
An Asymptotic Competitive Scheme for Online
Bin Packing

Lin Chen, Deshi Ye, and Guochuan Zhang(B)

College of Computer Science, Zhejiang University, Hangzhou 310027, China
{yedeshi,zgc}@zju.edu.cn

Abstract. We study the online bin packing problem, in which a list of
items with integral size between 1 to B arrives one at a time. Each item
must be assigned in a bin of capacity B upon its arrival without any
information on the next items, and the goal is to minimize the number
of used bins. We present an asymptotic competitive scheme, i.e., for any
ε > 0, the asymptotic competitive ratio is at most ρ∗ + ε, where ρ∗

is the smallest possible asymptotic competitive ratio among all online
algorithms.

Keywords: Online algorithms · Competitive scheme · Bin packing

1 Introduction

Bin packing is one of the well-known combinatorial optimization problems in
operations research and theoretical computer science. An instance of bin packing
consists of a set of items with integral size up to B (a given integer), and the
goal is to pack these items into a minimum number of bins of size B. The off-
line bin packing problem, where all items are available before packing starts,
is NP-hard [7]. In terms of asymptotic performance ratio, a standard measure
for bin packing algorithms, de la Vega and Lueker [6] presented an APTAS and
Karmakar and Karp [11] improved this result by giving an AFPTAS. Apart from
this classical model, one can find many interesting extensions (e.g., [2,17]).

In the scenario of online bin packing, items arrive one by one in a list. Upon
arrival of an item it must be irrevocably packed into a bin without knowing the
subsequent items. Given an instance I, let A(I) and OPT (I) be the number
of bins used by an online algorithm A and the optimal number of bins needed,
respectively. The asymptotic competitive ratio ρ∞

A of algorithm A is the infimum ρ
such that the following inequality holds for any instance I, where κ is a constant,

A(I) ≤ ρOPT (I) + κ.

One of the first online bin packing algorithms, First Fit, was studied by
Ullman and Johnson et al. [9,15]. They proved that the asymptotic competitive

Research was supported in part by NSFC(11071215,11271325).

c© Springer International Publishing Switzerland 2014
Z. Zhang et al. (Eds.): COCOA 2014, LNCS 8881, pp. 13–24, 2014.
DOI: 10.1007/978-3-319-12691-3 2



14 L. Chen et al.

ratio of First Fit is 1.7. Then a sequence of improvements was proposed [12,13,
16] and the currently best known upper bound is 1.58889 [14], while the best
known lower bound is 1.54037 [1]. Very recently, the competitive ratio approxi-
mate scheme was introduced to online parallel machine scheduling problems by
Günther et al. [8]. For any given ε > 0, there exists an online algorithm {Aε}
that achieves a competitive ratio at most of (1 + ε) times the optimal competi-
tive ratio. Motivated by their work, we revisit the online bin packing problem.
Following the simplified notion as [4], we use the competitive scheme instead of
the competitive ratio approximation scheme in this paper. Our task is to design
an asymptotic competitive scheme for the online bin packing problem. For sim-
plicity, throughout the paper, we use competitive ratio instead of asymptotic
competitive ratio.

Our Contribution. Let ρ∗ be the competitive ratio of a best possible online
algorithm. We show the following result.

Theorem 1. The online bin packing problem admits an asymptotic competitive
scheme {Aε,κ|ε > 0} satisfying that Aε,κ(I) ≤ (ρ∗ + O(ε))OPT (I) + κ, where κ
and ε are constants, and the running time of Aε,κ is polynomial if B is fixed.

General Idea. To prove Theorem 1, we start with the bounded instances where
the adversary only releases a constant number of items. Indeed, if the adversary
only releases C items, then the number of all the possible sequences of items is
bounded by BC , which is also a constant. It is not difficult to imagine that a
best possible online algorithm for the bounded instances could be determined.
Suppose this algorithm has a competitive ratio of ρ0, then ρ∗ ≥ ρ0 since even
if we restrict the adversary to release at most C items, no online algorithm has
a competitive ratio better than ρ0. The main technical part is to show that,
once C is large enough, we can generalize the algorithm of competitive ratio ρ0
for bounded instances to an algorithm of competitive ratio ρ0 + O(ε) for the
general instances. To this end, we introduce the notion of modified instances as
an intermediate. In a modified instance, the adversary can release an arbitrary
number of items, however, the item list must conform to a certain pattern. We
will show that, an online algorithm for bounded instances could be generalized
to an online algorithm for modified instances with a loss of O(ε) in its compet-
itive ratio. Meanwhile, an online algorithm for modified instances could also be
generalized to an online algorithm for general instances with a loss of O(ε) in its
competitive ratio.

