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Abstract. In this paper, we introduce a class of cubic rotation sym-
metric (RotS) functions and prove that it can yield bent and semi-bent
functions. To the best of our knowledge, this is the second primary
construction of an infinite class of nonquadratic RotS bent functions
which could be found and the first class of nonquadratic RotS semi-bent
functions. We also study a class of idempotents (giving RotS functions
through the choice of a normal basis of GF (2n) over GF (2)). We derive
a characterization of the bent functions among these idempotents and
we relate their precise determination to a problem studied in the frame-
work of APN functions. Incidentally, the proofs of bentness given here
are useful for a paper studying a construction of idempotents from RotS
functions, entitled “A secondary construction and a transformation on
rotation symmetric functions, and their action on bent and semi-bent
functions” by the same authors, to appear in the journal JCT series A.
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1 Introduction

Boolean functions play a critical role in cryptography as well as in the design
of circuits and chips for digital computers. They can be defined over the finite
field GF (2n) and represented as univariate polynomials, or over the vector space
GF (2)n and represented as f(x0, x1, . . . , xn−1), the latter representation being
deduced from the former (and vice versa) through the choice of a basis of the
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GF (2)-vector space GF (2n). Idempotents, introduced by Filiol and Fontaine
in [12,13] are polynomials over GF (2n) such that f(z) = f(z2), for all z ∈
GF (2n). Rotation symmetric (RotS) Boolean functions, introduced by Pieprzyk
and Qu [24], are invariant under circular translation of indices. They can be
obtained from idempotents (and vice versa) through the choice of a normal
basis of GF (2n). Such class of Boolean functions is of interest because of its
smaller search space (≈ 2

2n
n ) comparably to the whole space (= 22

n

), which
allows investigating functions for a number of variables larger (by a factor of 2),
and also because of the more compact representation of RotS functions. It has
been experimentally demonstrated that the class of RotS Boolean functions is
extremely rich in terms of cryptographically significant Boolean functions. For
example, Kavut et al. have found Boolean functions on 9 variables with nonlin-
earity 241 [17], which solved an almost three-decade old open problem. Moti-
vated by this study, important cryptographic properties such as nonlinearity,
balancedness, correlation immunity, algebraic degree and algebraic immunity of
these functions have been investigated at the same time and encouraging results
have been obtained [10,14,27,28]. Note that RotS functions are also interesting
for the design of Substitution Boxes in block ciphers (see [16,25]).

Plateaued functions [29] represent much interest for the study of Boolean
functions in cryptography, as they can possess desirable cryptographic properties
such as high onlinearity, resiliency, propagation criteria, low additive autocor-
relation and high algebraic degree. Their class is larger than that of “partially
bent functions” introduced in [3]. Two important classes of plateaued functions
are those of bent functions and of semi-bent functions, due to their algebraic
and combinatorial properties. An n-variable (n even) bent function is a Boolean
function with the maximum possible nonlinearity 2n−1 − 2n/2−1. Such functions
provide the best resistance against attacks by affine approximations, such as
the fast correlation cryptanalysis (but are weak against other attacks like the
Siegenthaler correlation attack and the fast algebraic attack). They have been
extensively investigated in cryptography (Rothaus who introduced them in [26]
worked in this framework), spread spectrum, coding theory (the Kerdock codes
are made of affine functions and bent functions) and combinatorial design (in
relation with difference sets). A lot of research has been devoted to designing
constructions of bent functions. The two best known constructions produce the
so-called Maiorana-McFarland class, denoted by M [11,21] and the PS class [11].
A survey on bent functions can be found in [2].

