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Abstract. Relaxed memory models offer suitable abstractions of the
actual optimizations offered by multi-core architectures and by com-
pilers of concurrent programming languages. Using such abstractions
for verification purposes is challenging in part due to their inherent
non-determinism which contributes to the state space explosion. Several
techniques have been proposed to mitigate those problems so to make
verification under relaxed memory models feasible. We discuss how to
adopt some of those techniques in a Maude-based approach to language
prototyping, and suggest the use of other techniques that have been
shown successful for similar verification purposes.

1 Introduction

As we enter the so called multi-core era, electronic devices made of multiple com-
putational units that work over shared memory are becoming more and more
ubiquitous. The demand of performance on such systems is likewise increasing
but, unfortunately, the free lunch is over [1,2], that is, it is getting harder and
harder to develop more performant and energy efficient single computational
units. This has lead compiler constructors and hardware designers to develop
sophisticated optimization techniques that in some cases may affect the intended
semantics of programs. A prominent example are optimizations that give up
memory consistency to accelerate memory operations. Typically, such optimiza-
tions do not affect the meaning of sequential programs, but the situation is
different for concurrent programs as different threads may have subtly different
(inconsistent) views of the shared memory and thus their execution may result
in an unexpected (non-sequentially consistent) behaviour.

As a motivating example, consider the pseudocode in Fig. 1 which may be
seen as the initial part of Dekker’s algorithm for mutual exclusion. There are
two threads, 1 (left) and 2 (right), whose programs are symmetric. Initially, all
variables are assumed to have value 0. When thread 1 tries to enter the critical
section it sets flag1 to 1, and checks the value of flag2. If the value for flag2
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⎡
⎣

flag1 := 1

if (flag2 = 0) then

//critical section

⎤
⎦

⎡
⎣

flag2 := 1

if (flag1 = 0) then

//critical section

⎤
⎦

Fig. 1. Can both threads enter the critical section?

is 0, it assumes that thread 2 has not yet attempted to enter the critical section
and proceeds to enter it. Thread 2 proceeds similarly. Under the usual model
of shared memory (i.e. sequential consistency) the algorithm guarantees mutual
exclusion: either one thread enters the critical section or none of them does.
However, under some of the mentioned relaxations of memory consistency, it
is possible for both threads to enter the critical section. Indeed, as we shall
see, it may be also the case that updates on memory are delayed, so that both
threads execute their updates and then read the old value 0 on each other’s flag,
proceeding then together into the critical section. As a matter of fact, a direct
implementation of the above algorithm on Intel or AMD x86 multiprocessors
yields an incorrect program.

As we shall see, many authors have developed formal semantics for these opti-
mizations which relax the standard sequential consistency of programs. Very
often this has been done by defining appropriate abstract models of shared
memory called relaxed memory models. Using such abstractions for verification
purposes is challenging in part since they introduce yet another source of non-
determinism, thus contributing to the state space explosion.

Fig. 2. State-Space Size: Sc vs Tso

As an example consider the graph
in Fig. 2. The vertical axis presents the
size of the state space in terms of num-
ber of states while in the horizontal
axis we have the results obtained on 1-
entry versions of four mutual exclusion
algorithms (Dekker, Peterson, Lam-
port and Szymanski) and, for each of
them, three cases: the algorithm under
the usual sequential consistency mem-
ory model (Sc), and two versions of
the algorithms under a relaxed mem-
ory model (namely, Tso). The first of
these relaxed versions is incorrect, while the second one is a correct variant
obtained by adding some synchronization points referred as fences. The results
provide evidence of the state space increase due to relaxed memory models, even
in the case of correct algorithms. The situation is worse if one considers that even
the simple program while true do x:=0 has an infinite state space under some
memory models.
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Several verification techniques that have been proposed to mitigate those
problems in the last years aimed at making verification under relaxed memory
models feasible. Some of them are described and discussed in Sects. 2 and 5.
Unfortunately, those techniques are sometimes language- or model-specific and
not directly applicable in the verification tasks typical of language design activi-
ties. We adopt in this work the perspective of a language designer who is willing
to prototype a new language for concurrent programs under some relaxed mem-
ory model. We assume that the language designer has chosen Maude as a frame-
work due to its suitability both as a semantic framework where different styles
(SOS, CHAM, K, etc.) can be easily adopted [3] and as a verification framework
featuring several tools (e.g. reachability analysis, LTL model checking, etc.). We
assume that the language designer is interested in performing simple verification
tasks using Maude’s search command for the sake of testing the semantics of
the language being prototyped by checking reachability properties of concurrent
programs. We further assume that he is certainly not willing to modify Maude’s
engine for the sake of a more efficient verification and would rather resort to ver-
ification optimizations that can be realized in Maude itself. We assume that he
is not willing to implement an existing technique before the language is mature
enough for the development of sophisticated applications that will require state-
of-the art verification techniques.

We discuss in this paper how to adopt in Maude some simple techniques to
optimize the verification of concurrent programs under relaxed memory models.
Some of the techniques are based or inspired by approaches to the verification
of relaxed memory models or by other approaches that have been shown to be
successful for similar verification purposes. We start the paper by providing in
Sect. 2 a gentle introduction to relaxed memory models, mainly aimed at read-
ers not familiar with this topic. We next introduce in Sect. 3 a running example
consisting of the language Pimp, a simple language for concurrent programs,
for which we provide a relaxed semantics. In Sect. 4 we discuss three families
of techniques for mitigating the state space explosion due to relaxed memory
models: approximations (Sect. 4.2), partial-orders (Sect. 4.3) and search strate-
gies (Sect. 4.4). Last we discuss some of the most relevant verification techniques
for relaxed memory models in Sect. 5 and draw some concluding remarks and
future research in Sect. 6.