The paper is organized as follows. In Sect. 2, we provide some definitions and
notations. In Sect. 3, we show how to derive a best possible algorithm for the
bounded instances. It remains to show how the algorithm for bounded instances
could be generalized to an algorithm for modified instances, which is further
generalized to an algorithm for general instances. The latter part is easier and
we address it in Sect. 4, while the former part is presented in Sect. 5.



An Asymptotic Competitive Scheme for Online Bin Packing 15

2 Preliminaries

Given the bin size B, an input of the online bin packing problem is a list
(sequence) of items (J1, J2, . . . , Jn) for n > 0, where the i-th item is denoted
by Ji, and we abuse the notation Ji to denote the size of the i-th item, which
is an integer belonging to {1, 2, · · · , B}. Given n items as an input, any packing
of these n items into (at most n) bins could be represented by a (2B)-tuple
(r(n), x(n)), where

– r(n) = (r1(n), r2(n), . . . , rB(n)), where ri(n) is the number of items of size
exactly i;

– x(n) = (x1(n), x2(n), . . . , xB(n)), where xi(n) is the number of bins whose
free space is exactly B − i for 1 ≤ i ≤ B.

Obviously,
∑B

i=1 ri(n) = n, and the number of bins used is
∑B

i=1 xi(n). We call
(r(n), x(n)) as a state and write ηn = (r(n), x(n)). If it is clear from context,
we also write (r(n), x(n)) as (r, x) for simplicity. Let STn be the set of all the
states with n items (i.e., all possible (r(n), x(n))’s), and denote its cardinality
as |STn|. We can thus list these states as ηn

1 , · · · , ηn
|STn|. Specifically, we will use

ηn to denote an arbitrary state in STn. Note that ST0 consists of a unique state
η0
1 = (0, 0, · · · , 0).

Given any state ηn = (r(n), x(n)), we denote as OPT (r(n)) the optimal
number of bins used when the items of r(n) are packed. As a consequence, we
define the instant ratio of the state ηn as

ρ̃(ηn) = max{1, (
B∑

i=1

xi(n) − κ)/OPT (r(n))}.

Specifically, define ρ̃(η0
1) = 1. Here the constant κ in the above definition is the

κ in Theorem 1.
We can interpret an online algorithm for the bin packing problem in terms of

the states. Indeed, when an algorithm is applied to an item list (J1, J2, . . . , Jn),
it returns a list of states η0 → η1 → · · · → ηn, where ηi is the state in which the
first i items are packed. Specifically, if the competitive ratio of this algorithm
is ρ, then ρ̃(ηi) ≤ ρ for any i, and meanwhile there exists a certain item list
(J∗

1 , J∗
2 , . . . , J∗

n) such that ρ̃(ηn) = ρ. In this view, the competitive ratio of an
online algorithm is the instant ratio of the worst state it could ever return.

Recall that the Next-Fit algorithm [10] for bin packing has a competitive ratio
of 2 (both in terms of asymptotic competitive ratio and absolute competitive
ratio). Thus ρ∗ ≤ 2 and we focus on states with instant ratio no more than 2.
States with instant ratio larger than 2 are deleted beforehand. Let d be some
constant that will be specified later and R = STd for simplicity. For any integer
k > 0, we define

kR = {(kr(d), kx(d)) = (kr1(d), · · · , krB(d), kx1(d), · · · , kxB(d))|(r(d), x(d)) ∈ R}.

Obviously, kR ⊂ STkd. A state (r̂(kd), x̂(kd)) ∈ STkd is called a neighbor
of (kr(d), kx(d)) ∈ kR if |r̂i(kd) − kri(d)| < k and |x̂i(kd) − kxi(d)| < k



16 L. Chen et al.

for all i. According to this definition, a state in STkd might be the neighbor
of multiple states of kR. To make the notion of ‘neighborhood’ unique, we
define an assignment as a mapping that assigns every state in STkd to be a
neighbor of a unique state in kR (which can be achieved by assigning every
state in STkd to an arbitrary one of its neighbors). Given an assignment, all
the states in STkd are divided into |R| disjoint sets, with each containing one
state of kR and all its neighbors. Finally we define the perturbation. A per-
turbation is a vector Δ = (Δ(r),Δ(x)), where Δ(r) = (Δ1(r), · · · ,ΔB(r)),
Δ(x) = (Δ1(x), · · · ,ΔB(x)) with each coordinate being an integer. We define
D = ||Δ||∞ = max{|Δi(r)|, |Δi(x)|}, and write (r′, x′) = (r, x)+Δ as the normal
vector addition. It is not difficult to verify that if OPT (r) > BD, then

ρ̃(r′, x′) ≤
∑

xi + BD

OPT (r) − BD
.

The above formula is useful in characterizing how a slight perturbation will
change the instant ratio of a state.

3 Bounded Instances

We consider bounded instances of bin packing, where the bounded instance refers
to the bin packing problem in which no more than C items could be released for
some constant C. In this section we will determine the competitive ratio of the
best possible online algorithm for the bounded instances via a dynamic program-
ming algorithm. Indeed, a best algorithm for bounded instances could also be
simply determined by brute force. However, as it needs to be further generalized,
the dynamic programming algorithm will provide additional information on its
structure.

