
2Exponential Growth and Decay

The exponential function is one of the most important and
widely occurring functions in physics and biology. In biology
it may describe the growth of bacteria or animal populations,
the decrease of the number of bacteria in response to a ster-
ilization process, the growth of a tumor, or the absorption or
excretion of a drug. (Exponential growth cannot continue for-
ever because of limitations of nutrients, etc.) Knowledge of
the exponential function makes it easier to understand birth
and death rates, even when they are not constant. In physics,
the exponential function describes the decay of radioactive
nuclei, the emission of light by atoms, the absorption of light
as it passes through matter, the change of voltage or current
in some electrical circuits, the variation of temperature with
time as a warm object cools, and the rate of some chemical
reactions.

In this book, the exponential function will be needed to
describe certain probability distributions, the concentration
ratio of ions across a cell membrane, the flow of solute
particles through membranes, the decay of a signal travel-
ing along a nerve axon, and the return of some physiologic
variables to their equilibrium values after they have been
disturbed.

Because the exponential function is so important, and be-
cause we have seen many students who did not understand
it even after having been exposed to it, the chapter starts
with a gentle introduction to exponential growth (Sect. 2.1)
and decay (Sect. 2.2). Section 2.3 shows how to analyze ex-
ponential data using semilogarithmic graph paper. The next
section shows how to use semilogarithmic graph paper to
find instantaneous growth or decay rates when the rate varies.
Some would argue that the availability of computer programs
that automatically produce logarithmic scales for plots makes
these sections unnecessary. We feel that intelligent use of
semilogarithmic and logarithmic (log–log) plots requires an
understanding of the basic principles.

Variable rates are described in Sect. 2.4. Clearance, dis-
cussed in Sect. 2.5, is an exponential decay process that is
important in physiology. Microbiologists often grow cells
in a chemostat, described in Sect. 2.6. Sometimes there are

competing paths for exponential removal of a substance:
multiple decay paths are introduced in Sect. 2.7. A very ba-
sic and simple model for many processes is the combination
of input at a fixed rate accompanied by exponential decay,
described in Sect. 2.8. Sometimes a substance exists in two
forms, each with its own decay rate. One then must fit two or
more exponentials to the set of data, as shown in Sect. 2.9.

Section 2.10 discusses the logistic equation, one possible
model for a situation in which the growth rate decreases as
the amount of substance increases. The chapter closes with
a section on power–law relationships. While not exponen-
tial, they are included because data analysis can be done with
log–log graph paper, a technique similar to that for semilog
paper. If you feel mathematically secure, you may wish to
skim the first four sections, but you will probably find the
rest of the chapter worth reading.

2.1 Exponential Growth

An exponential growth process is one in which the rate of
increase of a quantity is proportional to the present value
of that quantity. The simplest example is a savings account.
If the interest rate is 5 % and if the interest is credited to
the account once a year, the account increases in value by
5 % of its present value each year. If the account starts out
with $ 100, then at the end of the first year, $ 5 is credited
to the account and the value becomes $ 105. At the end of
the second year, 5 % of $ 105 is credited to the account and
the value grows by $ 5.25 to 110.25. The growth of such an
account is shown in Table 2.1 and Fig. 2.1. These amounts
can be calculated as follows: At the end of the first year, the
original amount, y0, has been augmented by (0.05)y0:

y1 = y0(1 + 0.05).

During the second year, the amount y1 increases by 5 %, so

y2 = y1(1.05) = y0(1.05)(1.05) = y0(1.05)2.
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Table 2.1 Growth of a savings account earning 5 % interest com-
pounded annually, when the initial investment is $ 100

Year Amount ($) Year Amount ($) Year Amount ($)

1 105.00 10 162.88 100 1.31 × 104

2 110.25 20 265.33 200 1.73 × 106

3 115.76 30 432.19 300 2.27 × 108

4 121.55 40 704.00 400 2.99 × 1010

5 127.63 50 1146.74 500 3.93 × 1012

6 134.01 60 1867.92 600 5.17 × 1014

7 140.71 70 3042.64 700 6.80 × 1016

8 147.75 80 4956.14 800 8.94 × 1018

9 155.13 90 8073.04 900 1.18 × 1021
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Fig. 2.1 The amount in a savings account after t years, when the
amount is compounded annually at 5 % interest

After t years, the amount in the account is

yt = y0(1.05)t .

