
A Micro-benchmark Suite for Evaluating
Hadoop MapReduce on High-Performance

Networks

Dipti Shankar(B), Xiaoyi Lu, Md. Wasi-ur-Rahman, Nusrat Islam,
and Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering,
The Ohio State University, Columbus, USA

{shankard,luxi,rahmanmd,islamn,panda}@cse.ohio-state.edu

Abstract. Hadoop MapReduce is increasingly being used by many data-
centers (e.g. Facebook, Yahoo!) because of its simplicity, productivity,
scalability, and fault tolerance. For MapReduce applications, achieving
low job execution time is critical. Since a majority of the existing clus-
ters today are equipped with modern, high-speed interconnects such as
InfiniBand and 10 GigE, that offer high bandwidth and low communi-
cation latency, it is essential to study the impact of network configura-
tion on the communication patterns of the MapReduce job. However, a
standardized benchmark suite that focuses on helping users evaluate the
performance of the stand-alone Hadoop MapReduce component is not
available in the current Apache Hadoop community. In this paper, we
propose a micro-benchmark suite that can be used to evaluate the per-
formance of stand-alone Hadoop MapReduce, with different intermedi-
ate data distribution patterns, varied key/value sizes, and data types. We
also show how this micro-benchmark suite can be used to evaluate the
performance of Hadoop MapReduce over different networks/protocols
and parameter configurations on modern clusters. The micro-benchmark
suite is designed to be compatible with both Hadoop 1.x and Hadoop 2.x.

Keywords: Big data · Hadoop MapReduce · Micro-benchmarks ·
High-performance networks

1 Introduction

MapReduce, proposed by Google [8], has been seen as a viable model for processing
petabytes of data. The Apache Hadoop project [23], an open-source implementa-
tion of the MapReduce computing model, has gained widespread acceptance and
is widely used in many organizations around the world. MapReduce is extensively

This research is supported in part by National Science Foundation grants #OCI-
1148371, #CCF-1213084 and #OCI-1347189. It used the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which is supported by National Science
Foundation grant number #OCI-1053575.

c© Springer International Publishing Switzerland 2014
J. Zhan et al. (Eds.): BPOE 2014, LNCS 8807, pp. 19–33, 2014.
DOI: 10.1007/978-3-319-13021-7 2

20 D. Shankar et al.

adopted by various applications to perform massive data analysis and is hence
required to deliver high performance. While Hadoop does attempt to minimize the
movement of data in the network, there are times when MapReduce does gener-
ate considerable network traffic, especially during the intermediate data shuffling
phase [17], which is communication intensive.

Several modern, high-speed interconnects such as InfiniBand and 10 GigE,
are used widely in clusters today. The data shuffling phase of the MapReduce
job can immensely benefit from the high bandwidth and low latency commu-
nication offered by these high-performance interconnects. In order to evaluate
this improvement potential, we require benchmarks that can give us insights
into the factors that affect MapReduce as an independent component. The per-
formance of Hadoop MapReduce is influenced by many factors such as network
configuration of the cluster, controllable parameters in software (e.g. number of
maps/reduces, data distribution), data types, and so on. To get optimal per-
formance, it is necessary to tune and optimize these factors, based on cluster
and workload characteristics. Adopting a standardized performance benchmark
suite to evaluate these performance metrics in different configurations would be
good for Hadoop users. For Hadoop developers, a benchmark suite with these
capabilities could help evaluate the performance of new MapReduce designs.

At present, we lack a standardized benchmark suite that focuses on helping
users evaluate the performance of the Hadoop MapReduce as a stand-alone com-
ponent. Current, commonly used benchmarks in Hadoop, such as Sort and Tera-
Sort, usually require the involvement of HDFS. The performance of the HDFS
component has significant impact on the overall performance of the MapReduce
job, and this interferes in the evaluation of the performance benefits of new
designs for MapReduce. Furthermore, these benchmarks do not provision us to
study the impact of changing data distribution patterns, varying data types, etc.,
on the performance of the MapReduce job. Such capabilities are very useful for
optimizing the parameters and the internal designs of Hadoop MapReduce. With
this as background, the basic motivation of this paper is: Can we design a simple
micro-benchmark suite to let users and developers in the Big Data community
evaluate, understand, and optimize the performance of Hadoop MapReduce in a
stand-alone manner over different networks/protocols?

In this paper, we propose a comprehensive micro-benchmark suite to eval-
uate the performance of stand-alone Hadoop MapReduce. We provide options
for varying different benchmark-level parameters such as intermediate data dis-
tribution pattern, key/value size, data type, etc. Our micro-benchmark suite
can also dynamically set the Hadoop MapReduce configuration parameters, like
number of map and reduce tasks, etc. We display the configuration parameters
and resource utilization statistics for each test, along with the final job execution
time, as the micro-benchmark output.

This paper makes the following key contributions:

1. Designing a micro-benchmark suite to evaluate the performance of stand-
alone Hadoop MapReduce, when run over different types of high-performance
networks.