We establish a layered graph G, in which there are |STh| vertices at the h-
th layer, each corresponding to some ηh

i . With a slight abuse of the notation
we also use ηh

i to denote its corresponding vertex. For every ηh
i , we construct

B vertices, namely αh
i,j for 1 ≤ j ≤ B representing the release of item of size

j by the adversary. For simplicity, all the αh
i,j are denoted as vertices of the

(h + 1/2)-th layer. There are only edges between vertices of the h-th layer and
the (h + 1/2)-th layer, and between vertices of the (h + 1/2)-th layer and the
(h + 1)-st layer. Indeed, there is an edge between ηh

i and αh
i,j for any h, i and

1 ≤ j ≤ B. There is an edge between αh
i,j and ηh+1

k , if by packing the item of
size j into a certain bin, the state ηh

i is changed to ηh+1
k .

Now we can easily associate an online algorithm with a path in the layered
graph G. If the adversary releases n items of sizes J1, J2, · · · , Jn, and meanwhile
the algorithm returns a series of states η0

i0
(obviously i0 = 1 since ST0 contains

only one element), η1
i1

, · · · , ηn
in

, then associate it with a path in the graph as
η0

i0
→ α0

i0,j1
→ η1

i1
→ · · · → αn−1

in−1,jn
→ ηn

in
.

Meanwhile, any path of length 2n that starts at η0
1 and ends at ηn

i for some
i represents the packing of n items by a certain online algorithm. We adopt the
idea of [4] to reformulate the problem of finding the best online algorithm for



An Asymptotic Competitive Scheme for Online Bin Packing 17

bounded instances into the following problem on a game between the adversary
and the packer:

– Initially the game starts at the vertex η0
1 .

– If currently the game arrives at the vertex ηh
i for h < C, then the adversary

either decides to end the game, or moves the game to some αh
ij that is incident

to ηh
i . If the game arrives at the vertex ηh

i for h = C, then the game ends.
– If currently the game arrives at the vertex αh

ij , then the packer chooses to
move the game to some ηh+1

k that is incident to αh
ij .

Again we take the above figure as an example. Starting at η0
1 , if the adversary

releases an item of size 1, he moves the game to α0
1,1. Then the packer packs this

item into one bin, meaning that he moves the game to η1
1 . Now the adversary

could either choose to stop the game, or continue to release items. If he releases
a new item of size 1, the game arrives at α1

1,1.
If the game ends at ηh

i for h ≤ C, then the utility of the adversary is defined
to be ρ̃(ηh

i ), while the utility of the packer is defined to be −ρ̃(ηh
i ). Starting from

η0
1 , if the packer always packs items according to Next-Fit, then obviously the

adversary could choose to release a certain list of items such that the game ends
at some ηh

i with ρ̃(ηh
i ) about 2. If the packer is smart enough, he would resort

to an optimum online algorithm (with the competitive ratio of ρ∗) so that no
matter how the adversary releases items, he is always able to move the game to
some ηh

i with ρ̃(ηh
i ) ≤ ρ∗. Thus, −ρ∗ is the largest possible utility the packer

could achieve starting at η0
1 , and meanwhile ρ∗ is the largest possible utility

the adversary could ever achieve. Analogously, we define ρ(ηh
i ) to be the largest

utility the adversary could get by releasing at most C − h additional items,
which implies that starting at ηh

i , the optimum “online” algorithm would have
a competitive ratio of ρ(ηh

i ). Now we provide a dynamic programming algorithm
to compute the value of ρ(ηh

i ). Obviously we have ρ(ηh
i ) ≥ ρ̃(ηh

i ).
Note that the adversary is no longer able to release items if the current

scenario is some ηC
i ∈ STC . Thus we have ρ(ηC

i ) = ρ̃(ηC
i ).

Let N(αh
i,j) be the set of vertices at the (h + 1)-st layer that are incident to

the vertex αh
i,j , for any i, j and h ≤ C − 1. Then:

ρ(αh
i,j) = min

k
{ρ(ηh+1

k )|ηh+1
k ∈ N(αh

i,j)}, ρ(ηh
i ) = max{ρ̃(ηh

i ),max
j

{ρ(αh
i,j)}}.

We give an explanation for the first equation, and the second one is similar.
Suppose currently the game is at ηh

i . The adversary knows that if he releases an
item of size j, then all the possible states by packing this new item are given by
{ηh+1

k ∈ N(αh
i,j)}. Suppose the adversary is clever enough, who knows that if the

game arrives at ηh+1
k , the best possible online algorithm, starting at ηh+1

k , would
have a competitive ratio of ρ(ηh+1

k ). Thus, if he chooses to release an item of size
j, the largest utility he could get is ρ(αh

i,j) = mink{ρ(ηh+1
k )|ηh+1

k ∈ N(αh
i,j)} as

the “worst case” for him is that the packer chooses to pack items in the way
indicated by mink{ρ(ηh+1

k )|ηh+1
k ∈ N(αh

i,j)}.



