. b Streamlines. (As is
the case with Example 2.34, the thick line emanating from the pollution source in the negative x
direction corresponds to the branch cut and overlaps a streamline)

that the monitoring well is invaded by the contaminants from the pollution source.
The stream function conveys useful information to draw exact flow paths.

The complex velocity is given by

W = −dΩ

dz
= 1 + 3

π

1

z + 1

and from the solution of W = 0, a stagnation point is found at z = −1 − 3/π =
−1.955, where the streamlines intersect each other and abruptly change direction,
as seen in Fig. 2.13b.

The streamline passing through the stagnation point is called the dividing stream-
line (or water divide), which separates the fluid from uniform flow and the fluid from
the pollution source. The monitoring well is inside the dividing streamline, and thus,
the contaminants from the pollution source are detected at the monitoring point.

Let us further consider the dividing streamline. From Eq. 2.125, the stream func-
tion is given by

Ψ (z) = −qu

A
y − qs

2πh
θs (2.126)

where θs = arg(z − zs). For the streamlines in the upper half plane, the stagnation
point is given by y = 0 and θs = π ; thus, the stream function at the stagnation point
becomes Ψ = −qs/2h. The equation for the dividing streamline is given by

− qs

2h
= −qu

A
y − qs

2πh
θs (2.127)
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As x approaches ∞, θs approaches 0, and Eq. 2.127 gives

y = qs/2h

qu/A
(2.128)

which is the asymptote of the dividing streamline.
In a similar way, for the streamlines in the lower half plane, the stagnation point

is given by y = 0 and θs = −π ; thus, the stream function becomes Ψ = qs/2h. The
equation for the dividing streamline is given by

qs

2h
= −qu

A
y − qs

2πh
θs (2.129)

and the asymptote of the dividing streamline is obtained as

y = −qs/2h

qu/A
(2.130)

The two asymptotes of the dividing streamline are given by

y = ±qs/2h

qu/A
(2.131)

Substituting qu/A = 1 and qs/h = 6 into the equation yields y = ±3, the area
between which at x = ∞ is contaminated.

• Solution to Task 2-2
The complex potential for uniform flow with a source and a sink can be obtained
by applying the principle of superposition to Eqs. 2.105 and 2.111. When the source
with a flow rate qs is located at zs and the sink with a flow rate qe is at ze, the solution is

Ω(z) = −qu

A
z − qs

2πh
ln(z − zs) − qe

2πh
ln(z − ze) (2.132)

Substituting qu/A = 1, qs/h = 6, zs = −1, and ze = 1 into the solution yields

Ω(z) = −z − 3

π
ln(z + 1) − qe

2πh
ln(z − 1) (2.133)

with which the corresponding complex potentials are computed. After a process of
trial and error, it is found that qe/h = −3.5 gives a possible solution to the extraction
system, as shown in Fig. 2.14.

The complex velocity is given by

W = −dΩ

dz
= 1 + 3

π

1

z + 1
− 3.5

2π

1

z − 1
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monitoring
well

(a) (b)

Fig. 2.14 Uniform flow with a source (qs/h = 6) and a sink (qe/h = −3.5). a Equipotential lines.
b Streamlines. (The thick line emanating from the pollution source and that from the extraction
well in the negative x direction correspond to the individual branch cuts and overlap streamlines)

and from the solution of W = 0, stagnation points are found at z = −1.796 and
z = 1.398, as seen in Fig. 2.14b. The monitoring well is outside the dividing stream-
line and the streamlines emanating from the pollution source do not flow through the
monitoring well. Hence, the contaminants are not detected at the monitoring point.
Note that this is an approximate visual evaluation.

To evaluate analytically the minimum pumping rate to avoid the contamination
at the monitoring well, the dividing streamline is of great use. As can be seen from
Fig. 2.14, the dividing streamline originally emanates from the pollution source, then
passes through and abruptly changes direction at the stagnation point. It is obvious
that the area surrounded by the dividing streamline depends on the pumping rate of
the extraction well; as the rate increases, the area shrinks. Hence, the dividing stream-
line that passes through the monitoring well corresponds to the required minimum
pumping rate.