A Micro-benchmark Suite for Evaluating Hadoop MapReduce 21

2. A set of micro-benchmarks to measure the job execution time of Hadoop
MapReduce with different intermediate data distribution patterns.

3. Illustration of the performance results of Hadoop MapReduce using these
micro-benchmarks over different networks/protocols (1 GigE/10 GigE/IPoIB
QDR (32 Gbps)/IPoIB FDR (56 Gbps)).

4. A case study on enhancing Hadoop MapReduce design by using RDMA over
native InfiniBand, undertaken with the help of the proposed micro-benchmark
suite.

The rest of the paper is organized as follows. In Sect. 2, we discuss related
work in the field. We present design considerations for our micro-benchmark
suite in Sect. 3 and the micro-benchmarks in Sect. 4. In Sect. 5, we present the
results of performance tests, obtained with our micro-benchmark suite. Section 6
shows a case study with RDMA-enhanced MapReduce. Finally, we conclude the
paper in Sect. 7.

2 Related Work

Over the years, many benchmarks have been introduced in the areas of Cloud
Computing and Big Data. MRBench [13] provides micro-benchmarks in the form
of MapReduce jobs of TPC-H [4]. MRBS [21] is a benchmark suite that eval-
uates the dependability of MapReduce systems. It provides five benchmarks
for several application domains and a wide range of execution scenarios. Simi-
larly, HiBench [9] has extended the DFSIO program to compute the aggregated
throughput by disabling the speculative execution of the MapReduce framework.
It also evaluates Hadoop in terms of system resource utilization (e.g. CPU, mem-
ory). MalStone [6] is a benchmark suite designed to measure the performance of
cloud computing middleware when building data mining models. Yahoo! Cloud
Serving Benchmark (YCSB) [7] is a set of benchmarks for performance evalu-
ations of key/value-pair and cloud data-serving systems. YCSB++ [18] further
extends YCSB to improve performance understanding and debugging. BigData-
Bench [25], a benchmark suite for Big Data Computing, covers typical Internet
service workloads and provides representative data sets and data generation
tools. It also provides different implementations for various Big Data processing
systems [1,14].

In addition to the above benchmarks that address the Hadoop framework as
a whole, micro-benchmark suites have been designed to study some of its individ-
ual components. The micro-benchmark suite designed in [10] helps with detailed
profiling and performance characterization of various HDFS operations. Like-
wise, the micro-benchmark suite designed in [16] provides detailed profiling and
performance characterization of Hadoop RPC over different high-performance
networks. Along these lines, our proposed micro-benchmark suite introduces a
performance evaluation tool for stand-alone Hadoop MapReduce, that does not
need HDFS or any other distributed file system.

22 D. Shankar et al.

3 Design Considerations

The performance of a MapReduce job is usually measured by its execution time.
It can be significantly influenced by numerous factors such as the underlying
network or the communication protocol, number of map tasks and reduce tasks,
intermediate shuffle data pattern, and the shuffle data size, as illustrated in
Fig. 1(a).

Essentially, the efficiency of the network intensive data shuffling phase is
determined by how fast the map outputs are shuffled. Based on these aspects,
we consider the following dimensions to design the Hadoop MapReduce micro-
benchmark suite,

Intermediate data distribution: Map tasks transform input key/value pairs
to a set of intermediate key/value pairs. These intermediate key/value pairs are
shuffled from the mappers, where they are created, to the reducers where they
are consumed. Depending upon the MapReduce job, the distribution of inter-
mediate map output records can be even or skewed. A uniformly balanced load
can significantly shorten the total run time by enabling all reducers to finish
at about the same time. In jobs with a skewed load, some reducers complete
the job quickly, while others take much longer, as the latter have to process a
more sizeable portion of the work. Since it is vital for performance to understand
whether these distributions can be significantly impacted by the underlying net-
work protocol, we consider this an important aspect of our micro-benchmark
suite.

Size and number of key/value pairs: For a given data size, the size of the
key/value pair determines the number of times the Mapper and Partitioner func-
tions are called; and, in turn, the number of intermediate records being shuffled.
Our micro-benchmark suite provides support for three related parameters: key
size, value size and number of key/value pairs. Through these parameters, we
can specify the total amount of data to be processed by each map, amounting
to the total shuffle data size. These parameters can help us understand how the
nature of intermediate data, such as the key/value pair sizes, can impact the
performance of the MapReduce job, on different networks.

Number of map and reduce tasks: The number of map and reduce tasks is
probably the most basic Hadoop MapReduce parameters. Tuning the number of
map and reduce tasks for a job is essential for optimal performance and hence
we provide support to vary the number of map and reduce tasks in our micro-
benchmark suite.

Data types: Hadoop can process many different types of data formats, from
flat text files to databases. Binary data types usually take up less space than
textual data. Since disk I/O and network transfer will become bottlenecks in
large jobs, reducing the sheer number of bytes taken up by the intermediate
data can provide a substantial performance gain. Thus, data types can have
a considerable impact on the performance of the MapReduce job. Our micro-
benchmark suite is designed to support different data types.