18 L. Chen et al.

A best possible online algorithm for bounded instances is described below.

Algorithm 1

1. For a given constant C, construct the graph G and calculate the ρ̃(ηC
i ).

2. For all i, let ρ(ηC
i ) = ρ̃(ηC

i ).
3. For h = C − 1 down to 1, iteratively calculate, for all i, j,

ρ(αh
i,j) = min

k
{ρ(ηh+1

k )|ηh+1
k ∈ N(αh

i,j)}, ρ(ηh
i ) = max{ρ̃(ηh

i )max
j

{ρ(αh
i,j)}}.

4. For the released item of size j when the current state is ηh
i , let k∗ = argmink

{ρ(ηh+1
k )|ηh+1

k ∈ N(αh
i,j)}, then we assign this item to the bin such that the

state ηh
i is changed to the state ηh+1

k∗ .

Remark. For simplicity we will call ρ(ηh
i ) as the ratio of the state ηh

i . Further-
more for the ease of analysis we will round up each instant ratio to be its nearest
value in SV = {1, 1 + ε, 1 + 2ε, · · · , 2}, and as a consequence after computation
the ratios of states also belong to SV .

4 From Modified Instances to General Instances

Let A be the best possible online algorithm for bounded instances. As we have
mentioned, we need to generalize it to an algorithm for general instances, and
the generalization has two steps. First, we generalize it to an algorithm for the
modified instances (the definition of a modified instance will be given below).
Then, we generalize the algorithm for modified instances to an algorithm for gen-
eral instances. We deal with the easier part in this section, i.e., roughly speaking,
we show that an algorithm of competitive ratio ρ∗ for modified instances could
be transformed into an algorithm of competitive ratio ρ∗ + O(ε) for the general
instances.

We give the definition of a modified instance. Let l = (J1, · · · , Jh) be any list
of h items (|l| = h). Given l, we use kl to denote the sequence by duplicating
each item of l into k items, i.e., kl = (J ′

1, · · · , J ′
kh), where J ′

ki+j = Ji+1 for
0 ≤ i ≤ h − 1 and 1 ≤ j ≤ k, or equivalently, kl = (J1, . . . , J1︸ ︷︷ ︸

k

, . . . , Jj , . . . , Jj
︸ ︷︷ ︸

k

).

Given any integers k, c > 0, we say L is a modified instance or a modified
list (with respect to (k, c)), if L = (l1, kl2, k

2l3, · · · , khlh+1), where |li| = c for
1 ≤ i ≤ h, and |lh+1| ≤ c. The bin packing problem for modified instances is the
bin packing problem satisfying the following conditions:

– The items released by the adversary form a modified list.
– The adversary could only stop releasing items at certain times, i.e., he could

only do the following:
• The adversary releases no more than c items, and stops.
• The adversary releases no more than c+kc items, and stops after he releases

the (c + kj)-th item (j ≤ c).
• · · ·



An Asymptotic Competitive Scheme for Online Bin Packing 19

• The adversary releases no more than c + kc + · · · + khc items, and stops
after he releases the (c + kc + · · · + khj)-th item (j ≤ c).

Theorem 2. Given any ε > 0, if there is an online algorithm of competitive
ratio ρ∗ on modified instances with respect to any k > 0 and c ≥ c(k,B, ε)
(where c(k,B, ε) is a constant only depending on k, B and ε), then there is an
algorithm of competitive ratio ρ∗ + ε for the general problem.

Proof. We prove the theorem by modifying the algorithm A of competitive ratio
ρ∗ for modified instances. Throughout the proof we keep track of two lists, one
is the list σ of items released in the general bin packing problem, and the other
is the item list σ′ of a modified instance which is constructed from σ so that
algorithm A could return a feasible packing by taking σ′ as an input.

In the following, we construct an algorithm for the general problem with the
input σ. If the h-th item in σ arrives, and h ≤ c, we pack this item according to
algorithm A. We have σ = σ′. When the (c + 1)-st item in σ, say, Jc+1 releases,
we take it as k identical items, one true item and k − 1 fake items, and pack
them according to A. Now we add k copies of Jc+1 to σ′. Consider the (c+2)-nd
item. If it is different from Jc+1, then again we take it as k identical Jc+2 and
pack them according to A. Meanwhile we add Jc+2 to σ and k copies of Jc+2

to σ′. Otherwise, it is the same with Jc+1, then we replace one fake Jc+1 with
this item in the current packing. In this case, σ′ remains the same. We proceed
with the above procedure. Whenever a new item Jn releases, we add it to σ and
check if there exists a fake item of the same size in the current solution. If yes, we
replace this fake item with this new item and σ′ remains the same. Otherwise,
we add Jn to σ′, and another kh − 1 identical items are released together with
it for some h depending on the length of σ′. Now we resort to A to decide a
packing for these kh items, and for Jn, there are kh − 1 fake items now.

