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Abstract. The almost automorphic solution is a generalization of the
almost periodic solution. In this paper, the almost automorphic solutions
of Cohen-Grossberg neural networks with delays are considered. Using
the semi-discretization method and the contraction mapping principle,
some sufficient conditions are obtained to ensure the existence and the
uniqueness of almost automorphic solutions to Cohen-Grossberg neural
networks with delays.
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1 Introduction

In 1983, Cohen and Grossberg constructed an important kind of simplified neural
networks model which is now called Cohen-Grossberg neural networks (CGNNS)
[1]. This kind of neural networks is very general and includes Hopfield neural
networks, cellular neural networks and BAM neural networks as its special cases.
It has received increasing interest due to its applications in many fields such as
pattern recognition, parallel computing, associative memory and combinatorial
optimization. In recent years, the Cohen-Grossberg neural networks have been
widely studied and many useful and interesting results have been obtained (see
[6] and its references).

The concept of almost automorphy was introduced by Bochner [2] in 1964.
It is a natural generalization of the classical almost periodicity. According to
the properties of periodic functions, we know that periodic functions are all uni-
formly continuous. However, there exist some functions that have the similar
properties to periodic functions, and meanwhile they are not uniformly continu-
ous, such as f(k) = sign(cos2πkθ). This kind of function is almost automorphic.
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At present, the almost automorphic functions have been used in many differ-
ent kind of fields [3–5], [10,15,16], such as ordinary differential equation, partial
differential equation, integral equation and dynamic system and so on. In [5], the
authors studied a kind of partial differential equation based on biology, and the
natural function classes of the solutions about this kind differential equation are
almost automorphic functions. However, there is no paper discussed the almost
automorphic solution to Cohen-Grossberg neural networks, so it is meaningful
to discuss it and ours is the first one.

Generally speaking, the Cohen-Grossberg neural networks with delays can
be described as following:

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) − ∑n

j=1 dij(t)gj(xj(t − τj)) − Ii(t)
]

(1)

where i = 1, 2, · · · , n, xi(t) is the state variable associated with the ith neuron,
ai(·) is an amplification function and bi(·) represents a behaved function, dij(t)
presents the strength of connectivity between cells i and j at time t, the activa-
tion function gi(·) tells how the ith neuron reacts to the input, τi corresponds to
the time delay. The initial condition of (1) is xi(t) = ϕi(t), t ∈ [−τi, 0].

In reality for the applications of neural networks to some practical problems,
suchasexperiment, imageprocessing, computationalpurposesandsoon, it is essen-
tial to formulate a discrete-time system which is a version of the continuous-time
system. The discrete-time system is desired to preserve the dynamical character-
istics of the continuous-time system. There are many numerical schemes such as
Euler scheme and Runge-Kutta scheme that can be utilized to obtain the discrete-
time version of the continuous-time system. In this paper, we will use the semi-
discretization scheme to obtain the discrete-time analogues of the continuous-time
(1).The semi-discretization ideawas originally used in the partial differential equa-
tions and then introduced to the ordinary differential equations. It has been proved
that such kind of method can preserve the dynamical characteristics of the
continuous-time systems to some extent, we can find examples in [7]-[9].

Using the semi-discretization method, the model (1) can be written as:

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) − ∑n

j=1 dij(t)gj(xj([ t
h ]h − [ τj

h ]h)) − Ii(t)
]

(2)

t ∈ [nh, (n + 1)h), [ t
h ] = n, h is the discretization step-size, it is a fixed positive

real number.
In this paper, we consider the existence and the uniqueness of almost auto-

morphic solutions of (2).
The remainder of this paper is organized as following: some definitions and

assumptions are given in Section 2, and in Section 3, some sufficient conditions
are given to ensure the existence of the almost automorphic solutions of (2). In
the last section, Section 4, some conclusions about this paper are presented.

2 Preliminaries

For the readers’ convenience, we first give some definitions (for details, see
[11]-[14]).
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Definition 1. A continuous function f : R × X → R is called almost automor-
phic for x in compact subsets of X, if for every compact subset K of x and every
real sequence sn, there exists a subsequence snk

, such that

lim
n→+∞ f(t + snk

, x) = g(t, x) and lim
n→+∞ g(t − snk

, x) = f(t, x), t ∈ R, x ∈ K

Definition 2. A continuous f : Z × X → X is a called almost automorphic
sequence for x ∈ X if for every sequence of integer {n}, there exists a subsequence
{nl}l∈N , such that

f(n + hnl, x) → g(n, x) and g(n − hnl, x) → f(n, x), n ∈ Z and x ∈ X

The set of all such functions are denoted by AAS(Z × X → X), AAS for short.