A Micro-benchmark Suite for Evaluating Hadoop MapReduce 23

Network configuration: The intermediate data shuffling phase, which is the
heart of MapReduce, results in a global, all-to-all communication. This accounts
for a rather significant amount of network traffic within the cluster, although
it varies from job to job. This is an important consideration, especially when
expanding the cluster. Hence, it is essential to compare and contrast the impact
that different network interconnects/protocols have on the performance of the
MapReduce job. Our micro-benchmark suite is capable of running over any net-
work and cluster configuration.

Resource utilization: The multi-phase parallel model of MapReduce and its
scheduling policies have a significant impact on various systems resources such
as the CPU, the memory, and the network, especially with an increasing number
of maps and reduce tasks being scheduled. As it is essential to understand the
correlation between network characteristics and resource utilization, our micro-
benchmark suite provides the capability to measure the resource utilization,
during the course of the MapReduce job.

4 Micro-benchmarks for Hadoop MapReduce

In this section, we present the overall design of the micro-benchmark suite, and
describe the micro-benchmarks implemented based the various design factors
outlined in Sect. 3.

4.1 Overview of Overall Micro-benchmark Suite Design

In this study, we develop a micro-benchmark suite for stand-alone Hadoop
MapReduce, in order to provide an understanding of the impact of different
factors described in Sect. 3 on the performance of the MapReduce job when run
over different networks. As illustrated in Fig. 1(b), these micro-benchmarks have
the following key features:

Stand-alone feature: Each micro-benchmark is basically a MapReduce job
that is launched without HDFS or any other distributed file system. In order to
achieve this,

(1)For theMapphase,wedefineacustominput format,namely,NullInputFormat,
for the mapper instances. This empty input format creates dummy input splits
based on the number of map tasks specified, with a single record in each. Each map
task generates a user-specified number of key/value pairs in memory, and passes it
on as map output.

(2) For the Reduce phase, we make use of NullOutputFormat [3], defined in the
MapReduce API, as the output format. Each reduce task aggregates intermediate
data from the map phase, iterates over them and discards it to /dev/null. This
is ideal for our micro-benchmarks, since we evaluate MapReduce as a stand-alone
component.

24 D. Shankar et al.

Intermediate
Data

Distribution Size and
number of
key/value

pairs

Number of
map and

reduce tasks

Data Type of
key/value pairs

Network
Configuration

Resource
Utilization

(CPU/network)

(a) Design considerations

Custom
Partitioner

Shuffle and Sort

Reduce

Performance
characteristics

Dummy
Split

User-specified parameters

Custom
Partitioner

Shuffle and Sort

Dummy
Split

Dummy
Split

Dummy
Split

MapMapMap Map

Overall Performance Results

Reduce

Performance
characteristics

Data
Shuffling

Phase

Generated
intermediate

(k,v) pairs

key/value
exchange

pattern

(b) Micro-benchmark Design

Fig. 1. Design overview of the MapReduce micro-benchmarks

Custom Partitioners: The partitioning phase that takes place after the map
phase and before the reduce phase, partitions the data gets across the reduc-
ers according to the partitioning function. To simulate different intermediate
data distribution scenarios, we employ different custom partitioners. We support
three different intermediate data distribution patterns, namely, average distri-
bution, random distribution and skewed distribution. These three distributions
cover most of the intermediate data distribution patterns found in MapReduce
applications.

Configurable parameters: In our micro-benchmark suite, we provide para-
meters to vary the number of mappers and reducers. The user can specify the
size in bytes and the number of the key/value pairs to be generated based on the
intermediate shuffle data size of the MapReduce job. We also provide a para-
meter to indicate data type, such as BytesWritable or Text. Based on these
parameters, the micro-benchmark suite generates the data to be processed by
each map.

4.2 Micro-benchmarks

Using the framework described in Sect. 4.1 as basis, we define three micro-
benchmarks. For each of these, we can vary the size and number of key/value
pairs, to generate different sizes of shuffle data. These micro-benchmarks use the
Map function to create specified number of key/value pairs. To avoid any addi-
tional overhead, we restrict the number of unique pairs generated to the number
of reducers specified.

Average-distribution (MR-AVG): In this micro-benchmark, we distribute
the intermediate key/value pairs uniformly amongst all of the reduce tasks. The
custom partitioner defined for MR-AVG distributes the key/value pairs amongst
the reducers in a round-robin fashion, making sure each reducer gets the same
number of intermediate key/value pairs. This helps us obtain a fair comparison

A Micro-benchmark Suite for Evaluating Hadoop MapReduce 25

of the performance of a MapReduce job on different networks, when the inter-
mediate data is evenly distributed.