• Solution to Task 2-3
Taking the imaginary part of Eq. 2.133 yields the stream function

Ψ (z) = −y − 3

π
θs − qe

2πh
θe

where θs = arg(z − zs) = arg(z + 1) and θe = arg(z − ze) = arg(z − 1). For the
streamlines in the upper half plane, the stagnation point is given by y = 0, θs = π ,
and θe = π ; thus, the stream function at the stagnation point becomes

Ψ = 0 − 3

π
π − qe

2πh
π = −3 − 1

2

qe

h
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The minimum pumping rate can be obtained by equating this value and the stream
function at the location of the monitoring well.

For the monitoring well, y = 1.5, θs = arctan(1.5/2.5), and θe = arctan(1.5/0.5);
thus, the stream function becomes

−3 − 1

2

qe

h
= −1.5 − 3

π
arctan(3/5) − qe

2πh
arctan 3

which results in the analytical solution of qe/h = −3.267. Figure 2.15 shows the
equipotential lines and streamlines with qe/h = −3.267. It is confirmed that the
dividing streamline indeed passes through the monitoring well.

The complex velocity is given by

W = −dΩ

dz
= 1 + 3

π

1

z + 1
− 3.267

2π

1

z − 1

and from the solution of W = 0, stagnation points are found at z = −1.806 and
z = 1.371, as seen in Fig. 2.15b. The monitoring well is exactly on the streamline
that emanates from the pollution source, and thus, qe/h = −3.267 is the minimum
value for the required flow rate.

From Eq. 2.132, the stream function for uniform flow with a source and a sink is
given by

Ψ (z) = −qu

A
y − qs

2πh
θs − qe

2πh
θe (2.134)

monitoring
well

(a) (b)

Fig. 2.15 Uniform flow with a source (qs/h = 6) and a sink (qe/h = −3.267). a Equipotential
lines. b Streamlines
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With the same argument as before, it can be shown that the equations for the dividing
streamlines are given by

∓
( qs

2h
+ qe

2h

)
= −qu

A
y − qs

2πh
θs − qe

2πh
θe (2.135)

As x approaches ∞, θs and θe approach 0, and the two asymptotes of the dividing
streamline are obtained as

y = ±qs/2h + qe/2h

qu/A
(2.136)

Substituting qu/A = 1, qs/h = 6, and qe/h = −3.267 into the equation yields
y = ±1.367, the area between which at x = ∞ is contaminated.

Motivating Problem 3: Groundwater Flow Over a Circular Pillar

Groundwater flows in the x direction with a uniform flow velocity qu/A = 1. For
some construction purpose, an impermeable circular pillar of radius R = 1 is installed
through the flow medium, as shown in Fig. 2.16.

Task 3-1 Draw the flow profile and discuss the effect of the circular pillar on the
groundwater flow.

Task 3-2 Evaluate the discharge profile along the y axis.

• Solution Strategy to Motivating Problem 3
At first glance, Motivating Problem 3 may appear totally different from Moti-
vating Problem 2, where uniform flow with a source and a sink is considered
and no obstacle to flow is dealt with. This is not necessarily so.

Further insights into the properties of complex potential broaden the inter-
pretation of streamlines and the usage of stream function. Indeed, a slight
modification of the solution to Motivating Problem 2 gives the solution to
the current problem.

Fig. 2.16 Uniform flow over
a circular pillar qu/A=1

R

y

x
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2.6 Further Topics in Complex Potential

To broaden its practical applicability, additional aspects of complex potential are
discussed in this section, including the orthogonal families of curves, streamlines as
impermeable boundaries, and the discharge evaluation with the stream function.

2.6.1 Orthogonal Families

Let us consider two families of curves
{

u(x, y) = p
v(x, y) = s

(2.137)

where u and v are the real and imaginary parts of an analytic function f (z) and p and
s are any constants.

Let u(x, y) = p1 and v(x, y) = s1, where p1 and s1 are particular constants, be any
two members of the respective families. Differentiating u(x, y) = p1 with respect to
x gives

∂u

∂x
+ ∂u

∂y

dy

dx
= 0 (2.138)

Then the slope of u(x, y) = p1 is

dy

dx
= −∂u

∂x

/
∂u

∂y
(2.139)

In a similar way, the slope of v(x, y) = s1 is obtained as

dy

dx
= −∂v

∂x

/
∂v

∂y
(2.140)

The product of the slopes becomes

(
∂u

∂x

∂v

∂x

)/ (
∂u

∂y

∂v

∂y

)
= −

(
∂v

∂y

∂u

∂y

)/(
∂u

∂y

∂v

∂y

)
= −1 (2.141)

where the Cauchy–Riemann equations are used. This indicates that, if a function
f (z) = u + iv is analytic, the families of curves given by Eq. 2.137 are orthogonal.
This is true only if the partial derivatives in Eq. 2.141 are not equal to zero.