2 Relaxed Memory Models

A memory consistency model is a formal specification of the semantics of a
shared memory, which can be a hardware-based shared-memory multiprocessor
or a large-scale distributed storage. In what follows we will mainly refer to the
former due to the focus on concurrent programing in our paper, but some of the
inherent ideas apply to distributed settings as well. The simplest and, arguably,
the most intuitive memory model is sequential consistency which can be seen
as an extension of the uniprocessor model to multiple processors. As defined by
Lamport [4], a multiprocessor is sequentially consistent if the result of any exe-
cution is the same as if the operations of all the processors were executed in some
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sequential order, and the operations of each individual processor appear in this
sequence in the order specified by its program. Such model imposes two require-
ments: (1) write atomicity, that is, memory operations must execute atomically
with respect to each other and (2) total program order, which means that pro-
gram order is maintained between operations from individual processors.

Sequential consistency provides a clear and well-understood model of shared
memory to programmers but, on the other hand, it may affect the performance
of concurrent programs since it constrains many common hardware and compiler
optimizations. For instance, a common hardware optimization one can consider
are write buffers with bypass capability which are used to mitigate the latency
of write operations. The idea is that when a processor wants to perform a write
operation, it inserts it into a write buffer and continues executing without waiting
for the write to be completed. In a multiprocessor system each processor may
buffer its write operations thus allowing subsequent read operations to bypass
the write as long as the addresses being read differ from the address of any of the
buffered writes. This clearly leads to a violation of total program order and write
atomicity and hence the resulting programs are no more sequentially consistent.

Relaxed memory models provide an abstraction of the result of applying
similar consistency-relaxing optimizations. If we let X,Y ∈ {Read ,Write}, then
X-to-Y denotes the relaxation that allows to violate the program order by per-
forming a Y operation before an X operation that appears before in the program.
The instances of this relaxation are Write-to-Read, Write-to-Write, Read-to-Read
and Read-to-Write. Two common relaxations of write atomicity are Read other’s
write early, which allows a read operation to return the value of another proces-
sor’s write before the write is made visible to all other processors, and Read
own’s write early which allows a read operation to return the value of its own
previous write, before it is made visible to other processors.

Fig. 3. Hierarchy of relaxations

Figure 3 depicts a hierarchy of
memory models [5] and how they
relate to each other based the relax-
ations they allow. The strictest
model is sequential consistency (Sc)
which does not allow any relaxation.
In the second category fall total store
order (Tso), processor consistency
(PC) and IBM-370 as they allow the
Write-to-Read relaxation, all other
program orders are maintained. The
third category comprises of partial
store order (Pso) that allows both
Write-to-Read and Write-to-Write relaxations. The models at the bottom of
the hierarchy also allow Read-to-Read and Read-to-Write reorderings and hence
are the least strict.

The formalization of memory models has been mainly motivated by the fact
that many processor vendors often do not provide clear architectural specifi-
cations of the underlying memory models [6]. Instead, the documentation is
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typically given in (sometimes ambiguous) informal prose, which makes it hard
to program above or to reason about. The formalization of memory models has
been tackled by several authors in different styles: e.g. axiomatic and opera-
tional. Some examples are the axiomatic x86-Tso model [7], which is sound
with respect to the Intel and AMD architectures, the axiomatic models for Java
and C++ languages [8,9], and the operational models of relaxed memories for
programming languages [10,11]. It is also worth to remark the efforts towards
unifying frameworks to capture most memory models [12] and the theory of
memory models of [13].

Fig. 4. Tso architecture

We focus in this work on the Tso model
which we introduce first informally, following
the usual operational description based on the
architectural view depicted in Fig. 4: (i) each
processor has a write buffer for storing write
operations, and each processor corresponds to
one thread; (ii) a thread that performs a read
operation must read its most recent buffered
write if there is one, otherwise reads are taken
from shared memory; (iii) a thread can see its
own writes before they are made visible to other
threads by committing the pending writes to
memory; (iv) delayed updates are committed from the buffer to the memory
non-deterministically by the multiprocessor system, one-by-one and respecting
their arrival order; (v) the programmer can use the mfence instruction to wait
until a buffer is fully committed, so to enforce memory order between preceding
and succeeding instructions. The next section will present a formal semantics of
a language running under this memory model.

3 A Simple Language with Relaxed Concurrency

We introduce in this section a simple language called Pimp that we shall use as
a case study and as a running example. Basically, Pimp is a simple imperative
language reminiscent of the while and imp languages [14] enriched with some
few concurrency features including shared memory communication, and blocking
wait and fence operations. In few words, Pimp allows one to specify sequential
threads that communicate over shared memory.

Definition 1 (threads). The programs of Pimp threads are terms generated
by S in the following grammar:

S ::= skip | x := u | mfence |S ; S′ | if B then S else S′ | while B do S | wait B

were X is a set of variables, x ∈ X , u ∈ N and B is a Boolean expression on X .