Next we check the competitive ratio of the above algorithm. Let μ be the
number of bins used, ri be the number of items of size i according to σ, r′

i be
the number of items of size i according to σ′. We use |σ| to denote the number
of items in the list σ and suppose c+ kc+ · · ·+ kh−1c < |σ′| ≤ c+ kc+ · · · + khc
for some h. Then it follows that r′

i − ri ≤ kh according to the construction of σ′.
Since the competitive ratio of A is ρ∗, we have μ ≤ ρ∗OPT (r′

1, · · · , r′
B) + κ.

Meanwhile, OPT (r1, · · · , rB) ≥ OPT (r′
1, · · · , r′

B) − Bkh as r′
i − ri ≤ kh. Notice

that OPT (r′
1, · · · , r′

B) ≥ |σ′|/B > kh−1c/B. The competitive ratio for the general
bin packing is at most (for simplicity we let OPT = OPT (r′

1, · · · , r′
B)).

μ − κ

OPT (r1, · · · , rB)
≤ ρ∗OPT

OPT − Bkh
=

ρ∗

1 − Bkh/OPT
≤ ρ∗

1 − B2k/c
.

The theorem follows by taking c > B2k/ε2 = c(k,B, ε).

Remark. For ease of analysis, the following sequence is also taken to be a modified
instance (with respect to (k, c)): L = (l1, kl2, k

2l3, · · · , khlh+1) where |li| = c for
2 ≤ i ≤ h, |lh+1| ≤ c and |l1| ≥ c, i.e., the first part of the list could contain
more than c items.



20 L. Chen et al.

5 From Bounded Instances to Modified Instances

Let ρ0 be the competitive ratio of the best algorithm for bounded instances (in
which the adversary releases at most C items). We show in this section that when
C is large enough, we can transform the algorithm into a (ρ0+O(ε))-competitive
algorithm for the bounded instances with respect to (k0, c0) for some k0 and c0.
Combining this result with Theorem 2, Theorem 1 follows directly. The values
of C, k0 and c0 will be determined at the end of this section.

5.1 Overview of the Technique

We revisit the graph G that contains all the possible states. G is an infinite graph
and we can only afford to compute the ratios of states in STh for h ≤ C. Note
that once the adversary releases an i-th item with i ≤ C, the optimal algorithm
for bounded instances can refer to the ratio of the current state to decide how
to pack this item (the reader may refer to Algorithm 1 in Sect. 3). What if the
current state is some ηn

i for n > C? A natural idea is to do state mapping, i.e.,
we map ηn

i to some proper ηh
i′ for h < C. Once a new item is released, we check

ηh
i′ to see how this new item is packed, and then pack it in a similar way for ηn

i .
Modified instances are defined in order that we can carry out the above idea.

Roughly speaking, we will specify some constants γ and k such that kγ < C, and
take states of STh for γ ≤ h ≤ kγ as samples. Consider modified instances with
respect to (k, (k−1)γ), i.e., the item lists of the form (l1, kl2, · · · , kh−1lh, khlh+1),
where |l1| = kγ, |li| = (k − 1)γ for 2 ≤ i ≤ h and |lh+1| ≤ (k − 1)γ.

Suppose the adversary releases at most kγ items. Obviously we can run the
algorithm for bounded instances as kγ < C. Otherwise, suppose kγ items are
released and the current state is some ηkγ

i = (r, x). Then according to our defini-
tion of neighborhood, with some slight perturbation Δ1 we have ηkγ

i = kηγ
i′ +Δ1,

where ηγ
i′ is some state of STγ . By the definition of modified instances, after kγ

items the adversary releases k identical items, denoted as kJj for simplicity,
where Jj is arbitrary. According to the algorithm, for bounded instances, ηγ

i′

changes to ηγ+1
h′ , when a single item Jj is released. We write ηγ+1

h′ = ηγ
i′ + Jj for

simplicity. Then we can pack kJj in a way such that kηγ
i′ + kJj = kηγ+1

h′ , e.g., if
a new bin is opened for Jj in ηγ

i′ , then k new bins are opened for kJj in kηγ+1
h′ .

Now we have ηkγ
i + kJj = kηγ+1

h′ + Δ1, and if the adversary releases the next k

identical items, we check ηγ+1
h′ to see how to pack them.