Random-distribution (MR-RAND): In this micro-benchmark, we randomly
distribute the intermediate key/value pairs among the reduce tasks. The cus-
tom partitioner defined for MR-RAND randomly picks a reducer and assigns
the key/value pair to it. With the help of Java’s Random class, the reducer
is pseudo-randomly chosen, with its range specified as the number of reducers.
With this limited range, the micro-benchmark more or less generates the same
pattern of reducers, making sure each run gets similar intermediate key/value
pairs to reducers mapping. This mapping is relatively close to an even distribu-
tion and thus helps us picture a fairly accurate comparison of the performance of
a MapReduce job on different networks, when the intermediate data is randomly
distributed among the reducers.

Skew-distribution (MR-SKEW): In this micro-benchmark, we distribute
the intermediate key/value pairs unevenly among the reducers. Based on the
number of reducers specified, the custom partitioner defined for MR-SKEW
distributes 50 % of the intermediate key/value pairs to the first reducer, 25 %
of the remainder to the second reducer, 12.5 % of the remaining to the third,
and then randomly distributes the rest. Since this skewed distribution pattern is
fixed for all runs, irrespective of the key/value pairs generated, we can guarantee
a fair comparison on homogenous systems. This micro-benchmark helps us gain
essential insights into the performance of MapReduce jobs with skewed loads,
running over different network types. By determining the overhead of running a
skewed load, we can determine if it is worthwhile to find alternative techniques
that can mitigate load imbalances in Hadoop applications.

5 Performance Evaluation

5.1 Experimental Setup

(1) Intel Westmere Cluster (Cluster A): This cluster has nine nodes. Each
node has Xeon Dual quad-core processor operating at 2.67 GHz. Each node
is equipped with 24 GB and two 1TB HDDs. Nodes in this cluster also have
NetEffect NE020 10Gb Accelerated Ethernet Adapter that are connected using
a 24 port Fulcrum Focalpoint switch. The nodes are also interconnected with a
Mellanox switch. Each node runs Red Hat Enterprise Linux Server release 6.1.

(2) TACC Stampede [22] (Cluster B): We use the Stampede supercomputing
system at TACC [22] for our experiments. According to TOP500 [24] list in June
2014, this cluster is listed as the 7th fastest supercomputer worldwide. Each node
in this cluster is dual socket containing Intel Sandy Bridge (E5-2680) dual octa-
core processors, running at 2.70GHz. It has 32 GB of memory, a SE10P (B0-
KNC) co-processor and a Mellanox IB FDR MT4099 HCA. The host processors
are running CentOS release 6.3 (Final). Each node is equipped with a single
80 GB HDD.

26 D. Shankar et al.

For Cluster A, we show performance comparisons over 1 GigE, 10 GigE, and
IPoIB (32 Gbps). We evaluate our micro-benchmarks with Apache Hadoop 1.2.1
and JDK version 1.7. We also present some results with Apache Hadoop NextGen
MapReduce (YARN) [5] version 2.4.1. On Cluster B, we compare IPoIB FDR
(56 Gbps) and RDMA FDR (56 Gbps), with Apache Hadoop 1.2.1 running over
IPoIB and RDMA for Apache Hadoop (v0.9.9) [2]. These results are presented
in Sect. 6.

5.2 Evaluation along Different Dimensions

Evaluating impact of intermediate data distribution patterns: In this
section, we present performance results obtained using micro-benchmarks pre-
sented in Sect. 4.2, to evaluate the impact of intermediate data distribution pat-
terns on the MapReduce job execution time. We perform these tests on Cluster A,
using BytesWritable data type and a fixed key/value pair size of 1 KB, with 16
map tasks and 8 reduce tasks on 4 slave nodes. We compare the performance with
different shuffle data sizes, by varying the number of intermediate key/value pairs
generated. Figure 2 shows comparison for job execution time with different inter-
mediate data distribution patterns. From Fig. 2(a), it is clear that the job execu-
tion time for MR-AVG micro-benchmark decreases around 17 %, if the underlying
interconnect is changed to 10 GigE from 1 GigE, and up to 24 %, when changed
to IPoIB (32 Gbps). Similarly, from Fig. 2(b), job execution time for MR-RAND
micro-benchmark decreases around 16 %, if the underlying interconnect is 10 GigE
instead of 1 GigE, and up to 22 %, if it is IPoIB (32 Gbps). We observe that IPoIB
(32 Gbps) improves the performance by about 8–10 %, as compared to 10 GigE, for
both MR-AVG and MR-RAND micro-benchmarks. From Fig. 2(c), we can observe
that the performance improves by about 11 % for MR-SKEW micro-benchmark,
if we switch from 1 GigE from 10 GigE. Also, IPoIB (32 Gbps) performs better
than 10 GigE, by about 12 %, as intermediate shuffle data sizes are scaled up. It
can be observed that IPoIB (32 Gbps) provides better improvement with increased
shuffle data sizes and more skewed workloads. Also, the skewed data distribution
seems to double the job execution time for a given data size, as compared to the
average distribution, irrespective of the underlying network interconnect.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

16 32 64 128

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

1GigE
10GigE
IPoIB (32Gbps)

(a) MR-AVG

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

16 32 64 128

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

1GigE
10GigE
IPoIB (32Gbps)