Most of the syntactic constructs of the language are rather standard. We just
mention here the mfence primitive (used to block a thread until its local view of
memory is consistent) and the wait primitive (used to specify blocking guards).
The construct skip is used to denote (immaterial) complete computations.
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Definition 2 (programs). The programs of Pimp are terms generated by T
in the following grammar:

P ::= 〈T,M〉 T ::= [S|N]i | T ‖ T ′

N ::= ∅ | x �→ u | N • N M ::= ∅ | x �→ u | M,M

where x ∈ X , and i, u ∈ N.

Programs are obtained by the parallel composition of sequential threads (denoted
by juxtaposition). Each thread is indexed with a unique identifier i. Such iden-
tifier is later used to ease the presentation of some concepts but we often drop
it when unnecessary. Each thread comes equipped with a (possibly empty) local
memory N made of a composition of memory updates. In the case of Tso, N
models a buffer. Programs are turned into program configurations (i.e. terms
generated by P ) by equipping them with a shared memory M , which we assume
to denote a function M ∈ (X �→ N) which may be partial on X but is certainly
total on the variables of the program. In the definition above , is considered to
be associative, commutative and idempotent with ∅ as identity and with no two
maps on the same variable. We shall also use the concept of thread configuration,
i.e. tuples 〈S,N,M〉, where S is the program of the thread, N is its local mem-
ory (buffer), and M is the global (shared) memory. Thread configurations ease
the presentation of the semantics, by allowing us to focus on individual threads
thanks to the interleaving semantics of parallel composition.

Memory Views. An important concept that eases the presentation of the seman-
tics is the memory view, which allow us to formalize the thread’s local view on
memory. More precisely, threads perceive memory as a particular composition
of the shared memory M and their local memory N . We shall see that in the
case of the Sc model there is in practice no local memory, and threads will only
perceive M as the available memory. In the case of Tso, the thread’s view on
memory will be M ◦ M ′, where M ′ is obtained by rewriting N as a set (denoted
N −→F M ′) and ◦ is a composition operation defined by

M ◦ ∅ = M
(M, x �→ u) ◦ (M ′, x �→ v) = (M, x �→ v) ◦ M ′

M ◦ (M ′, x �→ v) = (M, x �→ v) ◦ M ′ if M(x) = ⊥
Rewriting a local memory N as a memory M is formalized by the following rule
to be applied top-down

N −−→F M

N • x �→ u −−→F M ◦ x �→ u

Note that, in principle, −−→F has a functional behavior, i.e. for a given local
memory N there is only one possible rewrite N −−→F M . In this case we may
use F(N) to denote M . Later, however, we shall consider variants of local mem-
ories where • obeys some axioms and since we consider terms up to structural
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Table 1. Rules of the operational semantics of Pimp

equivalence −−→F may have a non-functional behavior. An example of this will
be used later to model non-deterministic evaluations of Boolean expressions for
abstract local memories, where • enjoys the axioms of sets.

Pimp Semantics. The semantics of Pimp under a memory model M ∈ {Sc,Tso}
is a labeled transition system whose states are program configurations and whose
transitions →M⊆ P ×A×P are defined by the rules of Table 1. In the presented
rules, program and thread configurations are to be intended up to a structural
equivalence relation induced by the axiomatization of programs as multisets of
threads (i.e. juxtaposition is AC), memories as sets of updates (i.e. memory
composition , is ACI with identity ∅) and buffers as lists of updates (i.e. buffer
composition • is A with identity ∅). The labels in A are used for the only
purpose of decorating the semantics with information that will be useful in the
verification techniques presented in later sections. At this point it is sufficient
to understand that A contains labels of the form i � a, where i is either a
thread or buffer identifier and a is some action associated to the rules of the
semantics, essentially used to record in some cases the statement associated to
the transition. Label τ is used to denote some transition whose origin is not
relevant. We sometimes drop labels from transitions.

Rule Par is the only rule for program configurations and specifies the inter-
leaving semantics of the language. The rest of the rules specify then how individ-
ual threads evolve independently based on (and possibly modifying) the shared
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memory M and their local buffer N . Rule Comp is defined as usual. It is however
worth to remark that skip is treated as the left identity of sequential composi-
tion to get rid of completed executions. The semantics of control flow constructs
is rather standard and defined by rules IfT, IfF, WhileT and WhileF. Such
rules are defined in a big-step style, i.e. the evaluation of a binary expression B
in some local view of memory M ′, denoted by [[B]]M ′ is performed atomically as
one thread transition. It is worth to remark that such evaluation is done based
on the thread’s view of the available memory (i.e. M ◦N ′). Note that in the case
of Sc, N ′ is always ∅ so that threads observe M directly. Rule Wait specifies
the semantics of the wait primitive which blocks the execution until the binary
condition B holds. The evaluation of the binary condition B is done in the same
manner as for control flow constructs. The semantics of assignments depends on
the memory model under consideration. We actually consider two cases defined
respectively by rules AssSc (for Sc) and AssTso (for Tso). Rule AssignSc is
as usual: an update is directly performed on the shared memory M . In the case
of Tso, the story is totally different. Indeed, rule AssTso models the fact that
updates are delayed by appending them to the thread’s buffer N . The delayed
updates in the buffers can be non-deterministically committed to memory in
the order in which they arrived. This is specified by rule Commit. A memory
commit consists in removing the update (x �→ u) at the beginning of the write
buffer of any thread and updating the value of variable x in memory. Finally,
rule Mfence specifies the semantics of the mfence primitive, which blocks the
thread until its write buffer becomes empty.