In general, if the growth rate is b per compounding period,
the amount after t periods is

yt = y0(1 + b)t . (2.1)

It is possible to keep the same annual growth (interest)
rate, but to compound more often than once a year. Ta-
ble 2.2 shows the effect of different compounding intervals
on the amount, when the interest rate is 5 %. The last two
columns, for monthly compounding and for “instant inter-
est,” are listed to the nearest tenth of a cent to show the slight
difference between them.

The table entries were calculated in the following way:
Suppose that compounding is done N times a year. In t years,
the number of compoundings is Nt . If the annual fractional

Table 2.2 Amount of an initial investment of $ 100 at 5 % annual
interest, with different methods of compounding

Month Annual Semiannual Quarterly Monthly Instant
($) ($) ($) ($) ($)

0 100.00 100.00 100.00 100.000 100.000
1 100.00 100.00 100.00 100.417 100.418
2 100.00 100.00 100.00 100.835 100.837
3 100.00 100.00 101.25 101.255 101.258
4 100.00 100.00 101.25 101.677 101.681
5 100.00 100.00 101.25 102.101 102.105
6 100.00 102.50 102.52 102.526 102.532
7 100.00 102.50 102.52 102.953 102.960
8 100.00 102.50 102.52 103.382 103.390
9 100.00 102.50 103.80 103.813 103.821
10 100.00 102.50 103.80 104.246 104.255
11 100.00 102.50 103.80 104.680 104.690
12 105.00 105.06 105.09 105.116 105.127

Table 2.3 Numerical examples of the convergence of (1 + b/N)N to
eb as N becomes large

N b = 1 b = 0.05
10 2.594 1.0511

100 2.705 1.0513
1000 2.717 1.0513

eb 2.718 1.0513

rate of increase is b, the increase per compounding is b/N .
For 6 months at 5 % (b = 0.05), the increase is 2.5, for 3
months it is 1.25, etc. The amount after t units of time (years)
is, in analogy with Eq. 2.1,

y = y0 (1 + b/N)Nt . (2.2)

Recall (refer to Appendix C) that (a)bc = (ab)c. The
expression for y can be written as

y = y0

[
(1 + b/N)N

]t
. (2.3)

Most calculus textbooks show that the quantity

(1 + b/N)N → eb

as N becomes very large. (Rather than proving this fact here,
we give numerical examples in Table 2.3 for two different
values of b.) Therefore, Eq. 2.3 can be rewritten as

y = y0e
bt = y0 exp(bt). (2.4)

(The exp notation is used when the argument is compli-
cated.) To calculate the amount for instant interest, it is
necessary only to multiply the fractional growth rate per
unit time b by the length of the time interval and then look
up the exponential function of this amount in a table or
evaluate it with a computer or calculator. The number e is
approximately equal to 2.71828 . . . and is called the base of
the natural logarithms. Like π (3.14159 . . . ), e has a long
history (Maor 1994).
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Fig. 2.2 A graph of the exponential function y = et

The exponential function is plotted in Fig. 2.2. (The mean-
ing of negative values of t will be considered in the next
section.) This function increases more and more rapidly as t

increases. This is expected, since the rate of growth is always
proportional to the present amount. This is also reflected in
the following property of the exponential function:

d

dt

(
ebt
)

= bebt . (2.5)

This means that the function y = y0e
bt has the property that

dy

dt
= by. (2.6)

Any constant multiple of the exponential function ebt has the
property that its rate of growth is b times the function itself.
Whenever we see the exponential function, we know that it
satisfies Eq. 2.6. Equation 2.6 is an example of a differen-
tial equation. If you learn how to solve only one differential
equation, let it be Eq. 2.6. Whenever we have a problem in
which the growth rate of something is proportional to the
present amount, we can expect to have an exponential solu-
tion. Notice that for time intervals t that are not too large,
Eq. 2.6 implies that �y = (b�t)y. This again says that the
increase in y is proportional to y itself.