Since the complex potential Ω = Φ + iΨ is analytic, it follows that two families
of curves, equipotential lines and streamlines, defined by

{
Φ(x, y) = p
Ψ (x, y) = s

(2.142)
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are orthogonal. Each curve of equipotential lines is perpendicular to each curve of
streamlines at the point of intersection. This is true only if the partial derivatives of
Φ and Ψ with respect to x and y are not equal to zero, that is, the complex velocity
W is not equal to zero.

As discussed in Sect. 2.5.5, when W = 0, the point is a stagnation point. If the
point of intersection is a stagnation point, the equipotential line and the streamline
may not be mutually orthogonal. Instead, streamlines may intersect each other or
abruptly change direction.

Example 2.36 The complex potential for uniform flow given by Eq. 2.105 has two
families of curves, equipotential lines and streamlines

⎧⎪⎨
⎪⎩

Φ(x, y) = −qu

A
x = p

Ψ (x, y) = −qu

A
y = s

which are respectively parallel to y and x axes, and thus obviously orthogonal, as
shown in Fig. 2.17a.

Similarly, the complex potential for a source or sink given by Eq. 2.111 has the
following two families:

⎧⎪⎨
⎪⎩

Φ(x, y) = − qw

2πh
ln r = − qw

4πh
ln

(
x2 + y2

)
= p

Ψ (x, y) = − qw

2πh
θ = − qw

2πh
arctan

y

x
= s

(a) (b)

Fig. 2.17 Orthogonality between equipotential lines and streamlines. a Uniform flow. b Source
or sink
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(a) (b)

Fig. 2.18 Orthogonality between equipotential lines and streamlines of Motivating Problem 2.
a Contamination. b Extraction

and the slopes dy/dx of Φ = p1 and Ψ = s1 are respectively obtained as −x/y and
y/x, which implies the two families are orthogonal (Fig. 2.17b).

Example 2.37 The orthogonality also holds for superposition of different types of
flow as long as the resultant flow is defined by analytic functions. Figure 2.18 shows
the orthogonality between the equipotential lines and streamlines for uniform flow
with a source and a sink (Motivating Problem 2). Note that at stagnation points,
z = −1.955 in Fig. 2.18a and z = −1.806 and 1.371 in Fig. 2.18b, the equipotential
lines and streamlines are not mutually orthogonal and the streamlines abruptly change
direction.

As discussed in Sect. 1.2, many physical problems are governed by Laplace’s
equation, and thus, the solutions are given by a harmonic function Φ and its har-
monic conjugate Ψ . For individual physical processes, the orthogonality between
Φ and Ψ holds. Table 2.1 summarizes the orthogonal families for different physical
phenomena.

Table 2.1 Orthogonal families for physical processes

Physical process Φ(x, y) Ψ (x, y)

Fluid flow Equipotential lines Streamlines

Fickian diffusion Concentration Lines of solute flow

Heat conduction Isotherms Heat flow lines

Gravitational fields Gravitational potential Lines of force

Electrostatic fields Equipotential lines Lines of electrical force

http://dx.doi.org/10.1007/978-3-319-13063-7_1
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2.6.2 Streamlines as Impermeable Boundaries

It follows from the orthogonality that the velocity potential is constant in the direction
normal to the streamlines, across which no flow occurs. Hence, the streamlines can
be interpreted as impermeable boundaries. In Figs. 2.13, 2.14, and 2.15, for instance,
the shaded areas may be interpreted as ⊂-shaped obstacles instead of contaminated
areas.

For uniform flow with a source and a sink given by Eq. 2.132, if the flow rates are
balanced, qs = −qe and zs = −ze = −d, then

Ω(z) = −qu

A
z − qs

2πh
ln

z + d

z − d
(2.143)

Figure 2.19 shows the streamlines given by Eq. 2.143. It is seen that the dividing
streamline forms an oval contour.

Although Eq. 2.143 is derived for uniform flow around a source-sink pair, the
resultant flow can be interpreted as the flow over an oval object, which is known as
Rankine’s oval. Inside the oval contour, the fluid emanates from the source and flows
into the sink, whereas the fluid outside the oval is attributed to uniform flow.