(b) MR-RAND

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

16 32 64 128

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

1GigE
10GigE
IPoIB (32Gbps)

(c) MR-SKEW

Fig. 2. Job Execution Time for different data distribution patterns on Cluster A

A Micro-benchmark Suite for Evaluating Hadoop MapReduce 27

Evaluating with Apache Hadoop NextGen MapReduce (YARN): In
this section, we evaluate the probable influence that the intermediate data dis-
tribution pattern has on the MapReduce job execution time for the Hadoop
YARN Architecture [5], using Apache Hadoop 2.4.1. We perform these tests on
Cluster A, with a key/value pair size of 1 KB, using 32map tasks and 16 reduce
tasks on 8 slave nodes. We compare the performance with different shuffle data
sizes, by varying the number of intermediate key/value pairs generated. From
Fig. 3(a), it is clear that the job execution time for MR-AVG decreases around
11 %, if the underlying interconnect is changed to 10 GigE from 1 GigE, and
by about 18 %, when changed to IPoIB (32 Gbps). Similarly, from Fig. 3(b), job
execution time for MR-RAND micro-benchmark decreases around 10 %, when
we switch from 1 GigE to 10 GigE, and up to 17 % improvement, when changed
to IPoIB (32 Gbps). For MR-SKEW micro-benchmark, Fig. 3(c) shows that the
performance of the MapReduce job improves by about 10–12 % with the use of
high-speed interconnects. It can be observed that, IPoIB (32 Gbps) improves
performance by about 7–10 % for all three micro-benchmarks, as compared to
10 GigE, with increased shuffle data sizes. Also, for a given data size, the skewed
data distribution increases the job execution time by more than 3X, when com-
pared to the average data distribution, irrespective of the underlying network
interconnect. From Figs. 2 and 3, we can infer that, increasing cluster size and
concurrency significantly benefits average and random data distribution pat-
terns. From Figs. 2(c) and 3(c), it also evident that, even though the Map phase
may benefit from the increased concurrency and cluster size, the Reduce phase
of the MapReduce job with a skewed intermediate data distribution still depends
on the slowest reduce task, and hence, the improvement is not as much.

0

100

200

300

400

500

600

700

800

900

8 16 32 64 128

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

1GigE
10GigE
IPoIB (32Gbps)

(a) MR-AVG

0

100

200

300

400

500

600

700

800

900

8 16 32 64 128

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

1GigE
10GigE
IPoIB (32Gbps)

(b) MR-RAND

0

1,000

2,000

3,000

4,000

5,000

6,000

8 16 32 64 128

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

1GigE
10GigE
IPoIB (32Gbps)

(c) MR-SKEW

Fig. 3. Job Execution Time with different patterns for YARN architecture on Cluster A

Evaluating impact of varying key/value pair sizes: In this section, we
present results using MR-AVG micro-benchmark, to portray the impact of vary-
ing key/value pair size on the performance of the MapReduce job. We run these
evaluations on Cluster A, with 16 map tasks and 8 reduce tasks on 4 slave
nodes, for BytesWritable data type. Figure 4 shows job execution time compar-
isons with MR-AVG micro-benchmark for different key/value pair sizes. From
Fig. 4(a), we can see that the job execution time for a key/value pair size of
100 bytes, decreases around 18 %, if the underlying interconnect is changed from

28 D. Shankar et al.

1 GigE to 10 GigE, and by about 22 %, when changed to IPoIB (32 Gbps).
Figures 4(b) and (c) show similar performance improvement for key/value pair
sizes of 1 KB and 100 KB, when underlying interconnect is changed to from 1
GigE to IPoIB (32 Gbps) and 10 GigE. We also observe that IPoIB (32 Gbps)
performs slightly better than 10 GigE, by about 7–10 %, for all three key/value
pair sizes. It can be seen that increasing the key/value pair sizes brings about
lower job execution times for a given shuffle data size. For instance, the job
execution time for 16 GB shuffle data size reduces from 128 to 107 s for IPoIB
(32 Gbps) when key/value sizes are increased from 100 bytes to 10 KB. We can
therefore infer that the size and number of key/value pairs can influence the
performance of the MapReduce job running on different networks.

0

50

100

150

200

250

300

350

400

4 8 16 32

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

1GigE
10GigE
IPoIB (32Gbps)

(a) MR-AVG with key/value

size of 100 bytes

0

50

100

150

200

250

300

4 8 16 32

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

1GigE
10GigE
IPoIB (32Gbps)

(b) MR-AVG with key/value

size of 1 KB

0

50

100

150

200

250

300

4 8 16 32

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

1GigE
10GigE
IPoIB (32Gbps)

(c) MR-AVG with key/value

size of 10 KB

Fig. 4. Job Execution Time with MR-AVG for different key/value pair sizes on
Cluster A