The independent variable in this discussion has been t . It
can represent time, in which case b is the fractional growth
rate per unit time; distance, in which case b is the fractional
growth per unit distance; or something else. We could, of
course, use another symbol such as x for the independent
variable, in which case we would have dy/dx = by, y =
y0e

bx .
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Fig. 2.3 A plot of the fraction of nuclei of 99mTc surviving at time t

2.2 Exponential Decay

Figure 2.2 shows the exponential function for negative values
of t as well as positive ones. (Remember that e−t = 1/et .)
To see what this means, consider a bank account in which no
interest is credited, but from which 5 % of what remains is
taken each year. If the initial balance is $ 100, $ 5 is removed
the first year to leave $ 95.00. In the second year, 5 % of
$ 95 or $ 4.75 is removed. In the third year, 5 % of $ 90.25
or $ 4.51 is removed. The annual decrease in y becomes less
and less as y becomes less and less. The equations developed
in the preceding section also describe this situation. It is only
necessary to call b the fractional decay and allow it to have
a negative value, − |b|. Equation 2.1 then has the form y =
y0(1 − |b|)t and Eq. 2.4 is

y = y0e
−|b|t . (2.7)

Often b is regarded as being intrinsically positive, and Eq. 2.7
is written as

y = y0e
−bt . (2.8)

One could equally well write y = y0e
bt and regard b as be-

ing negative, but this can cause confusion, for example with
Eq. 2.10 below.

The radioactive isotope 99mTc (read as technetium-99)
has a fractional decay rate b = 0.1155 h−1. If the number
of atoms at t = 0 is y0, the fraction f = y/y0 remaining at
later times decreases as shown in Fig. 2.3. The equation that
describes this curve is

f = y

y0
= e−bt , (2.9)

where t is the elapsed time in hours and b = 0.1155 h−1. The
product bt must be dimensionless, since it is in the exponent.

People often talk about the half-life T1/2, which is the
length of time required for f to decrease to one-half. From



36 2 Exponential Growth and Decay

inspection of Fig. 2.3, the half-life is 6 h. This can also be
determined from Eq. 2.9:

0.5 = e−bT1/2 .

From a table of exponentials, one finds that e−x = 0.5 when
x = 0.69315. This leads to the very useful relationship
bT1/2 = 0.693 or

T1/2 = 0.693

b
. (2.10)

For the case of 99mTc, the half-life is T1/2 = 0.693/0.1155 =
6 h.

One can also speak of a doubling time if the exponent is
positive. In that case, 2 = ebT2 , from which

T2 = 0.693

b
. (2.11)

2.3 Semilog Paper

A special kind of graph paper, called semilog paper, makes
the analysis of exponential growth and decay problems much
simpler. If one takes logarithms (to any base) of Eq. 2.4, one
has

log y = log y0 + bt log e. (2.12)

If the dependent variable is considered to be u = log y, and
since log y0 and log e are constants, this equation is of the
form

u = c1 + c2t . (2.13)

The graph of u vs t is a straight line with positive slope if b

is positive and negative slope if b is negative.
On semilog paper the vertical axis is marked in a loga-

rithmic fashion. The graph can be plotted without having to
calculate any logarithms. Figure 2.4 shows a plot of the ex-
ponential function of Fig. 2.2, for both positive and negative
values of t . First, note how to read the vertical axis. A given
distance along the axis always corresponds to the same mul-
tiplicative factor. Each cycle represents a factor of ten. To use
the paper, it is necessary first to mark off the decades with the
desired values. In Fig. 2.4, the decades have been marked 0.1,
1, 10, and 100. The 6 that lies between 0.1 and 1 is 0.6; the 6
between 1 and 10 is 6.0; the 6 between 10 and 100 represents
60; and so forth. The paper can be imagined to go vertically
forever in either direction; one never reaches zero. Figure 2.4
has two examples marked on it with dashed lines. The first
shows that for t = −1.0, y = 0.36; the second shows that
for t = +1.5, y = 4.5.

Semilog paper is most useful for plotting data that you
suspect may have an exponential relationship. If the data plot
as a straight line, your suspicions are confirmed. From the

Fig. 2.4 A plot of the exponential function on semilog paper

straight line, you can determine the value of b. Figure 2.5
is a plot of the intensity of light that passed through an ab-
sorber in a hypothetical example. The independent variable
is absorber thickness x. The decay is exponential, except for
the last few points, which may be high because of experimen-
tal error. (As the intensity of the light decreases, it becomes
harder to measure accurately.) We wish to determine the de-
cay constant in y = y0e

−bx . One way to do it would be
to note (dashed line A in Fig. 2.5) that the half-distance is
0.145 cm, so that, from Eq. 2.10,

b = 0.693

0.145
= 4.8 cm−1.