After the adversary release kγ + k(k − 1)γ = k2γ items, we arrive at some
state of STk2γ which could be expressed as kηkγ

� + Δ1 for some ηkγ
� ∈ STkγ ,

and again with some slight perturbation Δ2 we have ηkγ
� = kηγ

�′ + Δ2. Hence
the current state is k2ηγ

�′ + kΔ2 + Δ1. According to the definition of modified
instances, next, the adversary releases k2 identical items, say, k2Jj . Now we
can again check how a single item Jj is packed for ηγ

�′ and carry on the above
arguments. To make the above arguments work, we need to show the following
conditions: Given a state ηh, a slight perturbation (changing ηh to ηh +Δ) does
not change the instant ratio much; and multiplication by an integer k (changing



An Asymptotic Competitive Scheme for Online Bin Packing 21

ηh to kηh) does not change the instant ratio much. It results in the following
two lemmas (the complete proofs will be given in a full version of the paper).

Lemma 1. For any integers k, d > 0, and for any (r(d), x(d)) such that
∑

ri(d) =
d, we have kOPT (r(d)) − kBB ≤ OPT (kr(d)) ≤ kOPT (r(d)).

Note that OPT (r(d)) ≥ d/B. Take d = BB+2/ε so that BB ≤ εOPT (r(d))/B.
Recall that R = STd. Let C = 2μd for some constant μ. Then we can calculate
the ratio of each state of STh for h ≤ C, and an optimal algorithm for bounded
instances could be determined. Let ρ0 be its competitive ratio. Let q ≥ d. Two
states of the q-th layer, say, ηq

i = (r(q), x(q)) and ηq
j = (r(q)′, x(q)′), are called

near, if |ri(q) − ri(q)′| ≤ q/d and |xi(q) − xi(q)′| ≤ q/d. We have

Lemma 2. For any two near states ηq
i = (r(q), x(q)) and ηq

j = (r(q)′, x(q)′),
|ρ(r(q), x(q)) − ρ(r(q)′, x(q)′)| ≤ O(ε).

The above lemma implies that the ratio of a state in kR differs at most O(ε) to
the ratio of its neighbors for any integer k > 0.

5.2 Constructing an Algorithm for Modified Instances

Recall that R = STd. For any integer k > 0, the states in kR are called prin-
ciple states of STkd. We consider ST2hd for h = 1, 2, · · · , μ. There is a vertex
for each state of 2hR, and as we mention before, all the states of ST2hd could
be partitioned into subgroups where each group consists of a state in 2hR and
its neighbors. Since a state not in 2hR might be a neighbor of multiple princi-
ple states, as discussed in Sect. 2, we give an assignment so that it becomes a
neighbor of a unique principle state.

An assignment is called compatible, if according to this assignment, (r′, x′) ∈
ST2hd is a neighbor of (r, x) ∈ 2hR implies that (2kr′, 2kx′) ∈ ST2h+kd is a
neighbor of (2kr, 2kx) ∈ 2h+kR for any k ≥ 1. A compatible assignment could be
constructed easily. In the following discussion we take one arbitrary compatible
assignment. We use T (r, x) to denote the set of neighbors of any (r, x) ∈ kR
(including (r, x)). Define

ρ(T (r, x)) = min{ρ(r′, x′)|(r′, x′) ∈ T (r, x)}.

Since for any h the set ST2hd is always partitioned into |R| subgroups with
each group being the set of neighbors of some principle state, we sort the states
of |R| in an arbitrary sequence as ηd

1 , η
d
2 , · · · , ηd

|R|, where ηd
i = (r(d), x(d)) for

some r(d) and x(d). We denote as kηd
i = (kr(d), kx(d)).

Determining the Parameters. Consider (ρ(T (2hηd
1)), ρ(T (2hηd

2)), · · · , ρ(T (2hηd
|R|)))

for h = h0, h0+1, · · · , μ, where h0 is some constant. Each coordinate takes some
value of 1 + kε for 0 ≤ k ≤ 1/ε and thus has at most 1/ε + 1 different possi-
ble values. Each vector contains |R| coordinates. There are at most (1 + 1/ε)|R|

different vectors. Thus, let μ − h0 = (1 + 1/ε)|R|. Among the μ − h0 + 1 vec-
tors, we know that there exist two vectors which are identical. Let them be



22 L. Chen et al.

(ρ(T (ξηd
1)), · · · , ρ(T (ξηd

|R|))) and (ρ(T (λξηd
1)), · · · , ρ(T (λξηd

|R|))) for some inte-

gers λ and ξ. Then λ ≤ 2μ−h0 ≤ 2(1+ε)|R|
, which is a constant that depends on

|R| and 1/ε, i.e., B and 1/ε.
According to the above arguments, we can first apply Theorem 2 with k =

2(1+ε)|R|
and determine the parameter c(k,B, ε) that only depends on k, B and

ε in the theorem. Let it be c0. Then we take h0 such that 2h0d ≥ c0 and
let μ = h0 + (1 + 1/ε)|R|. Now we take C = 2μd (recall that d = BB+2/ε)
and compute the ratios of each state and find the two identical vectors from
(T (2hηd

1), · · · , T (2hηd
|R|)) for h = h0, h0+1, · · · , μ. Again we denote the two iden-

tical vectors we find out as (ρ(T (ξηd
1)), · · · , ρ(T (ξηd

|R|))) and (ρ(T (λξηd
1)), · · · ,

ρ(T (λξηd
|R|))).