Evaluating impact of varying the number of map and reduce tasks: In
this section, we present performance results with varying number of map and
reduce tasks, using MR-AVG micro-benchmark, over 10 GigE and IPoIB (32
Gbps). We run these performance evaluations on Cluster A, with a key/value
pair size of 1 KB. We vary the number of key/value pairs to generate different
shuffle data sizes. In Fig. 5, we present performance evaluations with 8 map and
4 reduce tasks (8M-4R), and 4 map and 2 reduce tasks (4M-2R). For both these
cases, Fig. 5 clearly shows that IPoIB (32 Gbps) outperforms 10 GigE, by about
13 %. It is evident that IPoIB (32 Gbps) gives better performance improvement
with increased concurrency, as compared to 10 GigE. For instance, increasing
the number of map and reduce tasks improved the performance of the MapRe-
duce job by about 32 % for IPoIB (32 Gbps), while it improved by only 24 %
for 10 GigE, for a shuffle data size of 32 GB. It can therefore be inferred that
varying the number of map and reduce tasks can impact the load on the network.

Evaluating impact of data types: In this section, we present results of
experiments done with the MR-RANDOM micro-benchmark, to understand the
impact of data types on the performance of the MapReduce job over different
networks interconnects. We run these experiments on Cluster A, using 16 map
tasks and 8 reduce tasks on 4 slave nodes, with fixed key/value pair size of 1 KB,

A Micro-benchmark Suite for Evaluating Hadoop MapReduce 29

0

100

200

300

400

500

4 8 16 32

Jo
b

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Shuffle Data Size (GB)

10GigE-4M-2R
10GigE-8M-4R

IPoIB QDR-4M-2R
IPoIB QDR-8M-4R

Fig. 5. Job Execution Time
with varying number of maps
and reduces on Cluster A

0
200
400
600
800

1000
1200
1400
1600
1800

4 8 16 32 64

Jo
b

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Shuffle Data Size (GB)

1GigE
10GigE

IPoIB (32Gbps)

(a) Job Execution Time with

0
200
400
600
800

1000
1200
1400
1600
1800

 4 8 16 32 64

Jo
b

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Shuffle Data Size (GB)

1GigE
10GigE

IPoIB (32Gbps)

(b) Job Execution Time with

Fig. 6. Job Execution Time with BytesWri-
table and Text on Cluster A

to study BytesWritable and Text data types. Figure 6(a) shows the trend for
BytesWritable and Fig. 6(b) shows the trend for Text, as we scale up to 64 GB.
We observe that the job execution time decreases around 17–23 %, if the under-
lying interconnect is 10 GigE, instead of 1 GigE, and up to 28 % improvement,
if it is IPoIB (32 Gbps). Also, IPoIB (32 Gbps) gives noticeable performance
improvement over 10 GigE. It is evident that high-speed interconnects provide
similar improvement potential to both data types. We plan to investigate other
data types, as the next step.

Resource Utilization: In this section, we present results of experiments done
with the MR-AVG micro-benchmark, to study the resource utilization patterns of
MapReduce jobs over different network interconnects. We use 16 map tasks and
8 reduce tasks on 4 slave nodes for these experiments, on Cluster A. We present
CPU and network utilization statistics of one of the slave nodes. Figure 7(a)
shows the CPU utilization trends for MR-AVG benchmark, run with intermedi-
ate data size of 16 GB, a fixed key/value pair size of 1 KB and BytesWritable
data type. It can be observed that CPU utilization trends of 10 GigE and IPoIB
(32 Gbps) are similar to that of 1 GigE. Figure 7(b) shows the network through-
put for the same. For network throughput, we consider the total number of
megabytes received per second. IPoIB (32 Gbps) achieves a peak bandwidth of
950 MB/s, 10 GigE peaks at 520 MB/s, and 1 GigE peaks at 101 MB/s. These
trends suggest that IPoIB (32 Gbps) makes better use of the resources, especially
the network bandwidth, as compared to 10 GigE and 1 GigE.

6 A Case Study: Enhanced Hadoop MapReduce Design
over Native InfiniBand

In previous research [19,20], we have designed and implemented a high-
performance Hadoop MapReduce framework with RDMA over native Infini-
Band, known as MRoIB. This is publicly available as a part of the RDMA for
Apache Hadoop project (v0.9.9) [2,11,12,15,19,20]. We found that the stand-
alone Hadoop MapReduce micro-benchmark suite proposed in this paper is

30 D. Shankar et al.

0

20

40

60

80

100

0 50 100

C
PU

 U
til

iz
at

io
n(

%
)

Sampling Point

1GigE
10GigE

IPoIB (32Gbps)

(a) CPU Utilization

0

200

400

600

800

1000

0 50 100

N
et

w
or

k
Th

ro
ug

hp
ut

 (M
B/

s)

Sampling Point

1GigE
10GigE

IPoIB (32Gbps)

(b) Network Throughput

Fig. 7. Resource Utilization on one slave node for MR-AVG on Cluster A

extremely helpful in evaluating the performance of alternative MapReduce
designs such as MRoIB, and in tuning different internal parameters to obtain
optimal performance.