It is well known that the Walsh transform of a bent function only takes on
the values ±2

n
2 . Hence, bent functions are unbalanced and exist only for even

number of variables. For even n, a semi-bent function has Walsh transform taking
values 0 and ±2

n
2 +1 only; it can also be called 3-valued almost optimal. Semi-bent

functions can provide protection against fast correlation attack and more general
cryptanalysis by affine approximation [22], and unlike bent functions can also be
balanced and resilient. A number of constructions of semi-bent functions have
been developed. For detailed discussion please see [5,9,23] and the references
therein.
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In [15], the authors presented a class of cubic RotS bent functions. But such
examples of bent RotS functions are very few. Further research is needed to
find other classes of cryptographically important RotS functions. In [6], the
authors studied the following transformation of RotS functions into idempo-
tents: given, f(x0, x1, . . . , xn−1) a RotS function over GF (2)n, the function
f ′ is defined over GF (2n) as: f ′(z) = f(z, z2, . . . , z2

n−1
). If the ANF of f is

f(x0, x1, . . . , xn−1) =
∑

u∈GF (2)n auxu, where x0, x1, . . . , xn−1 and au belong to

GF (2), we have: f ′(z) =
∑

u∈GF (2)n au

∏n−1
i=0 (z2

i

)ui =
∑

u∈GF (2)n auz
∑n−1

i=0 ui2
i

.
The transformation f �→ f ′ maps any RotS Boolean function f to a Boolean
idempotent f ′ over GF (2n). The algebraic degree is preserved. All Boolean idem-
potents are obtained this way, with uniqueness. This transformation, contrary
to the decomposition of an idempotent over a normal basis, allows obtaining
infinite classes from infinite classes. The question whether such infinite classes
exist for all situations “f bent / not bent” and “f ′ bent / not bent” is studied
in [6]. The proofs given in the present paper allow to reply positively.

We organize this paper as follows. Section 2 is an introductory part providing
some preliminary definitions and results. In Sect. 3, we characterize the Walsh
transform of a class of cubic RotS functions ft. Necessary and sufficient condi-
tions for ft to be bent or semi-bent functions are obtained. Section 4 presents a
class of idempotent bent functions.

2 Preliminaries

We first recall some general definitions about Boolean functions. Denote by
GF (2)n the n-dimensional vector space over the finite field GF (2) and by + the
addition operation over GF (2). Let 0 and 1 be the all-zero vector and the all-
one vector of GF (2)n respectively. An n-variable Boolean function f(x), where
x = (x0, x1, . . . , xn−1) ∈ GF (2)n, is a mapping from GF (2)n to GF (2), which
can be represented uniquely as a polynomial, called its algebraic normal form
(ANF), of the form:

f(x0, x1, . . . , xn−1) =
∑

u∈GF (2)n

λu(
n−1∏

i=0

xui
i ), λu ∈ GF (2).

The number of variables in the highest order product term with nonzero coeffi-
cient is called its algebraic degree. A Boolean function is said to be affine if its
degree does not exceed 1. The set of all n-variable affine functions is denoted
by An(x). We call a function nonlinear if it is not in An(x). The Hamming
weight wH(x) of a binary vector x ∈ GF (2)n is the number of its nonzero coor-
dinates, and the Hamming weight wH(f) of a Boolean function f is the size of
its support {x ∈ GF (2)n|f(x) = 1}. If wH(f) = 2n−1, we call f(x) balanced. We
say two n-variable Boolean functions f(x) and g(x) are affinely equivalent if
g(x) = f(Ax+b) where b is an element of GF (2)n and A is an n×n nonsingular
binary matrix. It is easy to see that if f(x) and g(x) are affinely equivalent then
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wH(f) = wH(g). Let x = (x0, x1, . . . , xn−1) and w = (w0, w1, . . . , wn−1) both
belong to GF (2)n and w ·x be an inner product in GF (2)n, for instance the usual
inner product w0x0+w1x1+· · ·+wn−1xn−1. Then the Walsh transform of f(x) is
the real valued function over GF (2)n defined as: Wf (w) =

∑

x∈GF (2)n
(−1)f(x)+w·x.

Definition 1. Let n be even. A Boolean function f(x) on GF (2)n is called bent
if its Walsh transform satisfies Wf (w) = ±2

n
2 , for all w ∈ GF (2)n.

Definition 2. Let n be any positive integer. A Boolean function f(x) on GF (2)n

is called semi-bent if its Walsh transform satisfies Wf (w) = 0,±2�n+1
2 �, for all

w ∈ GF (2)n.