We assume that the reader has some familiarity with the canonical approaches
to encode operational semantic styles in rewriting logic and Maude are detailed [3].
We hence do not provide a detailed explanation on how to specify a Maude inter-
preter for Pimp. In few words, the main idea is to specify a rewrite theory RPimp =
〈Σ,E ∪ A,R〉 as a Maude module where (i) signature Σ models syntactic cate-
gories as sorts and contains all function symbols used in terms, (ii) equations and
axioms E ∪ A model the above mentioned structural equivalence on terms, and
(iii) rules R model the rules of the operational semantics. The obtained encoding is
faithful in the sense that there is a one-to-one correspondence between transitions
and 1-step rewrites of configuration-sorted terms.

4 Tackling the State Space Explosion

This section presents a number of techniques to tackle the state space explosion
caused by relaxed memory models. More precisely, Sect. 4.2 deals with approx-
imation techniques, focusing mostly in avoiding the generation of infinite state
spaces due to the potentially unlimited growth of store buffers; Sect. 4.3 presents
a partial order reduction technique aimed at reducing the number of interleav-
ings introduced by the non-deterministic nature of relaxed memory models, and
Sect. 4.4 discusses heuristic search strategies that can be adopted in order to
detect bugs in a more efficient way by guiding the search towards error states
and thus exploring a smaller portion of the state space.
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4.1 Preliminaries

We introduce here some basic notation that we shall use in the rest of this section.
First, we shall consider Kripke structures as semantic model for verification
problems. These are obtained as usual, i.e. by enriching transition systems with
observations on states, so to abstract away from concrete representation of states
(as program configurations) and by restricting to reachable configurations only.

Definition 3 (M-Kripke structure). An M-Kripke structure is a Kripke
structure (S, s0,→,L,AP ,M) where: S ⊆ P is the set of s0-reachable configu-
rations, i.e. {s ∈ P | s0 →∗

M s}; s0 ∈ P is the initial state; →⊆ S × A × S is a
transition relation defined as (P × A × P )∩ →M, i.e. the restriction of →M to
reachable states; L : S → 2AP a labeling function for the states; AP is a set of
atomic propositions; and M ∈ {Tso,Sc} is a memory model.

M-Kripke structures are like ordinary Kripke structures with an explicit ref-
erence to the underlying memory model M and the corresponding transition
system semantics →M. In what follows we shall often fix M to be Tso unless
stated otherwise. We shall also use the term initial Kripke structure for some
program T to denote some Kripke structure whose initial state is an initial con-
figuration 〈T,M〉, i.e. a configuration where M maps all variables of T to 0.

Some of the techniques we shall consider allow us to obtain for a given
Kripke structure another (possibly smaller one) which is semantically related. We
assume familiarity with the usual notions of state-based equivalences and pre-
orders, such as weak/strong (bi)simulation and (stuttering) trace equivalence.
Those semantic relations with respect to the observations on states specified by
the labelling function L and the proposed techniques depend on the properties of
L. For a labelling function L we denote by ≡L⊆ P × P the equivalence relation
on program configurations induced by labelling equality. Often, we shall require
that L cannot distinguish states identified by some other equivalence relation R,
i.e. that ≡L⊇ R. For example, consider the smallest congruence relation induced
by axiom [S,N ] = [S,N ′], denoted ≡[S,N ]=[S,N ′], which identifies program config-
urations up to their local memories. Then requiring ≡L⊇≡[S,N ]=[S,N ′] amounts
to require that L cannot observe local memories.

4.2 Approximations

Consider the simple sequential thread p � while true do x:=0 and the initial
configuration s = 〈[p | ∅], x �→ 0〉. Any initial Kripke structure (S, s,→,
L, AP,Sc) is clearly finite-state and just composed of state s with a self loop
s → s. However, the same program under TSO has an infinite state space, i.e.
Kripke structures (S, s,→,L, AP,Tso) have infinitely many states since it is pos-
sible to iterate the body of the while infinitely many times, each time adding
an entry to the buffer: s → 〈[x:=0;p | ∅], x �→ 0〉 → 〈[p | x �→ 0], x �→ 0〉 →
〈[x:=0;p | x �→ 0], x �→ 0〉 → 〈[p | x �→ 0 • x �→ 0], x �→ 0〉 → . . . The unbounded
growth of buffers is indeed one of the most challenging issues in the verification
of concurrent programs under relaxed memory models and several approaches
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have been proposed in the literature as we shall discuss later in Sect. 5. In this
section we discuss one simple approach that one may easily adopt in Maude.
For the sake of illustration we present as well some simple ideas that cannot be
easily turned into useful sound approximations.

Simple Approximations. We shall consider in this section a simple approach to
realize approximations based on equating program configurations. This kind of
approximations can be easily implemented in Maude by language designers since
they require minimal changes in the formal specification of the language, such as
changing the equational attributes of some function symbols or introducing some
equations. Moreover, the Maude literature offers approaches, such as equational
abstractions [15] and c-reductions [16], to realize such kind of approximations in
a disciplined way, and to use possibly tool-based proof techniques to prove their
soundness and eventually correct them.