0

100

200

300

400

500

600

700

800

8 16 32 64

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

IPoIB (56Gbps)
 RDMA (56Gbps)

(a) MR-AVG with 8 slave nodes

0

100

200

300

400

500

600

700

16 32 64 128

Jo
b

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Shuffle Data Size(GB)

IPoIB (56Gbps)
 RDMA (56Gbps)

(b) MR-AVG with 16 slave nodes

Fig. 8. Performance with different patterns for IPoIB Vs. RDMA on Cluster B (56
Gbps FDR)

Figure 8 illustrates the performance improvement possible with native IB
as compared to IPoIB (56 Gbps) on Cluster B. We use BytesWritable data
type and a fixed key/value pair size of 1 KB, with 32 map tasks and 16 reduce
tasks. We vary the number of key/value pairs to generate different shuffle data
sizes, and study the MR-AVG micro-benchmark. We omit the other two micro-
benchmarks due to space constraints. From Fig. 8(a), we observe that MRoIB
improves the performance of the MapReduce job running on 8 slaves nodes,
by 28–30 %, as compared to default Hadoop MapReduce over IPoIB (56 Gbps).
Similarly, Fig. 8(b) illustrates a comparison between MRoIB and default MapRe-
duce over IPoIB (56 Gbps) with 16 slave nodes on Cluster B. It is clear that
RDMA-enhanced MapReduce outperforms IPoIB (56 Gbps) by about 25–28 %,

A Micro-benchmark Suite for Evaluating Hadoop MapReduce 31

even on a larger cluster. This points us towards the benefits that native IB-based
MapReduce has over default Hadoop MapReduce running over IPoIB (56 Gbps).

7 Conclusion and Future Work

In order to obtain optimal performance, it is essential to study the impact of
network on the performance of Hadoop MapReduce. In this paper, we have
designed a micro-benchmark suite to evaluate the performance of stand-alone
MapReduce over different network interconnects. This comprehensive and easy-
to-use micro-benchmark suite, that is compatible with both Hadoop 1.x and
Hadoop 2.x, gives users a means to understand how factors such as intermediate
data patterns, size and number of key/value pairs, data type, and number of
map and reduce tasks, can influence the execution of a MapReduce job on high-
performance networks.

As an illustration, we have presented performance results of Hadoop MapRe-
duce with our micro-benchmarks over different networks/protocols: 1 GigE,
10 GigE, IPoIB QDR (32 Gbps), and IPoIB FDR (56 Gbps). We observe that
the performance of the MapReduce job improves around 17 %, if the underlying
interconnect is changed to 10 GigE from 1 GigE, and up to 23 %, when changed
to IPoIB QDR (32 Gbps). Additionally, IPoIB QDR (32 Gbps) improves perfor-
mance of the MapReduce job by about 12 % over 10 GigE. It is also noticeable
that IPoIB QDR (32 Gbps) performs better with increasing shuffle data sizes.
We also present a case study undertaken to understand the benefits that native
InfiniBand can provide to Hadoop MapReduce. It is clear that RDMA-enhanced
MapReduce design can achieve much better performance than default Hadoop
MapReduce over IPoIB FDR (56 Gbps).

In the light of the results presented in this paper, our proposed micro-
benchmark suite can help developers enhance their MapReduce designs, espe-
cially those intended to optimize data shuffling over the network. For future
work, we plan to provide public access to these micro-benchmarks, by making
them available as a part of the OSU HiBD Micro-benchmarks [2]. We also intend
to add additional features to enhance this micro-benchmark suite, so that users
can gain a more concrete understanding of real-world workloads.

References

1. BigDataBench: A Big Data Benchmark Suite. http://prof.ict.ac.cn/BigDataBench
2. High-Performance Big Data (HiBD). http://hibd.cse.ohio-state.edu
3. NullOutputFormat (Hadoop 1.2.1 API). https://hadoop.apache.org/docs/r1.2.1/

api/org/apache/hadoop/mapred/lib/NullOutputFormat.html
4. TPC Benchmark H - Standard Specication. http://www.tpc.org/tpch
5. Apache Hadoop NextGen MapReduce (YARN). http://hadoop.apache.org/docs/

current/hadoop-yarn/hadoop-yarn-site/YARN.html
6. Bennett, C., Grossman, R.L., Locke, D., Seidman, J., Vejcik, S.: Malstone: Towards

a benchmark for analytics on large data clouds. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD, Washington, DC, USA (2010)

http://prof.ict.ac.cn/BigDataBench
http://hibd.cse.ohio-state.edu
https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/lib/NullOutputFormat.html
https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/lib/NullOutputFormat.html
http://www.tpc.org/tpch
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

32 D. Shankar et al.

7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC, Indianapolis, Indiana, USA (2010)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
and Implementation, OSDI, San Francisco, CA (2004)

9. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: Proceedings of the 26th
International Conference on Data Engineering Workshops, ICDEW, Long Beach,
CA, USA (2010)