Maiorana and McFarland [21] introduced independently a class of bent func-
tions by concatenating affine functions. We call the Maiorana-McFarland class
M the set of all the Boolean functions on GF (2)2m = {(x, y) |x, y ∈ GF (2)m},
of the form:

f(x, y) = π(x) · y + h(x), (1)

where π is any mapping from GF (2)m to GF (2)m and h(x) is any Boolean
function on GF (2)m. Then f is bent if and only if π is bijective.

Let xi ∈ GF (2) for 0 ≤ i ≤ n − 1. For 0 ≤ k ≤ n − 1, we define the left
k-cyclic shift operator ρk

n as ρk
n(xi) = x(i+k)modn (this is an abuse of notation

since x(i+k)modn does not depend on xi but on another coordinate of x; but this
notation will simplify the presentation below). Let (x0, x1, . . . , xn−1) ∈ GF (2)n,
we can extend the definition of ρk

n on tuples as follows: ρk
n(x0, x1, . . . , xn−1) =

(ρk
n(x0), ρk

n(x1), . . . , ρk
n(xn−1)), and on monomials as follows: ρk

n(xi0xi1 . . . xil) =
ρk

n(xi0)ρ
k
n(xi1) . . . ρk

n(xil) with 0 ≤ i0 < i1 < · · · < il ≤ n − 1.

Definition 3. A Boolean function f on GF (2)n is called rotation symmetric if
for each input (x0, x1, . . . , xn−1) ∈ GF (2)n, we have:

f(ρk
n(x0, x1, . . . , xn−1)) = f(x0, x1, . . . , xn−1), for 0 ≤ k ≤ n − 1.

Let us denote by Gn(xi0xi1 . . . xil) = {ρk
n(xi0xi1 . . . xil), for 0 ≤ k ≤ n − 1}

the orbit of the monomial xi0xi1 . . . xil . We select the representative element of
Gn(xi0xi1 . . . xil) as the lexicographically first element. For instance, the repre-
sentative element of the orbit {x0x1x2, x1x2x3, x2x3x0, x3x0x1} is x0x1x2. For a
RotS function f , the existence of a representative term x0xi1 . . . xil implies the
existence of all the terms from Gn(x0xi1 . . . xil) in the ANF of f .

3 Constructions of Rotation Symmetric Bent
and Semi-bent Functions

The lemma below is straightforward and well-known.

Lemma 1. Assume that a Boolean function f : GF (2)2m → GF (2) can be
expressed in the form (1). Then the following conditions hold.
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1. If π is a 2-to-1 mapping, then f is a semi-bent function.
2. If, for every b ∈ GF (2)m, the set Sb = {x ∈ GF (2)m|π(x) = b} is either

empty or an s-dimensional affine subspace of GF (2)m, then f is semi-bent
if and only if s = 1, or s = 2 and the restriction of h to Sb, viewed as a
2-variable function, has algebraic degree 2 (i.e. has odd Hamming weight).

Now, we are able to prove our main theorem.

Theorem 1. Let ft(x) be the n-variable RotS Boolean function of the form:

ft(x) =
n−1∑

i=0

ρi
n(x0xrx2r) +

2r−1∑

i=0

ρi
n(x0x2rx4r) +

ν(t)−1∑

i=0

ρi
n(x0xt) (2)

where ρi
n is the left i-cyclic shift operator, and n = 2m = 6r with r ≥ 1, t ≤ m,

ν(t) = n if 0 < t < m; ν(t) = m if t = m. Then we have

1. If 0 < t < m, then ft(x) is semi-bent if and only if gcd(2t,m) = 1 or if
gcd(2t,m) = 2 and gcd(t,m) = 1.

2. If t = m, then ft(x) is a bent function.

Proof. We first note that

ft(x) = (x0 + x3r)(xr + x4r)(x2r + x5r)
+ (x1 + x3r+1)(xr+1 + x4r+1)(x2r+1 + x5r+1)
...

+ (xr−1 + x4r−1)(x2r−1 + x5r−1)(x3r−1 + x6r−1) +
ν(t)−1∑

i=0

ρi
n(x0xt).