Let ρ0 be competitive ratio of the best possible algorithm for bounded instances
in which the adversary releases at most C items.

Theorem 3. There exists an online algorithm whose competitive ratio is ρ0 +
O(ε) for the modified instance with respect to (k, c), where k = λ and c = (λ −
1)ξd.

Proof. Before starting the proof, recall that in order to apply Theorem 2, we
need to show that c = (λ − 1)ξd ≥ c(k,B, ε) = c(λ,B, ε). Since λ ≤ 2(1+ε)|R|

, we
have c(λ,B, ε) ≤ c(2(1+ε)|R|

, B, ε) = c0. Meanwhile, 2h0d ≥ c0, thus (λ − 1)ξd ≥
ξd ≥ 2h0d ≥ c0 ≥ c(λ,B, ε).

Now we come to the proof of the theorem. Let A be an optimal algorithm for the
bounded instance. Now the list of items released by the adversary is of the form
l = (l1, λl2, λ

2l3, · · · , λhlh+1) where |l1| = λξd, |li| = (λ− 1)ξd for 2 ≤ i ≤ h and
|lh+1| ≤ (λ − 1)ξd. Obviously we can always apply A for the first λξd items in
the list of items released by the adversary. It remains to show how to pack the
list λl2.

For anyT (ξηd
i ), there exists some (r, x) ∈ T (ξηd

i ) such that ρ(r, x) = ρ(T (ξηd
i )).

Denote it as Tmin(ξηd
i ). Suppose after packing the c items with A, the current state

is some state, say, z1 ∈ T (λξηd
h) for some h. Then

ρ(T (λξηd
h)) ≤ ρ(z1) ≤ ρ0.

Based on the selection of ξ and λ, we have

ρ(Tmin(ξηd
i )) = ρ(T (ξηd

h)) = ρ(T (λξηd
h)) ≤ ρ0.

According to the compatible assignment, λTmin(ξηd
i ) ∈ T (λξηd

i ), and is near
z1. Let z∗

1 = λTmin(ξηd
i ), and we let z1 = z∗

1 + Δ1, where ||Δ1||∞ ≤ λξ, i.e.,
the absolute value of each coordinate of Δ1 is bounded by λξ. Suppose the first
λ items of the list are λJj . According to A, z∗

1/λ ∈ Tmin(ξηd
i ) changes to y by

adding a single item Jj . Now if we start at the state z∗
1 to pack λJj , we may view

z∗
1 as λ copies of z∗

1/λ and we can pack the λ identical items in the same way,
i.e., pack items in the way that z∗

1 changes to λy. Thus, starting at z1 to pack
these items, we may adopt the same idea as in the proof of Lemma 2. Again,



An Asymptotic Competitive Scheme for Online Bin Packing 23

add some dummy bins to alter the state into z∗
1 and pack items. It follows that

z1 changes to λy + Δ1.
We pack items iteratively as the above procedure. Let z2 = z∗

1/λ+l2 according
to Algorithm A. Then it can be easily seen that z2 ∈ STλξd. Meanwhile, the above
way of packing cause the current state to be λz2 +Δ1. Recall that the algorithm
A ensures that ρ(z2) ≤ ρ(z∗

1/λ) ≤ ρ0. Suppose z2 ∈ T (λξηd
h′) for some h′. Again

we get

ρ(T (ξηd
h′)) = ρ(T (λξηd

h′)) ≤ ρ0.

Thus there exists some z∗
2 ∈ T (λξηd

h′) such that ρ(z∗
2/λ) ≤ ρ0. Again z2 is near

z∗
2 and we have z2 = z∗

2 + Δ2 for some ||Δ2||∞ ≤ λξ. Suppose z∗
2/λ + l3 = z3

according to Algorithm A. Starting at λz2 +Δ1, the next part of the list is λ2l3.
Thus λz2 + Δ1 + λ2l3 = λ2z3 + λΔ2 + Δ1.

Iteratively applying the above computation, the final state arrived is λhzh+1+
λh−1Δh + · · · + Δ1, where ||Δi||∞ ≤ λξ, ρ(zh+1) ≤ ρ0. Due to the final part of
the list λhlh+1 that may not be complete, i.e., |lh+1| may not equal to c, zh+1

may not be a state of STλξd. Nevertheless, zh+1 is some state between the λξd-th
layer and ξd-th layer and Algorithm A ensures that ρ(zh+1) ≤ ρ0.