In this paper we will essentially follow an approach based on equational
abstractions [15]. The main idea is to consider some axioms A of the form t = t′

where t, t′ are terms denoting part of the program or thread configurations.
Such laws will then be then used to specify a rewrite theory RPimp/A which
specifies the approximated semantics. This is realized in Maude by introducing
the axioms of A as equational attributes or as equations in RPimp, the Maude
specification of Pimp. The effect is that for a Kripke structure K we obtain an
approximated Kripke structure KA that, under some reasonable conditions on
L (e.g. not being able to distinguish states identified by A), should simulate K.
In some cases concrete transitions may not have an approximated counterpart,
a situation that we can repair by introducing additional rules in the semantics.
The final effect of the approximations is that more states will be identified thus
resulting in smaller state spaces.

Buffers as Ordered Maps. Let us start considering the following simple approach
to get rid of the unbounded growth of Tso buffers. The idea is to keep in
the buffer just the latest update for each variable removing older updates. The
rationale would be that by doing so we still preserve the order of write operations
and all write operations will certainly have their chance to be committed to
memory. We are just forbidding to delay updates on the same variable too much.
This can be formalized by considering the following simple equation

Om � (x �→ u) • N • (x �→ v) = N • (x �→ v)

The question is whether this would result in a useful approximation. We shall see
that this is not the case. Let us consider first the Pimp program T in Fig. 5(a)
and let K be some initial Kripke structure for it. It is easy to see that in K it is
not possible to reach a state in which z takes the value 1, while this is possible
in KOm. The reason is, of course, that there exists an approximated execution in
which the commit of (x �→ 1) is discarded, and thus never visible to the second
thread. For the same reason deadlock states can be introduced as well.

Of course, obtaining new spurious behaviors is usual when considering over-
approximations. However, one would expect then that no concrete behavior is lost.
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⎡
⎢⎢⎢⎢⎢⎣

x:=1;
y:=1;
x:=2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

wait(y �=0);
if x=0 then
z:=1

else
z:=2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x:=1;
x:=0;
if y �=1 then
if y=1 then
u := 1

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

y:=1;
y:=0;
if x �=1 then
if x=1 then
v := 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x:=1;
x:=1;
if y=0 then
...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

y:=1
y:=1
if x=0 then
...

⎤
⎥⎥⎥⎥⎥⎦

(a) (b) (c)

Fig. 5. Some concurrent programs

We can also observe that this is unfortunately not the case. Consider, a concurrent
program T of the form in Fig. 5(b) and some initial Kripke structure K for it. It is
easy to see that in K we can reach a configuration where both u and v have value
1. This can happen if both threads perform and delay their first two assignments,
then enter the first branch of their first if statement, then commit their first pend-
ing write and finally enter the first branch of their second if statement thus pro-
ceeding to the update of u and v. Such behavior is however not possible in KOm.
Essentially, the considered approximation implies a loss of information that could
only be recovered by considering an approximated semantics that would take into
account all potentially (infinitely many) pending updates that could have been
removed. Therefore, while simple, the idea of removing old updates from buffers
is unlikely to provide a useful approximation.

Forced-commit Approximation. Let us consider now a similar idea, based on
handling updates on the same variables in a slightly different way. Suppose we
allow more than one update on the same variable with one exception: if the
head of the buffer is an update x �→ u on a variable x for which there is another
update x �→ v on the tail of the buffer, we remove the update x �→ u but this
time we commit it to memory. This time the equation under consideration is

Fc � 〈P, (x �→ u) • N • (x �→ v),M〉 = 〈P,N • (x �→ v),M ◦ (x �→ u)〉
Can we exploit Fc to build a useful approximation? It can be shown that
under some reasonable constraints on L no observable behavior is introduced,
but unfortunately, this approximation does not solve the problem of infinite
state spaces as illustrated by the simple program y:=0; while true do x:=0.
Clearly, there is an execution that delays and never commits the pending update
(y �→ 0) while cumulating repeated updates (x �→ 0). Moreover, this approxima-
tion loses some behaviours. This can be seen by a program T such as the one in
Fig. 5(c). In the initial Kripke structure K for T , it is possible for both threads
to execute the then branch of the if statement. However, in the corresponding
approximated Kripke structure KFc it is no longer possible to reach a state in
which both threads execute the then branch of the if statement.

Buffers as Set of Updates. What would then be a simple and still sound approx-
imation? A simple idea to get rid of multiple copies of a same commit in a buffer
is to approximate the buffer with a set of updates. This amounts to consider
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those axioms Us that make the • operation become associative, commutative
and idempotent, with identity ∅. Even if it may seem that we are again losing
information, in particular about the order and multiplicity of pending updates,
this is not exactly true. The reason is that now the evaluation of expressions
automatically becomes non-deterministic due to the non-deterministic nature of
→F that would consider all possible orderings among updates. What is left is
the multiplicity of updates, which can be easily handled by introducing the rule

(CommitUs) 〈S,(x �→ u) • N,M〉 τ−→Tso 〈S,(x �→ u) • N,M ◦ (x �→ u)〉
in the semantics. The rationale is that any update can be committed to memory
but still kept in the buffer as it may represent an arbitrary number of copies of
the same update. An advantage of this approximation is that it can be easily
realized in Maude by changing the equational attributes of • and by adding a rule
modeling rule CommitUs. The obtained approximation may exhibit “spurious”
behaviours, but we are guaranteed to not miss any concrete behaviour provided
that we do not want to observe too much information on states.