The stagnation points are obtained from the solution of

W = −dΩ

dz
= qu

A
+ qs

2πh

(
1

z + d
− 1

z − d

)
= 0 (2.144)

which yields

z = ±
√

d2 + A

qu

qs

πh
d (2.145)

Fig. 2.19 Uniform flow over
Rankine’s oval
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There exist two stagnation points, one to the left of the source and the other to the
right of the sink, both on the x axis (Fig. 2.19).

It is deduced that the shape of Rankine’s oval depends on the distance between
the source and the sink, 2d, and the ratio between the flow rates, qs/qu. As the source
and the sink get closer to each other (d approaches zero), while (qs/qu)d is held
constant, the oval shape becomes more and more circular.

The coalescence of the source and the sink, with the flow rates equal in magnitude
but opposite in sign, at a single point forms a dipole. By letting d approach zero and
m = qs/(2πh) approach ∞ in such a way that 2dm = σ is finite, the second term
on the right-hand side of Eq. 2.143 yields

− lim
d→0

qs

2πh
ln

z + d

z − d
= − lim

d→0
m [ln(z + d) − ln(z − d)]

= − lim
d→0

2dm
ln(z + d) − ln(z − d)

2d

= −σ
d

dz
ln z = −σ

z
(2.146)

which represents flow caused by a dipole. Then, the complex potential Eq. 2.143
becomes

Ω(z) = −qu

A
z − σ

z
(2.147)

which expresses flow over a circular object.
By using the exponential form z = reiθ , the stream function is found to be

Ψ = Im Ω(r, θ) = −Im
[qu

A
reiθ + σ

r
e−iθ

]
= −

(qu

A
r − σ

r

)
sin θ (2.148)

which becomes zero when r = √
σ/(qu/A) or sin θ = 0. Hence, the streamline

Ψ = 0 consists of the circle

|z| =
√

σ

qu/A
(2.149)

and the x axis (θ = 0 and θ = π ). This implies that the streamline on the x axis
(beyond the stagnation points) passes along the circumference of the circle and
confirms that Rankine’s oval becomes a circle in the limit of d → 0.

It should be noted that the stagnation points given by Eq. 2.145 approach

z = ± lim
d→0

√
d2 + A

qu

qs

πh
d = ± lim

d→0

√
d2 + 2dm

qu/A

= ±
√

σ

qu/A
(2.150)
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which are on the circle. The same result follows from the solution of W = 0. From
Eq. 2.147, the corresponding complex velocity is

W = qu

A
− σ

z2 (2.151)

and stagnation points are found on the circular object at

z = ±
√

σ

qu/A
(2.152)

The distance between the two is the diameter of the circle, and thus the radius is√
σ/(qu/A). Let R be the radius of the circle, then σ = (qu/A)R2 and Eq. 2.147

becomes
Ω(z) = −qu

A

(
z + R2

z

)
(2.153)

for flow over a circular object of radius R.

• Solution to Task 3-1
The complex potential for uniform flow over a circular pillar is given by Eq. 2.153.
Substituting qu/A = 1 and R = 1 into the solution yields

Ω(z) = −z − 1

z
(2.154)

with which the corresponding complex potentials are computed. Figure 2.20 shows
the equipotential lines and streamlines.

The complex velocity is given by

W = −dΩ

dz
= 1 − 1

z2 (2.155)

and from the solution of W = 0, stagnation points are found at z = ±1, as expected.
Flow outside the circumference of the pillar is caused by uniform flow only. Away
from the object, flow is essentially uniform as can be seen by evenly spaced hori-
zontal streamlines. When approaching the pillar, flow is gradually distorted and the
streamlines detour and become denser near the circumference of the pillar.