This technique can be inaccurate because it is difficult to read
the graph accurately. It is more accurate to use a portion of
the curve for which y changes by a factor of 10 or 100. The
general relationship is y = y0e

bx , where the value of b can be
positive or negative. If two different values of x are selected,
one can write

y2

y1
= y0e

bx2

y0ebx1
= eb(x2−x1).

If y2/y1 = 10, then this equation has the form 10 = ebX10

where X10 = x2 − x1 when y2/y1 = 10. From a table of
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Fig. 2.5 A semilogarithmic plot of the intensity of light after it has
passed through an absorber of thickness x

exponentials, bX10 = 2.303, so that

b = 2.303

X10
. (2.14)

The same procedure can be used to find b using a factor of
100 change in y:

b = 4.605

X100
. (2.15)

If the curve represents a decaying exponential, then y2/y1 =
10 when x2 < x1, so that X10 = x2 − x1 is negative. Equa-
tion 2.14 then gives a negative value for b. It is customary to
state separately that we are dealing with decay and regard b

as positive.
As an example, consider the exponential decay in Fig. 2.5.

Using points B and C, we have x1 = 0.97, y1 = 10−2, x2 =
0.48, y2 = 10−1, X10 = 0.480 − 0.97 = −0.49. Therefore,
b = 2.303/(0.49) = 4.7 cm−1, which is a more accurate
determination than the one we made using the half-life.

When we are dealing with real data, we must consider
the fact that each measurement has an experimental error as-
sociated with it. If we make several measurements of y for
a particular value of the independent variable x, the values
of y will be scattered. We indicate this by the error bars in

Fig. 2.6 Plot of y = e−0.5t with error bars ±0.05 on linear (a) and
semilog paper (b)

Fig. 2.6. (Determining the size of these error bars is discussed
in Chap. 11.) The data points in Fig. 2.6 are given exactly by
y = e−0.5x , where y is the fraction remaining at time x.
There is no data point for x = 0, but we must make sure that
our fitting line passes through the point (0,1). The error bars
show an error of ±0.09. The error bars on the semilog plot
are not all the same length, being much larger for long times
(small values of y). If we do not plot the error bars before
drawing our line, we will give too much emphasis to the data
points for small y.

Equal error bars for all the points on a semilog plot corre-
spond to the same percentage error for each point, as shown
in Fig. 2.7.
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Fig. 2.7 Plot of y = e−0.5t with 5 % error bars in linear (a) and semilog
paper (b)

2.4 Variable Rates

The equation dy/dx = by (or dy/dt = by) says that y

grows or decays at a rate that is proportional to y. The con-
stant b is the fractional rate of growth or decay. It is possible
to define the fractional rate of growth or decay even if it is
not constant but is a function of x:

b(x) = 1

y

dy

dx
. (2.16)

Semilogarithmic graph paper can be used to analyze the
curve even if b is not constant. Since d(ln y)/dy = 1/y, the

Fig. 2.8 A semilogarithmic plot of y vs x when the decay rate is not
constant. Each tangent line represents the instantaneous decay rate for
that value of x

chain rule for evaluating derivatives gives

d

dx
(ln y) = 1

y

dy

dx
= b.

This means that b(x) is the slope of a plot of ln y vs x. A
semilogarithmic plot of y vs x is shown in Fig. 2.8. The
straight lines are tangent to the curve and decay with a con-
stant rate equal to b(x) at the point of tangency. The ordinate
in Fig. 2.8 can be the log of y to any base; the value of b

for the tangent line is determined using the methods in the
previous section.

If finite changes �x and �y have been measured, they
may be used to estimate b(x) directly from Eq. 2.16. For
example, suppose that y=100,000 people and that in �x =
1 year there is a change �y = −37. In this case, �y

is very small compared to y, so we can say that b =
(1/y)(�y/�x) = −37 × 10−5 y−1. If the only cause of
change in this population is deaths, the absolute value of b

is called the death rate.
A plot of the number of people surviving in a population,

all of whom have the same disease, can provide informa-
tion about the prognosis for that disease. The death rate is
equivalent to the decay constant. An example of such a plot
is shown in Fig. 2.9. Curve A shows a disease for which
the death rate is constant. Curve B shows a disease with an
initially high death rate that decreases with time; if the pa-
tient survives the initial period, the prognosis is much better.
Curve C shows a disease for which the death rate increases
with time.