Let

E = {x ∈ GF (2)n|xi + xm+i = 0,∀ i = 0, . . . , m − 1}
and

W = {x ∈ GF (2)n|xm+i = 0,∀ i = 0, . . . , m − 1},

then E and W are two supplementary m-dimensional vector subspaces of GF (2)n,
that is, any vector x ∈ GF (2)n can then be uniquely represented as x = a + y
with a ∈ W and y ∈ E. By replacing x by a + y above, we deduce that:

1. If 0 < t < m, then

ft(x) = ft(a + y) = a0ara2r + a1ar+1a2r+1 + · · · + ar−1a2r−1a3r−1

+
n−1∑

i=0

ρi
n(a0 + y0)(at + yt)

=
r−1∑

i=0

ρi
m(a0ara2r) +

n−1∑

i=0

ρi
n(a0at + a0yt + aty0 + y0yt).
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Using am+i = 0 and yi = ym+i for 0 ≤ i ≤ m − 1, we have:

n−1∑

i=0

ρi
n(a0at) =

m−t−1∑

i=0

ρi
n(a0at)

=
m−t−1∑

i=0

ρi
m(a0at) (this is an abuse of notation),

n−1∑

i=0

ρi
n(a0yt) = a0yt + · · · + am−t−1ym−1 + am−ty0 + · · · + am−1yt−1

=
m−1∑

i=0

ρi
m(a0yt) =

m−1∑

i=0

ρi
m(am−ty0),

n−1∑

i=0

ρi
n(aty0) =

n−1∑

i=0

ρi
n(a0yn−t) =

m−1∑

i=0

ρi
m(a0ym−t) =

m−1∑

i=0

ρi
m(aty0).

Therefore, since
n−1∑

i=0

ρi
n(y0yt) = 2

m−1∑

i=0

ρi
n(y0yt) (mod 2) = 0:

ft(x) = ft(a + y)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−t−1∑

i=0

ρi
m(a0at) +

m−1∑

i=0

ρi
m((at + am−t)y0)

= π(a) · y + h(a),

where
π(a) = (at + am−t, at+1 + am−t+1, . . . , at−1 + am−t−1),

and

h(a) =
r−1∑

i=0

ρi
m(a0ara2r) +

m−t−1∑

i=0

ρi
m(a0at).

If t = m/2, then π = 0 and the function is neither semi-bent nor bent.
For t �= m/2, according to the expression obtained for π(a), we can assume
without loss of generality that 0 < t < m/2. Let s = gcd(2t,m). It follows
from Theorem 1 of [20, p. 190] that π is a 2s-to-1 mapping since gcd(xt +
xm−t, xm+1) = xs+1. This is equivalent to saying that Sw is either an empty
set or an s-dimensional affine subspace of GF (2)m. By Case 2 of Lemma 1,
we deduce that ft can be semi-bent only if s = 1, or s = 2.
– If s = 1, then π is a 2-to-1 mapping, which implies ft is semi-bent by Case

1 of Lemma 1.
– If s = 2, denote by G the kernel of π, then

G = {0,1, (1, 0, 1, 0, . . . , 1, 0), (0, 1, 0, 1, . . . , 0, 1)} ⊂ GF (2)m.
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Suppose that Sw is nonempty. Then, for any a ∈ Sw, there exists some
vector b ∈ GF (2)m such that {b + e|e ∈ G} (b can be unique if we require
for instance that b0 = b1 = 0). Then the restriction g of h to Sw is:

g =
r−1∑

i=0

ρi
m((b0 + e0)(br + er)(b2r + e2r) +

m−t−1∑

i=0

ρi
m((b0 + e0)(bt + et))

=
r−1∑

i=0

ρi
m(b0brb2r + b0bre2r + b0b2rer + brb2re0

+b0ere2r + bre0e2r + b2re0er + e0ere2r)

+
m−t−1∑

i=0

ρi
m(b0bt + b0et + bte0 + e0et).