10. Islam, N.S., Lu, X., Wasi-ur-Rahman, M., Jose, J., (DK) Panda, D.K.: A micro-
benchmark suite for evaluating HDFS operations on modern clusters. In: Rabl, T.,
Poess, M., Baru, C., Jacobsen, H.-A. (eds.) WBDB 2012. LNCS, vol. 8163, pp.
129–147. Springer, Heidelberg (2014)

11. Islam, N.S., Rahman, M.W., Jose, J., Rajachandrasekar, R., Wang, H., Subramoni,
H., Murthy, C., Panda, D.K.: High performance RDMA-based design of HDFS over
InfiniBand. In: The International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), November 2012

12. Islam, N.S., Lu, X., Rahman, M.W., Panda, D.K.D.: SOR-HDFS: a SEDA-based
approach to maximize overlapping in RDMA-enhanced HDFS. In: Proceedings of
the 23rd International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’14, Vancouver, BC, Canada, pp. 261–264. ACM (2014)

13. Kim, K., Jeon, K., Han, H., Kim, S., Jung, H., Yeom, H.: MRBench: a bench-
mark for MapReduce framework. In: Proceedings of the IEEE 14th International
Conference on Parallel and Distributed Systems, ICPADS, Melbourne, Victoria,
Australia (2008)

14. Liang, F., Feng, C., Lu, X., Xu, Z.: Performance benefits of DataMPI: a case study
with BigDataBench. In: The 4th Workshop on Big Data Benchmarks, Performance
Optimization, and Emerging Hardware, BPOE-4, Salt lake, Utah (2014)

15. Lu, X., Islam, N.S., Rahman, M.W., Jose, J., Subramoni, H., Wang, H., Panda,
D.K.: High-performance design of hadoop RPC with RDMA over InfiniBand. In:
Proceedings of the IEEE 42th International Conference on Parallel Processing,
ICPP, Lyon, France (2013)

16. Lu, X., Islam, N.S., Wasi-Ur-Rahman, M., Panda, D.K.: A Micro-benchmark suite
for evaluating hadoop RPC on high-performance networks. In: Proceedings of the
3rd Workshop on Big Data Benchmarking, WBDB (2013)

17. Lu, X., Wang, B., Zha, L., Xu, Z.: Can MPI benefit hadoop and MapReduce appli-
cations? In: Proceedings of the IEEE 40th International Conference on Parallel
Processing Workshops, ICPPW (2011)

18. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs,
A., Rinaldi, B.: YCSB++: benchmarking and performance debugging advanced
features in scalable table stores. In: Proceedings of the 2nd ACM Symposium on
Cloud Computing, SoCC, Cascais, Portugal (2011)

19. Rahman, M.W., Islam, N.S., Lu, X., Jose, J., Subramoni, H., Wang, H., Panda,
D.K.: High-Performance RDMA-based Design of Hadoop MapReduce over Infini-
Band. In: Proceedings of the IEEE 27th International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum. IPDPSW, Washington, DC,
USA (2013)

A Micro-benchmark Suite for Evaluating Hadoop MapReduce 33

20. Rahman, M.W., Lu, X., Islam, N.S., Panda, D.K.: HOMR: a hybrid approach to
exploit maximum overlapping in MapReduce over high performance interconnects.
In: Proceedings of the 28th ACM International Conference on Supercomputing,
ICS ’14, Munich, Germany, pp. 33–42. ACM (2014)

21. Sangroya, A., Serrano, D., Bouchenak, S.: MRBS: towards dependability bench-
marking for hadoop MapReduce. In: Caragiannis, I., et al. (eds.) Euro-Par 2012
Workshops 2012. LNCS, vol. 7640, pp. 3–12. Springer, Heidelberg (2013)

22. Stampede at Texas Advanced Computing Center. http://www.tacc.utexas.edu/
resources/hpc/stampede

23. The Apache Software Foundation: Apache Hadoop. http://hadoop.apache.org
24. Top500 Supercomputing System. http://www.top500.org
25. Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi,

Y., Zhang, S., Zheng, C., Lu, G., Zhan, K., Li, X., Qiu, B.: BigDataBench: a big
data benchmark suite from internet services. In: Proceedings of the 20th IEEE
International Symposium on High Performance Computer Architecture, HPCA,
Orlando, Florida (2014)

http://www.tacc.utexas.edu/resources/hpc/stampede
http://www.tacc.utexas.edu/resources/hpc/stampede
http://hadoop.apache.org
http://www.top500.org

http://www.springer.com/978-3-319-13020-0

	A Micro-benchmark Suite for Evaluating Hadoop MapReduce on High-Performance Networks
	1 Introduction
	2 Related Work
	3 Design Considerations
	4 Micro-benchmarks for Hadoop MapReduce
	4.1 Overview of Overall Micro-benchmark Suite Design
	4.2 Micro-benchmarks

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Evaluation along Different Dimensions

	6 A Case Study: Enhanced Hadoop MapReduce Design over Native InfiniBand
	7 Conclusion and Future Work
	References