Surprisingly, there are a few diseases that have death rates
independent of the duration of the disease (Zumoff et al.
1966). Any discussion of mortality should be made in terms
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Fig. 2.9 Semilogarithmic plots of the fraction of a population surviv-
ing in three different diseases. The death rates (decay constants) depend
on the duration of the disease
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Fig. 2.10 Survival of patients with congestive heart failure. (Data are
from McKee et al. 1971)

of the surviving population, since any further deaths must
come from that group. Nonetheless, one often finds results
in the literature reported in terms of the cumulative fraction
of patients who have died. Figure 2.10 shows the survival of
patients with congestive heart failure for a period of 9 years.
The data are taken from the Framingham study (McKee et al.
1971; Levy and Brink 2005); the death rate is constant dur-
ing this period. For a more detailed discussion of various
possible survival distributions, see Clark (1975).

As long as b has a constant value, it makes no differ-
ence what time is selected to be t = 0. To see this, suppose
that the value of y decays exponentially with constant rate:
y = y0e

−bt . Consider two different time scales, shifted with
respect to each other so that t ′ = t0+t . In terms of the shifted
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Fig. 2.11 The fraction of patients surviving after a myocardial infarc-
tion (heart attack) at t = 0. The mortality rate decreases with time.
(From data in Bland and White 1941)

time t ′, the value of y is

y = y0e
−bt = y0e

−b(t ′−t0) =
(
y0e

bt0
)

e−bt ′ .

This has the same form as the original expression for y(t).
The value of y′

0 is y0e
bt0 , which reflects the fact that t ′ = 0

occurs at an earlier time than t = 0, so y′
0 > y0.

If the decay rate is not constant, then the origin of time
becomes quite important. Usually there is something about
the problem that allows t = 0 to be determined. Figure 2.11
shows survival after a heart attack (myocardial infarct). The
time of the initial infarct defines t = 0; if the origin had been
started 2 or 3 years after the infarct, the large initial death
rate would not have been seen.

As long as the rate of increase can be written as a func-
tion of the independent variable, Eq. 2.16 can be rewritten as
dy/y = b(x)dx. This can be integrated:

∫ y2

y1

dy

y
=
∫ x2

x1

b(x) dx,

ln(y2/y1) =
∫ x2

x1

b(x) dx,

y2

y1
= exp

(∫ x2

x1

b(x) dx

)
. (2.17)

If we can integrate the right-hand side analytically, numeri-
cally, or graphically, we can determine the ratio y2/y1.
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Fig. 2.12 A case in which the rate of removal of a substance from
the a fluid compartment depends on the concentration, not on the total
amount of substance in the compartment. Increasing the compartment
volume with the same concentration of the substance would not change
the rate of removal

2.5 Clearance

In some cases in physiology, the amount of a substance may
decay exponentially because the rate of removal is propor-
tional to the concentration of the substance (amount per unit
volume) instead of to the total amount. For example, the rate
at which the kidneys excrete a substance may be propor-
tional to the concentration in the blood that passes through
the kidneys, while the total amount depends on the total fluid
volume in which the substance is distributed. This is shown
schematically in Fig. 2.12. The large box on the left repre-
sents the total fluid volume V . It contains a total amount of
some substance, y. If the fluid is well mixed, the concen-
tration is C = y/V . The removal process takes place only
at the dashed line, at a rate proportional to C. The equation
describing the change of y is

dy

dt
= −KC = −K

( y

V

)
. (2.18)

The proportionality constant K is called the clearance. Its
units are m3 s−1. The equation is the same as Eq. 2.6 if K/V

is substituted for b. The solution is

y = y0e
−(K/V )t . (2.19)

The basic concept of clearance is best remembered in
terms of Fig. 2.12. Other definitions are found in the litera-
ture. It sometimes takes considerable thought to show that the
definitions are equivalent. A common definition in physiol-
ogy books is “clearance is the volume of plasma from which
y is completely removed per unit time.” To see that this defi-
nition is equivalent, imagine that y is removed from the body
by removing a volume V of the plasma in which the concen-
tration of y is C. The rate of loss of y is the concentration
times the rate of volume removal:

dy

dt
= −

∣
∣∣∣
dV

dt

∣
∣∣∣C. (2.20)

(dV/dt is negative for removal.) Comparison with Eq. 2.18
shows that |dV/dt | = K .