Since gcd(2t,m) = 2, then gcd(t,m) = 1, 2 and r is even. Using ei = ej if
i ≡ j (mod 2), we shall calculate the non-linearized part B of g relative to
e for the cases gcd(t,m) = 1 and gcd(t,m) = 2 respectively.
- If gcd(t,m) = 2, then t is even. We have

B =
r−1∑

i=0

ρi
m(e0ere2r + b0ere2r + bre0e2r + b2re0er) +

m−t−1∑

i=0

ρi
m(e0et)

=
r−1∑

i=0

ρi
m(e0e0e0 + b0e0e0 + bre0e0 + b2re0e0) +

m−t−1∑

i=0

ρi
m(e0e0)

=
r/2−1∑

i=0

((1 + b2i + br+2i + b2r+2i)e0

+(1 + b2i+1 + br+2i+1 + b2r+2i+1)e1)

+(
m − t

2
mod 2)(e0 + e1).

It shows that g is an affine function on b + G. According to Case 2 of
Lemma 1, ft can not be semi-bent if gcd(t,m) = 2.
To complete our proof, it will suffice to check that g is quadratic when
gcd(t,m) = 1. In this case, t is odd and so is m − t.
- If gcd(t,m) = 1, then

B =
r−1∑

i=0

ρi
m(e0ere2r + b0ere2r + b0ere2r + bre0e2r + b2re0er)

+
m−t−1∑

i=0

ρi
m(e0et)

=
r/2−1∑

i=0

((1 + b2i + br+2i + b2r+2i)e0



28 C. Carlet et al.

+(1 + b2i+1 + br+2i+1 + b2r+2i+1)e1)
+(m − t mod 2)(e0e1)

= e0e1 +
r/2−1∑

i=0

((1 + b2i + br+2i + b2r+2i)e0

+(1 + b2i+1 + br+2i+1 + b2r+2i+1)e1).

Hence g has algebraic degree 2. We conclude that ft(x) is semi-bent if
gcd(2t,m) = 2 and gcd(t,m) = 1, completing the proof of Case 1 of Theo-
rem 1.

2. If t = m, by a straightforward computation, we have

fm(x) = fm(a + y)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + y0)(am + ym))

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + y0)am + (a0 + y0)ym)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + y0)ym)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + y0)y0)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + 1)y0)

Obviously, fm(x) is a bent function from the class M, completing the proof.

Remark 1. From the proof of Theorem 2, one can claim that the homogenous
RotS function

∑n−1
i=0 ρi

n(x0xrx2r) +
∑2r−1

i=0 ρi
n(x0x2rx4r) can not be bent. It is

conjectured that there are no homogenous RotS bent functions [27].

4 Rotation Symmetric Functions Obtained as
Idempotents over GF (2n)

In this section we identify the vector space GF (2)n with the finite field GF (2n).
For any positive integer k dividing n, we denote the trace function from GF (2n)
to GF (2k) by Trn

k (z) = z+z2
k

+ · · ·+z2
n−k

. Note that for every integer k divid-
ing n, the trace function Trn

k satisfies the transitivity property Trn
1 = Trk

1 ◦Trn
k .

Every nonzero Boolean function f defined over GF (2n) has a unique representa-
tion of the form: f(z) =

∑2n−1
i=0 uiz

i where ui ∈ GF (2n). Thanks to the fact that
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f is Boolean, that is, satisfies (f(z))2 = f(z) [mod z2
n

+ z], it can be written in
the form (called its univariate polynomial form or trace form):

f(z) =
∑

j∈Γn

Tr
o(j)
1 (ajz

j) + ε(1 + z2
n−1), (3)

where Γn is the set of integers obtained by choosing one element in each cyclo-
tomic coset of 2 modulo 2n−1 (the most usual choice for j is the smallest element
in its cyclotomic class, called the coset leader of the class), o(j) is the size of
the corresponding cyclotomic coset containing j, aj ∈ GF (2o(j)) and ε ∈ GF (2).
The algebraic degree of f equals the maximum 2-weight of those j such that
aj �= 0, where the 2-weight of j is the Hamming weight of its binary expansion
(see e.g. [2]). Let us denote by ϕu(z) = Trn

1 (uz), u ∈ GF (2n), the general linear
Boolean function on GF (2n). The Walsh transform of f is defined as

Wf (u) =
∑

z∈GF (2n)

(−1)f(z)+Trn
1 (uz), u ∈ GF (2n).