Proposition 1. Let K be a Tso-Kripke structure whose labeling function L is
such that ≡L⊇≡[S,N ]=S[S,N ′]. Then KUs simulates K.

Fig. 6. Approximated state spaces

Experiments. Figure 6 presents the
results of some of our experiments.
The vertical axis corresponds to the
size of the state space in terms of
number of states. In the horizon-
tal axis we have our four mutual
exclusion algorithms and, for each
of them, the result obtained with-
out (1st column) and with the above
discussed approximations: Om (2nd
column), Fc (3rd column), and Us
(4th column). Clearly, not all explorations make sense since some of the approx-
imations are unsound or incomplete but we included them here for a more com-
prehensive presentation of our experiments. The most relevant observation is
that simple approximations such as Us, do provide finite state spaces but may
enormously contribute to the state space explosion. This is evident in the con-
sidered mutual exclusion programs which are finite-state since they are 1-entry
instances of the algorithms (i.e. with no loop). Section 5 discusses several sophis-
ticated techniques that can provide more efficient approximations.

4.3 Partial-Order Reduction

As we have seen, relaxed memory models introduce a large amount of non-
determinism in the state space of concurrent programs. In the case of the Tso,
this is due to the introduction of buffers, which delay updates that are non-
deterministically committed at any time. Such non-determinism may lead to
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an increase of the interleaving of actions some of which may be equivalent.
A popular and successful family of techniques to cope with this problem is Par-
tial Order Reduction (POR) [17–19]. These techniques have been extended and
implemented in several ways and are often part of the optimization features of
verification tools such as model checkers, and they have been already successfully
applied in the verification of programs under relaxed memory models [20,21].

POR in Maude. An easy way to adopt POR in Maude-based verification is to
instantiate the generic language-independent approach described in [22], that
we shall refer to as PorM. The method discharges relatively little requirements
on a language designer: (i) a formal executable specification of the semantics
of the programming language L under consideration (Pimp in our case) as a
rewrite theory RL satisfying some reasonable conditions explained below, and
(ii) the specification of some properties of the language (e.g. an approximation of
dependencies between actions). The latter, of course, may require some manual
proof. The advantages of the method are that no additional proof is needed to
guarantee the correctness of the approach, and that no change in the underlying
verification capabilities of Maude are necessary.

We recall that the main idea underlying the ample set approach to POR [18],
considered in PorM, is to prune redundant parts of the state space, avoid-
ing the exploration of paths that do not bring additional information. This is
done by considering at each state s a subset of its successors called ample set.
For presentation purposes, we recall now some useful definitions. Let K be the
Kripke structure under consideration. We denote with enabled(s) the set of all
the enabled transitions in state s ∈ S, i.e. enabled(s) = {s

α−→ s′}. We sometimes
use the notation t(s) to denote the target s′ of transition t = s

α−→ s′. Two fun-
damental concepts in POR are those of invisibility of actions and independence
between actions and between transitions.

Definition 4 (invisibility). Let K be a Kripke structure. A transition s
α−−→

s′ is invisible in K iff L(s) = L(s′). Similarly, an action α is invisible if all
transitions s

α−−→ s′ are invisible.

Definition 5 (independence). Two transition t0, t1 are independent if for
each state s such that t0 ∈ enabled(s) and t1 ∈ enabled(s) it holds: t1 ∈
enabled(t0(s)), t0 ∈ enabled(t1(s)), and t0(t1(s)) = t1(t0(s)). We define the
independence relation I ⊆ T × T as {(t0, t1) | t0 and t1 are independent}.
In words, independent transitions do not disable each other, and their execu-
tion commutes. If two transitions are not independent, we say that they are
dependent. We let D be simply defined as D = (T × T ) \ I.

Instantiating PorM to Pimp. We recall that the PorM approach imposes some
restrictions on the language under consideration as well as on the approximation
of the dependency relation. The conditions on the language are: “(1) In each pro-
gram there are entities equivalent to threads, or processes, which can be uniquely
identified by a thread identifier. The computation is performed as the combina-
tion of local computations inside individual threads, and communication between
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these threads through any possible discipline such as shared memory, synchro-
nous and asynchronous message passing, and so on. (2) In any computational
step (transition) a single thread is always involved. In other words, threads are
the entities that carry out the computations in the system. (3) Each thread has
at most one transition enabled at any moment.” Clearly, Pimp satisfies those
conditions by viewing buffers as independent computation entities (whose only
actions are to commit updates to memory).

The strategies to compute ample sets discussed in [22] guarantee correctness
given that the language designer provides a safe approximation of dependencies
between transitions, and a correct specification of visibility. Regarding visibility,
the idea we propose here for Pimp relies on the fact that, as long as the proper-
ties of interest do not concern the local memories or the program itself, all the
transitions caused by assignments are invisible. This leads to the first lemma
needed to ensure the correct instantiation of the PorM approach.

Lemma 1 (invisibility of assignments). Let K be a Kripke structure. If L is
such that ≡L⊇≡[S,N ]=[S′,N ′] then all actions α = i � x := u are invisible in K.

Furthermore, it is easy to convince ourselves that the only way a transition could
be dependent on an assignment transition, is to be generated by the execution
of an instruction of the same thread following the assignment itself. Indeed, we
hence define the following over-approximation of D.