2.6.3 Discharge and Stream Function

Let us consider a discharge �q/h (in terms of volume per unit thickness normal
to the xy plane per unit time) flowing in the channel between two streamlines with
stream functions of Ψ1 and Ψ2, respectively, as shown in Fig. 2.21. This discharge is
constant in the channel because flow cannot leave across the streamlines.
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(a) (b)

Fig. 2.20 Uniform flow over an impermeable circular object of radius R = 1. a Equipotential
lines. b Streamlines. (In the vicinity of the center of the object, equipotential lines and streamlines
become too dense and some of them are not plotted)

Fig. 2.21 Discharge �q/h
between two streamlines
with stream functions of Ψ1
and Ψ2

Ψ1

A

B
T

Δq/h

Ψ2

x

y

Ψ

Φ

A temporary point T is set so that the segment AT is parallel to the y axis and the
segment TB is parallel to the x axis. By continuity of flow, the discharge must pass
through ATB, and thus

�q

h
=

T∫
A

Vxdy +
T∫

B

Vydx (2.156)

where Vx and Vy are given by Eq. 2.115; thus

�q

h
= −

T∫
A

∂Ψ

∂y
dy +

T∫
B

∂Ψ

∂x
dx

= −ΨT + ΨA + ΨT − ΨB = ΨA − ΨB

= Ψ1 − Ψ2 (2.157)

where ΨA, ΨB, and ΨT are the stream functions at A, B, and T, respectively.
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It follows that the discharge �q/h between two streamlines is given as the differ-
ence in the values of stream function corresponding to those streamlines. It should
be noted that the path used for the integration is immaterial, since path independence
of line integrals holds for the stream function Ψ . That is, the result depends only on
Ψ1 and Ψ2.

Since Φ increases in the direction against the flow direction and Φ and Ψ form a
Cartesian coordinate system, Eq. 2.157 can be written as

�q

h
= −�Ψ (2.158)

The dimension of stream function is that of discharge, volume per unit thickness per
unit time.

The same result can be derived through the definition of the discharge, Eq. 1.15,
across a curve C. Applying Eq. 2.115 to Eq. 1.15, it follows that

Q =
∫
C

(
Vxdy − Vydx

) =
∫
C

(
−∂Ψ

∂y
dy − ∂Ψ

∂x
dx

)

= −
∫
C

dΨ (2.159)

which states that the discharge Q can be obtained by using the integral of the stream
function along the curve C. For the points A and B in Fig. 2.21, consider the con-
necting curve C; then it follows that

Q = −
∫
C

dΨ = −
B∫

A

dΨ = ΨA − ΨB = Ψ1 − Ψ2 (2.160)

which is consistent with Eq. 2.157.
When C is a closed curve (A = B) and there is no singularity interior to C, the

discharge becomes zero, since path independence of line integrals holds for Ψ and
Eq. 2.159 yields Q = ΨA − ΨB = 0. Conversely, if there exist singularities interior
to C, the discharge across C may not be zero.

Example 2.38 Let us consider a source with a flow rate per unit thickness qw/h at
the origin, the complex potential of which is given by

Ω = − qw

2πh
ln z = − qw

2πh
ln r − i

qw

2πh
θ (2.161)

For the stream function Ψ = −(qw/2πh)θ , it follows that

∂Ψ

∂θ
= − qw

2πh

http://dx.doi.org/10.1007/978-3-319-13063-7_1
http://dx.doi.org/10.1007/978-3-319-13063-7_1
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From Eq. 2.159, the discharge across a circle C of radius r0 with its center at the
origin, |z| = r0, is given by

Q = −
∮
C

dΨ =
2π∫

0

qw

2πh
dθ = qw

h

which is independent of r0 and equal to the flow rate per unit thickness of the source.
It should be noted that the nonzero discharge across the circle enclosing the

source does not contradict the condition of incompressibility, Eq. 1.17. The source
is the singularity at which a fluid of discharge qw/h is introduced. If a closed curve
does not enclose the source, the discharge becomes zero.

2.6.4 Circulation and Velocity Potential

Let us consider a circulation Γ along a curve C connecting points A and B. Applying
Eq. 2.114 to the definition of the circulation, Eq. 1.19, it follows that

Γ =
∫
C

(
Vxdx + Vydy

) =
∫
C

(
−∂Φ

∂x
dx − ∂Φ

∂y
dy

)

= −
∫
C

dΦ (2.162)

which states that the circulation Γ can be obtained by using the integral of the velocity
potential along the curve C.

When C is a closed curve (A = B) and there is no singularity interior to C, the
circulation becomes zero, since path independence of line integrals holds for Φ and
Eq. 2.162 yields Γ = ΦA − ΦB = 0. Conversely, if there exist singularities interior
to C, the circulation along C may not be zero.