Compute the instant ratio of λhzh+1 +λh−1Δh + · · ·+Δ1. Let zh+1 = (r, x).
Recall Lemma 1. Then OPT (λhr) ≥ λhOPT (r) − λhBB.

ρ̃(λhzh+1 + λh−1Δh + · · · + Δ1) ≤ λh
∑

xi + Bλξ
∑h

j=1 λj−1

OPT (λhr) − Bλξ
∑h

j=1 λj−1

≤ λhρ0OPT (r) + Bλξ · 2λh−1

λhOPT (r) − λhBB − Bλξ · 2λh−1

=
ρ0OPT (r) + 2Bξ

OPT (r) − BB − 2Bξ

Since zh+1 = (r, x) is a state between the λξd-th layer and ξd-th layer, we know
that OPT (r) ≥ ξd/B. As d = BB+2/ε, it follows directly that ρ̃(λhzh+1 +
λh−1Δh + · · · + Δ1) ≤ ρ0 + O(ε).

6 Concluding Remarks

In this paper we have designed a competitive scheme for online bin packing
such that the competitive ratio of our algorithm is at most of 1 + ε times the
best possible competitive ratio of any online algorithms, for any given ε > 0.
Our scheme provided a theoretical approach to narrow the known lower bound
1.54037 [1] and the upper bound 1.58889 [14]. The running time of our scheme is
exponential in the bin size B and 1/ε. If the number of item sizes is a constant,
our algorithm runs in polynomial time. But it remains an open problem whether
we can design competitive schemes polynomially in both the number of items
and log B.

For bin packing, the absolute competitive ratio is another measure for online
algorithms in the literature, though it is not as common as the asymptotic



24 L. Chen et al.

competitive ratio. To the knowledge of us, the best known lower bound is 5/3 [3]
and the best known upper bound is 1.7 [5] in terms of absolute competitive ratio.
Note that the results in this work are also valid even if the performance metric
is the absolute competitive ratio. In addition, we claim that the techniques used
in this paper can be extended to other variants of bin packing problems, such
as the online variable-sized bin packing problem and the online bounded-space
bin packing problem.

References

1. Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin
packing algorithms. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS, vol.
6534, pp. 25–36. Springer, Heidelberg (2011)

2. Boyar, J., Epstein, L., Favrholdt, L.M., et al.: The maximum resource bin packing
problem. Theoret. Comput. Sci. 362, 127–139 (2006)

3. Brown, D., Baker, B.S., Katseff, H.P.: Lower bounds for on-line two-dimensional
packing algorithms. Acta Informatica 18, 207–225 (1982)

4. Chen, L., Ye, D., Zhang, G.: Approximating the optimal competitive ratio for an
ancient online scheduling problem. CoRR, abs/1302.3946v1 (2013)

5. Dośa, G., Sgall, J.: First fit bin packing: A tight analysis. In: Proceedings of the 30th
International Symposium on Theoretical Aspects of Computer Science (STACS),
pp. 538–549 (2013)

6. Fernandez de La Vega, W., Lueker, G.S.: Bin packing can be solved within 1+ ε
in linear time. Combinatorica 1, 349–355 (1981)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the theory
of of NP-Completeness. Freeman and Company, San Francisco (1979)

8. Günther, E., Maurer, O., Megow, N., Wiese, A.: A new approach to online schedul-
ing: Approximating the optimal competitive ratio. In: Proceedings of the 24th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 118–128
(2013)

9. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J.
Comput. 3, 256–278 (1974)

10. Johnson, D.S.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8, 272–314
(1974)

11. Karmarkar, N., Karp, R.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science (FOCS), pp. 312–320 (1982)

12. Lee, C.C., Lee, D.T.: A simple online bin packing algorithm. J. ACM 32, 562–572
(1985)

13. Ramanan, P., Brown, D., Lee, C.C., Lee, D.T.: Online bin packing in linear time.
J. Algorithms 10, 305–326 (1989)

14. Seiden, S.: On the online bin packing problem. J. ACM 49, 640–671 (2002)
15. Ullman, J.: The performance of a memory allocation algorithm. Technical report.

Princeton University. Dept. of Electrical Engineering (1971)
16. Yao, A.C.C.: New algorithms for bin packing. J. ACM 27, 207–227 (1980)
17. Y. Zhang, F.Y.L. Chin, H.-F. Ting et al. Online algorithms for 1-space bounded

2-dimensional bin packing and square packing. Theortical Comput. Sci. (2014) (to
appear)



http://www.springer.com/978-3-319-12690-6


	An Asymptotic Competitive Scheme for Online Bin Packing
	1 Introduction
	2 Preliminaries
	3 Bounded Instances
	4 From Modified Instances to General Instances
	5 From Bounded Instances to Modified Instances
	5.1 Overview of the Technique
	5.2 Constructing an Algorithm for Modified Instances

	6 Concluding Remarks
	References