Definition 6 (dependency approximation). Let K be a Kripke structure
and let F ⊆ A × A be the relation on actions made of all pairs of actions (α, β)
or (β, α) such that α = (i � x := u), β = (j � a) and i �= j. We define D ⊆ T ×T

as the set (T × T ) \ {(s α−−→ s′, s′′ β−→ s′′′) | (α, β) ∈ F}.
Lemma 2 (approximation of dependency). Let K be a Kripke structure.
We have D ⊆ D.

Of course, D is a very simple and coarse approximation but it serves well our
illustrative purposes and can be easily implemented. Indeed, the simplest strat-
egy of PorM consists of considering single transitions as candidates for ample
sets. For a single transition t to be accepted as ample set it must be invisible (C2
in [22]), such that no other thread has a transition in the future that is dependent
on t (C1’ in [22]) and should not close a cycle in the state space (C3 in [22]). In
our case, our approximation of dependency makes transitions corresponding to
assignments obvious candidates. If we denote by ample : P → 2P the function
computing ample sets that the simplest strategy of PorM implements and if
we let K = (S, s0,→,L,AP ,M) be an M-Kripke structure, then the PorM
reduction of K is KPorM = (S, s0,→ ∩{(s, s′) | s′ ∈ ample(s)},L,AP ,M).

Proposition 2 (Soundness). Let K be a Kripke structure whose labeling func-
tion L is such that ≡L⊇≡[S,N ]=[S′,N ′], then K and KPORM are stuttering
bisimilar.

The correctness of Proposition 2 trivially follows from Theorem 1 of [22] and
Lemmas 1 and 2.
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Fig. 7. Reduction with POR

Experiments. Figure 7 presents the
results of our experiments. The ver-
tical axis corresponds to the size of
the state space in terms of number of
states. In the horizontal axis we have
our four mutual exclusion algorithms
and, for each of them, the result
obtained without (left) and with
(right) POR. The obtained result
provides evidence of the advantages
of applying POR even in the simple form presented here.

4.4 Search Strategies

Verification tools based on explicit-state state space traversal often use quite
simple but efficient search algorithms based on depth-first and breadth-first
strategies. This is indeed the case of the standard verification capabilities of
Maude: the search command performs a breadth-first search traversal of the
state space of a rewrite theory, while the Maude LTL model checker [23] applies
the usual nested depth-first search algorithm for checking emptiness of ω-regular
languages. However, as many authors have noticed, using smart search strategies
can provide better verification performances, both in the time and the memory
consumed by the verification tool. The application of such techniques is often
known in the model checking community by directed model checking, a term orig-
inally coined in [24], and made popular by its adoption in several model checkers
such as SPIN [25] and Java Path Finder [26].

The main idea underlying such techniques is the use of search algorithms
whose exploration strategy depends on some heuristics that aim at exploring a
portion of the state space that is as small as possible for the required verification
task. The archetypal example is the use of standard AI algorithms such as A* and
best-first search in combination with heuristics that rank the states according to
their likelihood to lead to a violation of the property being verified. Bug-finding,
indeed, rather than verification, is the killer application of such techniques.

Search strategies are not novel in the Maude community. Indeed, they have
been thoroughly investigated in [27]. In the proof-of-concept spirit of this work
we have followed a very simple approach to give evidence of the advantages
of using heuristically guided search algorithms in the verification of concurrent
programs under relaxed memory models. In particular, we have implemented and
evaluated the best-first search algorithm in combination with simple heuristics.

We recall that the best-first search algorithm works by maintaining two sets
of states: a set of closed states (i.e. visited states whose transitions have been
already explored) and a set of open states (i.e. visited states whose transitions
are yet to be explored). The algorithm starts with an initially empty set of
closed states and only the initial state in the open set, and iteratively selects
one open state to be expanded and moved to the close set. Expanding a state
means exploring the states immediately reachable through outgoing transitions
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and putting them in the open set if they have been never visited before. The
choice of the open state to be expanded depends on some heuristic function
that ranks the states according to some rationale. Our implementation is rather
canonical and exploits the reflective capabilities of the Maude language. Since
Maude’s meta-level module offers a metaSearch command to obtain the outgoing
transitions of a state, the implementation of best-first search in a declarative way
is almost straightforward.

Our heuristics are inspired by the work of Groce and Visser on so-called
structural heuristics for directed model checking in the Java Path Finder model
checker [26]. Such heuristics are based on inherently structural causes of errors
in concurrent software. For instance, some of the heuristics tend to promote
the exploration of executions with more context-switches or interleavings with
the rationale that programmers tend to think sequentially and bugs such as
race conditions often are due to unexpected interleavings. With this spirit we
have designed three simple heuristics tailored for finding bugs in concurrent
programs to be run under relaxed memory models, all of which map program
configurations into natural numbers with the idea that program configurations
with higher values are more likely to lead to a bug. The heuristics respectively
count the number of non-empty buffers (Neb), the number of pending writes
(Pw), i.e. the sum of the sizes of all buffers, and the number of inconsistent
pending writes (Ipw), i.e. the number of pending writes x �→ u that map a
variable x to a value u different from the value v assigned to x by the shared
memory. These heuristics are measures of the level of memory inconsistency.