As long as the compartment containing the substance
is well mixed, the concentration will decrease uniformly
throughout the compartment as y is removed. The concen-
tration also decreases exponentially:

C = C0e
−(K/V )t . (2.21)

An example may help to clarify the distinction between
b and K . Suppose that the substance is distributed in a fluid
volume V = 18 l. The substance has an initial concentration
C0 = 3 mg l−1and the clearance is K = 2 l h−1. The total
amount is y0 = C0V = 3 × 18 = 54 mg. The fractional
decay rate is b = K/V = 1/9 h−1. The equations for C and
y are C = (3 mg l−1)e−t/9, y = (54 mg)e−t/9. At t = 0, the
initial rate of removal is −dy/dt = 54/9 = 6 mg h−1.

Now double the fluid volume to V = 36 l without
adding any more of the substance. The concentration falls
to 1.5 mg l−1 although y0 is unchanged. The rate of removal
is also cut in half, since it is proportional to K/V and the
clearance is unchanged. The concentration and amount are
now C = 1.5e−t/18, y = 54e−t/18. The initial rate of re-
moval is dy/dt = 54/18 = 3 mg h−1. It is half as large as
above, because C is now half as large.

If more of the substance were added along with the
additional fluid, the initial concentration would be un-
changed, but y0 would be doubled. The fractional decay
rate would still be K/V = 1/18 h−1: C = 3.0e−t/18,
y = 108e−t/18. The initial rate of disappearance would be
dy/dt = 108/18 = 6 mg h−1. It is the same as in the first
case, because the initial concentration is the same.

2.6 The Chemostat

The chemostat is used by bacteriologists to study the growth
of bacteria (Hagen 2010). It allows the rapid growth of bac-
teria to be observed over a longer time scale. Consider a
container of bacterial nutrient of volume V . It is well stirred
and contains y bacteria with concentration C = y/V . Some
of the nutrient solution is removed at rate Q and replaced by
fresh nutrient. The bacteria in the solution are reproducing at
rate b. The rate of change of y is

dy

dt
= by − QC = by − Qy

V
. (2.22)

Therefore the growth rate is slowed to

b − Q

V

and can be adjusted by varying Q.
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2.7 Multiple Decay Paths

It is possible to have several independent paths by which y

can disappear. For example, there may be several competing
ways by which a radioactive nucleus can decay, a radioactive
isotope given to a patient may decay radioactively and be ex-
creted biologically at the same time, a substance in the body
can be excreted in the urine and metabolized by the liver, or
patients may die of several different diseases.

In such situations the total decay rate b is the sum of the
individual rates for each process, as long as the processes
act independently and the rate of each is proportional to the
present amount (or concentration) of y:

dy

dt
= −b1y−b2y−b3y−· · · = −(b1+b2+b3+· · · )y = −by.

(2.23)
The equation for the disappearance of y is the same as before,
with the total decay rate being the sum of the individual rates.
The rate of disappearance of y by the ith process is not dy/dt

but is −biy. Instead of decay rates, one can use half-lives.
Since b = b1 + b2 + b3 + · · · , the total half-life T is given
by

0.693

T
= 0.693

T1
+ 0.693

T2
+ 0.693

T3
+ · · ·

or
1

T
= 1

T1
+ 1

T2
+ 1

T3
+ · · · . (2.24)

2.8 Decay Plus Input at a Constant Rate

Suppose that in addition to the removal of y from the system
at a rate −by, y enters the system at a constant rate a, inde-
pendent of y and t . The net rate of change of y is given by

dy

dt
= a − by. (2.25)

It is often easier to write down a differential equation
describing a problem than it is to solve it. In this case the
solution to the equation and the techniques for solving it
are well known. However, a good deal can be learned about
the solution by examining the equation itself. Suppose that
y(0) = 0. Then the equation at t = 0 is dy/dt = a, and y

initially grows at a constant rate a. As y builds up, the rate of
growth decreases from this value because of the −by term.
Finally when a−by = 0, dy/dt is zero and y stops growing.
This is enough information to make the sketch in Fig. 2.13.

The equation is solved in Appendix F. The solution is

y = a

b

(
1 − e−bt

)
. (2.26)

The derivative of y is dy/dt = ( a
b

)
(−1)(−b)e−bt = ae−bt .