Example 2.39 Let us consider a source with a flow rate per unit thickness qw/h at
the origin, expressed by Eq. 2.161. For the velocity potential Φ = −(qw/2πh) ln r,
it follows ∂Φ/∂θ = 0. From Eq. 2.162, the circulation along a circle C is given by

Γ = −
∮
C

dΦ = −
2π∫

0

0dθ = 0

which satisfies the condition of irrotationality.

• Solution to Task 3-2
The stream function for uniform flow over a circular pillar of radius R is the imaginary
part of Eq. 2.153, given by

Ψ (x, y) = −qu

A

(
y − R2y

x2 + y2

)

http://dx.doi.org/10.1007/978-3-319-13063-7_1
http://dx.doi.org/10.1007/978-3-319-13063-7_1
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Fig. 2.22 Discharge (bars)
and velocity (dashed lines)
of uniform flow over an
impermeable circular object
of radius R = 1
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y Vx
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Substituting qu/A = 1, R = 1, and x = 0 into the solution yields the stream function
along the y axis:

Ψ (0, y) = −y + 1

y
(2.163)

From Eq. 2.158, the discharge �q/h flowing through an interval �y can be eval-
uated by using the difference in the values of stream function. Figure 2.22 shows the
values of �q/h for �y = 1 along the y axis.

In the limit of �y → 0, the discharge �q/h passing through �y reduces to

lim
�y→0

�q/h

�y
= − lim

�y→0

�Ψ

�y
= −∂Ψ

∂y

which is equal to Vx , and from Eq. 2.163, it follows that

Vx = 1 + 1

y2 (2.164)

along the y axis.
The same result can be directly obtained from the complex velocity, Eq. 2.155,

which gives ⎧⎪⎪⎨
⎪⎪⎩

Vx = 1 − x2 − y2

(x2 + y2)2

Vy = − 2xy

(x2 + y2)2

and it follows that ⎧⎨
⎩

Vx = 1 + 1

y2

Vy = 0

along the y axis.
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The profile of Vx given by Eq. 2.164 is shown in Fig. 2.22. The velocity takes its
maximum Vx = 2 on the circumference of the object at y = ±1 and decreases as |y|
increases. In the limit of |y| → ∞, Vx approaches 1, which is equal to the uniform
flow velocity qu/A = 1.

2.6.5 Dipoles

The dipole derived in Eq. 2.146 is oriented in the x direction. The orientation of the
dipole depends on the direction from which the source approaches the sink. Let us
consider the source approaching the sink in the direction making an angle δ with the
x axis. Substituting deiδ for d into Eq. 2.146 yields the complex potential

Ω = −σeiδ

z
(2.165)

for a dipole oriented at an angle δ to the x direction.
Figure 2.23 shows the equipotential lines and streamlines for a dipole with δ =

π/6. The curves are families of circles through the dipole with their centers on
mutually orthogonal lines.

Example 2.40 In the solution to Task 3-1, let us consider a dipole oriented against
uniform flow, that is, δ = π in Eq. 2.165. Then the complex potential for uniform
flow with a dipole oriented against it becomes

Ω = −z + 1

z
(2.166)

(a) (b)

Fig. 2.23 A dipole in the direction making an angle π/6 with the x direction. a Equipotential lines.
b Streamlines. (In the vicinity of the origin, equipotential lines and streamlines become too dense
and some of them are not plotted)
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(a) (b)

Fig. 2.24 Uniform flow with a dipole oriented against the flow. a Equipotential lines. b Streamlines

with which the corresponding equipotential lines and streamlines are obtained as
shown in Fig. 2.24.

The circumference of the circular object coincides with an equipotential line,
which indicates that the circular pillar becomes an equipotential object rather than
an obstacle to flow. Consequently, the streamlines are perpendicular to the circular
object. Inflow occurs along the upstream (left-hand) side of the circle and outflow
along the downstream (right-hand) side.

The complex velocity is given by

W = −dΩ

dz
= 1 + 1

z2

and from the solution of W = 0, stagnation points are found at z = ±i, where the
streamlines intersect each other, as seen in Fig. 2.24b. Away from the equipoten-
tial object, flow is essentially uniform as can be seen by evenly spaced horizontal
streamlines. When approaching the circular object, flow is gradually distorted and
the streamlines become perpendicular to the circular equipotential line, except at the
stagnation points.