The following are some assumptions which will be used later.
A1: ai(·), dij(·), and Ii(·) are almost automorphic to the variable t, and

0 < ai ≤ ai(·) ≤ ai.
A2 : for any x, y ∈ R, there exist some constants Ai, Lj , and Gj , such that

|ai(x) − ai(y)| < Ai|x − y|, |gj(x) − gj(y)| ≤ Lj |x − y|, |gj(x)| ≤ Gj .
A3 : There exist positive almost automorphic functions β

i
(t), βi(t), such

that ∀xi, yi ∈ R, i = 1, 2, · · · , n, the following inequality holds:

0 < β
i
(t) ≤ ai(xi(t))bi(xi(t)) − ai(yi(t))bi(yi(t))

xi(t) − yi(t)
≤ βi(t)

and β
i
= inft≥0 |β

i
(t)|, βi = supt≥0 |βi(t)|, bi(0) ≡ 0.

3 Main Results

According to A3, the model (2) can be written as following:

ẋi(t) = −ri(t)xi(t) + ai(xi(t))
[ ∑n

j=1 dij(t)gj(xj([ t
h ]h − [ τj

h ]h)) + Ii(t)
]

(3)

From (3) we can obtain:

xh
i (n + 1) = xh

i (n)e− ∫ (n+1)h
nh

ri(u)du + ai(x
h
i (n))

×
{∫ (n+1)h

nh

[∑n
j=1 dij(s)gj(xj(n − τ∗

j )) + Ii(s)
]
e− ∫ (n+1)h

s ri(u)duds
}

(4)
where xh

i (n) = xi(nh), and τ∗
j = [ τj

h ].
Let

Ri(n) = e− ∫ (n+1)h
nh ri(u)du,

Dij(n) =
∫ (n+1)h

nh
dij(s)e− ∫ (n+1)h

s
ri(u)duds,

Ei(n) =
∫ (n+1)h

nh
Ii(s)e− ∫ (n+1)h

s
ri(u)duds

then (4) is reformulated as:

xh
i (n + 1) = Ri(n)xh

i (n) +
∑n

j=1 ai(x
h
i (n))Dij(n)gj(xj(n − τ∗

j )) + ai(x
h
i (n))Ei(n)

(5)
Denote Ri = supn∈Z{Ri(n)}, Dij = supn∈Z{Dij(n)}, Ei = supn∈Z{Ei(n)}.
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Theorem 1. Suppose that the assumptions A1 − A3 hold, then there exists a
unique almost automorphic solution of (5) if

max
1≤i,j≤n

{Ri +
n∑

j=1

aiDijLj +
n∑

j=1

AiDijGj + AiIi} < 1.

Proof. There are three steps to complete the proof.
Step1. To start the proof, we show that Ri(n), Dij(n), Ei(n) are almost

automorphic for i, j = 1, 2, · · · , n, firstly.
For ri(t) is almost automorphic, then for any sequence tn, there exists a

subsequence tnl
such that ri(t+ tnl

) → ri(t) and ri(t− tnl
) → ri(t) for nl → ∞.

so

|Ri(n + tnl
) − Ri(n)| = |e− ∫ (n+1+tnl

)h

(n+tnl
)h ri(u)du − e− ∫ (n+1)h

nh ri(u)du|
= |e− ∫ (n+1)h

nh ri(u+tnl
)du − e− ∫ (n+1)h

nh ri(u)du| → 0

Thus Ri(n + tnl
) → Ri(n). Likewise, Ri(n − tnl

) → Ri(n).
Under assumption A1, dij(t) is almost automorphic and dij(t+ tnl

) → dij(t).
Let Dij(n) =

∫ (n+1)h

nh
dij(s)e− ∫ (n+1)h

s
ri(u)duds, then for {tnl

} ∈ Z,

|Dij(n + tnl
) − Dij(n)|

=
∣
∣ ∫ (n+1+tnl

)h

(n+tnl
)h dij(s)e− ∫ (n+1+tnl

)h
s ri(u)duds − ∫ (n+1)h

nh
dij(s)e− ∫ (n+1)h

s
ri(u)duds

∣
∣

≤ ∣
∣ ∫ (n+1)h

nh
dij(s + tnl

)[e− ∫ (n+1)h
s

ri(u+tnl
)du − e− ∫ (n+1)h

s
ri(u)du]ds

∣
∣

+
∣
∣ ∫ (n+1)h

nh
[dij(s + tnl

) − dij(s)]e− ∫ (n+1)h
s

ri(u)duds
∣
∣

→ 0.

Likewise, Dij(n− tnl
) → Dij(n). Then by the similar analysis, Ei(n+ tnl

) →
Ei(n), Ei(n − tnl

) → Ei(n). That is to say, Ai(n), Dij(n), Ei(n) ∈ AAS.
Step2. Consider the following equation:

xh
i (n + 1) = Ri(n)xh

i (n) + ai(xh
i (n))Ei(n) (6)

Next, we will show that (6) has a unique almost automorphic sequence solution.
Using the method of induction, according to (6), we can obtain

xh
i (n + 1) =

n∏
l=0

Ri(l)x
h
i (0) +

n∑
q=0

ai(x
h
i (n − q))

∫ (n+1−q)h

(n−q)h

Ii(s)e
− ∫ (n+1)h

s ri(u)duds

Let

x̃h
i (n) =

n−1∑

q=0

ai(x̃h
i (n − 1 − q))