Fig. 2.13 Sketch of the initial slope a and final value a/b of y when
y(0) = 0

Fig. 2.14 a Plot of y(t). b Plot of dy/dt

You can verify by substitution that Eq. 2.26 satisfies
Eq. 2.25. The solution does have the properties sketched in
Fig. 2.13, as you can see from Fig. 2.14. The initial value of
dy/dt is a, and it decreases exponentially to zero. When t is
large, the exponential term in y vanishes, leaving y = a/b.

2.9 DecayWithMultiple Half-Lives and Fitting
Exponentials

Sometimes y is a mixture of two or more quantities, each
decaying at a constant rate. It might represent a mixture of
radioactive isotopes, each decaying at its own rate. A bio-
logical example is the survival of patients after a myocardial
infarct (Fig. 2.11). The death rate is not constant, and many
models can be proposed to explain why. One possible model
is that there are two distinct classes of patients immediately
after the infarct. Each class has an associated death rate that
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Fig. 2.15 Fitting a curve with two exponentials

is constant. After 3 years, virtually none of the subgroup
with the higher death rate remains. Another model is that
the death rate is higher right after the infarct for all patients.
This higher death rate is due to causes associated with the
myocardial injury: irritability of the muscle, arrhythmias in
the heartbeat, the weakening of the heart wall at the site of
the infarct, and so forth. After many months, the heart has
healed, scar tissue has replaced the necrotic (dead) muscle,
and deaths from these causes no longer occur.

Whatever the cause, it is sometimes useful to fit a set
of experimental data with a sum of exponentials. It should
be clear from the discussion of survival after myocardial
infarction that simply fitting with an exponential or a sum
of exponentials does not prove anything about the decay
mechanism.

If y consists of two quantities, y1 and y2, each with its
own decay rate, then

y = y1 + y2 = A1e
−b1t + A2e

−b2t . (2.27)

Suppose that b1 > b2, so that y1 decays more rapidly than
y2. After enough time has elapsed, y1 will be much less than
y2, and its effect on a semilog plot will be negligible. A typ-
ical plot of y is curve A in Fig. 2.15. Line B can then be
drawn through the data and used to determine A2 and b2.
This line is extrapolated back to earlier times, so that y2 can

be subtracted from y to give an estimate for y1. For example,
at point C (t = 4), y = 400, y2 = 300, and y1 = 100. At
t = 0, y1 = 1500 − 500 = 1000. For times greater than
5 s, the curves for y and y2 are close together, and error in
reading the graph produces considerable scatter in y1. Once
several values of y1 have been determined, line D is drawn,
and parameters A1 and b1 are estimated.

This technique can be extended to several exponentials.
However it becomes increasingly difficult to extract mean-
ingful parameters as more exponentials are used, because the
estimated parameters for the short-lived terms are very sensi-
tive to the initial guess for the parameters of the longest-lived
term. Fig. 2.6 suggests that estimating the parameters for the
longest-lived term may be difficult because of the potentially
large error bars associated with the data for small values
of y. For a discussion of this problem, see Riggs (1970,
pp. 146–163). A more modern and better way to fit multi-
ple exponentials is the technique of nonlinear least squares.
This is discussed in Sect. 11.2.

2.10 The Logistic Equation

Exponential growth cannot go on forever. This fact is often
ignored by economists and politicians. Albert Bartlett has
written extensively on this subject. You can find several ref-
erences in The American Journal of Physics and The Physics
Teacher. See the summary in Bartlett (2004).

Sometimes a growing population will level off at some
constant value. Other times the population will grow and
then crash. One model that exhibits leveling off is the logistic
model, described by the differential equation

dy

dt
= b0y

(
1 − y

y∞

)
, (2.28)

where b0 and y∞ are constants. This equation has constant
solutions y = 0 and y = y∞. If y 	 y∞, then the equation
is approximately dy/dt = b0y and y grows exponentially.
As y becomes larger, the term in parentheses reduces the rate
of increase of y, until y reaches the saturation value y∞. This
might happen, for example, as the population begins to con-
sume a significant fraction of the food supply, causing the
birth rate to decrease or the mortality rate to increase.

If the initial value of y is y0, the solution of Eq. 2.28 is

y(t) = 1
1

y∞
+
(

1

y0
− 1

y∞

)
e−b0t

(2.29)

= y0y∞
y0 + (y∞ − y0)e

−b0t
.
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