2.6.6 Vortices

A vortex is a point around which a fluid flows along concentric circles. The cor-
responding complex potential is given by interchanging the velocity potential and
stream function for a source or sink; mathematically, the complex potential for a
vortex at zv can be obtained by dividing that for a source or sink by an imaginary
unit i

Ω = − γ

2π i
ln(z − zv) (2.167)
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(a) (b)

Fig. 2.25 Flow caused by a vortex. a Equipotential lines. (The thick line emanating from the
vortex in the negative x direction corresponds to the branch cut and overlaps an equipotential line).
b Streamlines

where γ is the strength of the vortex. The resultant flow caused by the vortex is
shown in Fig. 2.25. The equipotential lines are rays emanating from the vortex and
the streamlines are concentric circles centered at the vortex.

By using the exponential form z − zv = reiθ , it follows that

Ω = − γ

2π i
(ln r + iθ) = − γ

2π
θ + i

γ

2π
ln r (2.168)

For the stream function Ψ = (γ /2π) ln r, it follows that ∂Ψ/∂θ = 0. From Eq. 2.159,
the discharge across a circle C with its center at zv is given by

Q = −
∮
C

dΨ =
2π∫

0

0dθ = 0 (2.169)

which satisfies the condition of incompressibility.
For the velocity potential Φ = −(γ /2π)θ , it follows that

∂Φ

∂θ
= − γ

2π
(2.170)

From Eq. 2.162, the circulation along a circle C enclosing z = zv is given by

Γ = −
∮
C

dΦ =
2π∫

0

γ

2π
dθ = γ (2.171)

which is equal to the strength of the vortex.
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The nonzero circulation along the circle enclosing the vortex does not contradict
the condition of irrotationality, Eq. 1.21. The vortex is the singularity at which a
circulation of γ is introduced. If a closed curve does not enclose the vortex, the
circulation becomes zero.

The complex velocity is given by

W = −dΩ

dz
= γ

2π i

1

z − zv
(2.172)

and by using the exponential form, W becomes

W = γ

2π i

1

r
e−iθ = −i

γ

2π

1

r
e−iθ = (Vr − iVθ )e

−iθ (2.173)

Thus, Vr = 0 and Vθ = (γ /2π)/r. The direction of the velocity is tangential to
the concentric circles and the magnitude is inversely proportional to the distance
from the vortex. For positive values of γ , flow becomes counterclockwise, while for
negative values of γ , flow is clockwise.

Example 2.41 In the solution to Task 3-1, let us consider uniform flow over a circular
object with circulation. By adding a vortex at the origin to Eq. 2.154, it follows that

Ω = −z − 1

z
− γ

2π i
ln z

Since the vortex has concentric circular streamlines, the addition of the vortex to flow
over a circular object does not deform the object. For γ = −2π , the corresponding
equipotential lines and streamlines are obtained, as shown in Fig. 2.26.

(a) (b)

Fig. 2.26 Uniform flow over an impermeable circular object of radius R = 1 with circulation
γ = −2π. a Equipotential lines. b Streamlines

http://dx.doi.org/10.1007/978-3-319-13063-7_1
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(a) (b)

Fig. 2.27 Uniform flow over an impermeable circular object of radius R = 1 with circulation.
a Circulation of γ = −4π . b Circulation of γ = −5π

Flow caused by the vortex is in the clockwise direction, and thus, flow above the
circle is accelerated, while flow below the circle is decelerated, as can be confirmed
from the dense streamlines above and the sparse streamlines below the circle.

The complex velocity is given by

W = −dΩ

dz
= 1 − 1

z2 + γ

2π i

1

z

and from the solution of W = 0, stagnation points are found at

z = (γ /2π)i ± √
4 − (γ /2π)2

2

If 0 ≤ |γ /2π | < 2, there exist two stagnation points on the unit circle |z| = 1. For
γ = −2π , for instance, the stagnation points are found at z = ±√

3/2 − i/2 on
the circle, as seen in Fig. 2.26. If |γ /2π | = 2, there is one stagnation point either
at z = +i or z = −i on the unit circle. If |γ /2π | > 2, stagnation points lie on
the imaginary axis, one outside the unit circle and the other inside the circle, which
has no physical meaning. Figure 2.27 shows such flow profiles for γ = −4π and
γ = −5π .

The profiles depend on the strength of the vortex γ , and the stagnation points are
found in accordance with the discussion above. For γ = −4π , the stagnation point
is at z = −i on the object and for γ = −5π , the stagnation points are at z = −2i in
the flow domain and at z = −0.5i inside the object.
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