∫ (n−q)h

(n−1−q)h

Ii(s)e− ∫ nh
s

ri(u)duds,

then

|x̃h
i (n)| ≤ |

n−1∑

q=0

ai
Ii

β
i

(e−qhβ
i − e−(q+1)hβ

i)| < |aiIi

β
i

(1 − e−nhβ
i)| < |aiIi

β
i

|.
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We can easily verify that
x̃h

i (n + 1) = Ri(n)x̃h
i (n) + ai(x̃h

i (n))Ei(n).
Let x̃h

i∗(n) =
∑n−1

q=0 ai(x̃h
i∗(n−1−q))

∫ (n−q)h

(n−1−q)h
Ii(s)e− ∫ (n−q)h

s
ri(u)duds, where

ai(x̃h
i (n + tnl

)) → ai(x̃h
i∗(n)), and ai(x̃h

i∗(n − tnl
)) → ai(x̃h

i (n)).
Then for any given sequence {tnl

} ∈ Z,

|x̃h
i (n + tnl) − x̃h

i∗(n)|
≤∑n−1

q=0

∣∣[ai(x̃
h
i (n − 1 − q)) − ai(x̃

h
i∗(n − 1 − q))

]
∫ (n−q)h

(n−1−q)h
Ii(s + tnl)e

− ∫ (n−q)h
s ri(u+tnl

)duds
∣∣

+
∑n−1

q=0

∣∣ai(x̃
h
i∗(n − 1 − q))

∫ (n−q)h

(n−1−q)h
[Ii(s + tnl) − Ii(s)]e

− ∫ (n−q)h
s ri(u+tnl

)duds
∣∣

+
∑n−1

q=0

∣∣ai(x̃
h
i∗(n − 1 − q))

∫ (n−q)h

(n−1−q)h
Ii(s)

[e− ∫ (n−q)h
s ri(u+tnl

)du − e− ∫ (n−q)h
s ri(u)du]ds

∣∣→ 0

So x̃h
i (n + tnl

) → x̃h
i∗(n). Likewise, x̃h

i∗(n − tnl
) − x̃h

i (n). Thus, x̃h
i (n) is almost

automorphic. In addition, x̃h
i (n+1) = Ri(n)x̃h

i (n)+ai(x̃h
i (n))Ei(n), then x̃h

i (n)
is the almost automorphic solution of (6).

Step3. Assume that

θ = max
1≤i≤n

aiIi

βi
, ω = max

1≤i≤n
{Ri + AiEi}, γ = max

1≤i≤n
{Ri +

n∑

j=1

aiDijLj}

Define a mapping F: AAS → AAS, x → Fx, Fx = ((Fx)2, · · · , (Fx)n)T ,

(Fx)i(n+1) = Ri(n)xh
i (n)+

n∑

j=1

ai(xh
i (n))Dij(n)gj(xj(n−τ∗

j ))+ai(xh
i (n))Ei(n).

Denote ‖x‖ = supn∈Z max1≤i≤n |xi(n)|, let Ω = {x : x is almost automor-
phic, ‖x − x̃‖ ≤ ω+γ

1−γ θ}, then ‖x‖ ≤ ‖x − x̃‖ + ‖x̃‖ = ω+1
1−γ θ.

∀x, y ∈ Ω, we have:

‖Fx − x̃‖ = sup
n∈Z

max
1≤i≤n

|Ri(n)(xh
i (n) − x̃h

i (n))

+
n∑

j=1

ai(x
h
i (n))Dij(n)gj(xj(n − τ∗

j )) + [ai(x
h
i (n)) − ai(x̃

h
i (n))]Ei(n)|

≤ Ri‖x‖ + Ri‖x̃‖ +

n∑
j=1

aiDijLj‖x‖ + AiEi‖x̃‖

≤ (Ri +
n∑

j=1

aiDijLj)‖x‖ + ω‖x̃‖

≤ ω + γ

1 − γ
θ
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‖Fx − Fy‖ = sup
n∈Z

max
1≤i≤n

{
|Ri(n)(xh

i (n) − yh
i (n))

+
n∑

j=1

[ai(x
h
i (n))gj(xj(n − τ∗

j )) −
n∑

j=1

ai(y
h
i (n))gj(yj(n − τ∗

j ))]Dij(n)

+[ai(x
h
i (n)) − ai(y

h
i (n))]Ii(n)|

}

≤ max
1≤i≤n

{
(Ri +

n∑
j=1

aiDijLj +

n∑
j=1

AiDijGj + AiIi)‖x − y‖
}

< ‖x − y‖

Then F is a construction mapping, thus (5) has a unique almost automorphic
solution which satisfies that ‖x − x̃‖ < ω+γ

1−γ θ. This completes the proof.

4 Conclusions

In this paper, the almost automorphic solutions of delayed Cohen-Grossberg
neural networks are investigated. The almost automorphic solution is a gener-
alization of the almost periodic solution, and it has been used in ordinary dif-
ferential equation, partial differential equation, integral equation and dynamic
system and so on. Our paper is the first one to discuss such solutions on Cohen-
Grossberg neural networks. By the contraction mapping principle, the existence
and the uniqueness of almost automorphic solutions are discussed, and some new
results are obtained.
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