Fig. 8. Bug-finding with heuristics

Figure 8 presents the results of
our experiments. As usual, the ver-
tical axis presents the number of
states that were explored. In this
case we were looking for violations
of the mutual exclusion property
and the verification stopped once the
first violation was found. In the hor-
izontal axis we have our four mutual
exclusion algorithms and, for each of
them, four cases: the usual breadth-
first (BFS) search and best-first (BF) search in combination with the three
heuristics. Without entering into details, the main observation is that the heuris-
tically guided search for errors is in general more space efficient than the standard
algorithm. Of course, there is a slight time overhead in our implementation since
breadth-first search is implemented in Maude itself (using the meta-level) and
the search command is provided by the Maude (C++) engine directly. How-
ever, our main point here is to show the potential of heuristically guided search
strategies that may be prototyped using the meta-level (as we do here) and even-
tually implemented as extensions of the Maude engine if high time performance
is needed.
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5 Related Works

We discuss here some approaches, focusing the discussion on those that have
inspired the techniques we have adopted in our case study and describing as well
some archetypal examples of alternative techniques.

Partial order reduction techniques have been applied to the verification of
concurrent programs under relaxed consistency by several authors. For instance,
the authors of [20] use the SPIN model checker and exploit SPIN’s POR based
on the ample set approach [18], while the authors of [21] combine different tech-
niques (some discussed below) which include an implementation of the persistent
set approach to POR [17]. Those works should not be confused with the partial
order models used [28], whose authors address the problem of program verifi-
cation under relaxed memory (Tso, Pso, Rmo and Power) by using partial
orders to model executions of finite-state programs. Those models are then ana-
lyzed using a SAT-based technique called symbolic decision procedure for par-
tial orders, implemented in the Bounded Model Checker for ANSI-C programs
(CBMC) [29]. The key idea is the partial order model, which is a graph whose
nodes are the read/write operations of the program and whose directed arcs
model the data and control dependency between operations. While the data
dependency cannot be relaxed, the control dependency is relaxed according to
the memory model under consideration. The absence of undesirable properties
(e.g. possibility of reading certain values) is reduced to checking the presence of
cycles in the graph.

Several approximation techniques for concurrent programs under relaxed con-
sistency can be found in the literature (e.g. [30–32]). A representative example is
described in [33], whose authors propose a verification approach for concurrent
programs under Tso. The key idea is to approximate the (possibly unbounded)
store buffers in a way that not only makes verification under Tso feasible, but
also reduces the reachability problem under Tso to a reachability problem under
Sc, thus enabling the use of off-the-shelf Sc analysis tools (as other authors do,
e.g. [34]). The approach is based on context-bounded analysis [35]. A context is
a computation segment where only one thread is active. All memory updates
within a context are the result of committing delayed updates in the store buffer
of the active thread. The authors prove that for every concurrent program P ,
it is possible to construct another concurrent program P ′ such that when P ′

runs under Sc, the reachable states of P ′ are exactly the same of the reachable
states of P running under Tso with at most k context-switches for each thread.
Their translation is done with a limited overhead, i.e. a polynomial increase in
the size of the original program. The authors show that it is possible to use
only a k-dependent fixed number of additional copies of the shared variables as
local variables to simulate the store buffers, even if they are unbounded. The key
assumption is that each store operation produced by some thread cannot stay
in its store buffer for more than a bounded number of context switches of that
thread. As a consequence, for a finite-state program, the context-bounded analy-
sis of Tso programs is decidable. Such sort of bounded verification is proposed
by other authors and there are also approaches that address the infinite state



38 Y.A. Arrahman et al.

space by resorting to predicate abstractions (e.g. [36]) or symbolic approaches
(see e.g. [37–40])). A prominent example are buffer automata [41].

Apart from the already mentioned CBMC [29] several other verification tools
have been conceived with the aim of supporting the development of correct
and efficient C programs under relaxed memory models. For instance, Check-
Fence [42] is a tool that statically checks the consistency of a data type imple-
mentation for a given bounded test program and memory model (Tso or Rmo).
The tool checks all concurrent executions of a given C program under relaxed
consistency and produces a counterexample if it finds an execution that is not
sequentially consistent. Another example is the tool DFence [43] which imple-
ments a technique that, given a C program, a safety property and a memory
model (Tso or Pso), checks for violations of the property and infers fences
to constrain problematic reorderings causing the violations. Finally, it is worth
mention that the specification of KernelC in the K framework [44] includes as
well a x86-Tso semantics of the memory models [45] which allow one to use the
K tools (some of which are Maude-based) for verification purposes.

6 Conclusion

This paper addresses one of the problems that a language designer may
encounter when prototyping a language for concurrent programs with a weak
shared memory model, namely the state space explosion due to relaxed consis-
tency. We have discussed how the flexibility of the Maude framework can be
exploited to adopt some efficient verification techniques proposed in the liter-
ature. We have essentially focused on reachability analysis, since it plays an
important role in the development of concurrent programming languages and
programs, not only for verification purposes but also in techniques for auto-
matically porting programs from sequential consistency memories to relaxed
ones (e.g. by fence-insertion techniques [21,32,46,47]). The kind of verification
techniques we have discussed are approximations, partial order reduction and
heuristic search strategies. While approximations and partial order reduction
have been proposed before, as far as we know, the use of directed model check-
ing techniques in the domain of relaxed concurrency is a novelty. However, rather
than proposing novel verification techniques, our aim was to provide evidence of
the flexibility of Maude for adopting techniques that ease verification and lan-
guage design task in presence of relaxed consistency. We believe that there are
still many developments that can be carried out to provide language designers
with a powerful verification-based framework, in particular in what regards the
automatization of correctness proofs for the adopted verification techniques.
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