Thanks to the identification between the vectors pace GF (2)n and the field
GF (2n), the Maiorana-McFarland class M of Boolean functions over GF (22m)
can be expressed in the form: f(x, y) = Trm

1 (π(x)y + h(x)), where π and h
are mappings from GF (2m) to GF (2m). A function f(z) given by (3) is an
idempotent if and only if every coefficient aj in every term Tro(j)(ajz

j) belongs
to GF (2).

4.1 The Bentness of Some Cubic Idempotents

It is known that the monomial function Tr2m
1 (λxd), when cubic, can yield bent

functions in M only if m = 3r, d = 1 + 2r + 22r [1], or d = 1 + 2j + 2m with
1 ≤ j < m [8] respectively. But [1, Theorem 3] and [8, Theorem 5.1] imply that
such cubic bent monomial functions can not be idempotent (i.e. such that λ = 1).
In this subsection, we characterize the bentness of the idempotent functions of
the form:

f
(c)
k (z) = Trn

1 (z1+2k+2m) +
m−1∑

i=1

ciTrn
1 (z1+2i) + cmTrm

1 (z1+2m), (4)

where n = 2m, 0 < k < m, and c = (c1, . . . , cm) ∈ GF (2)m.
The next theorem will show that function f

(c)
k (z) is from the class M, and

then the bentness of f
(c)
k (z) can be related to the bijectivity of some quadratic

polynomial of the form z1+2k + L(z), where L(z) is a linearized polynomial
over GF (2m). Such polynomials have received attention for their importance in
constructing quadratic APN permutations [19].

Theorem 2. Let f
(c)
k (z) be defined over GF (2n) by relation (4) and let L(z) =

z2
k−1

+ cmz +
�m−1

2 �∑

i=1

(ci + cm−i)(z2
i

+ z2
m−i

). Then f
(c)
k (z) is bent if and only if

z1+2k + L(z) is a permutation polynomial of GF (2m).
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Proof. Let V = GF (2m) and denote by U a subspace supplementary to V in
the vector space GF (2n). We have GF (2n) =

⋃

u∈U

(u + V ). Then, for any u ∈ U

and y ∈ V , we have

f
(c)
k (z) = f

(c)
k (u + y)

= Trn
1 ((u + y)1+2k+2m) +

m−1∑

i=1

ciTrn
1 ((u + y)1+2i) (5)

+cmTrm
1 ((u + y)1+2m)

= Trn
1 (u1+2k+2m) + Trn

1 (u2my1+2k + uy2k+2m + u2ky1+2m)

+Trn
1 (u1+2my2k + u2k+2my + u1+2ky2m) + Trn

1 (y1+2k+2m)

+
m−1∑

i=1

ciTrn
1 (u1+2i + uy2i + u2iy + y1+2i)

+cmTrm
1 (u2m+1 + u2my + uy2m + y2m+1). (6)

Since u1+2m , u + u2m , y ∈ GF (2m), we have:

Trn
1 (u2my1+2k + uy2k+2m) = Trn

1 ((u + u2m)y1+2k) = 0,

and
Trn

1 (y1+2i) = Trn
1 (y1+2k+2m) = Trn

1 (u1+2my2k) = 0.

By using the transitivity of the trace function, the part depending on y is

A = Trn
1 (u2ky1+2m + u2k+2my + u1+2ky2m) +

m−1∑

i=1

ciTrn
1 (uy2i + u2iy)

+cmTrm
1 (u2my + uy2m + y2m+1)

= Trn
1 (u2k−1

y + u2k(u + u2m)y) +
m−1∑

i=1

ciTrn
1 ((u2n−i

+ u2i)y)

+cmTrm
1 ((u2m + u + 1)y)

= Trm
1 (((u + u2m)2

k−1
+ (u + u2m)2

k+1)y)

+
m−1∑

i=1

ciTrm
1 (((u + u2m)2

i

+ (u + u2m)2
m−i

)y) + cmTrm
1 ((u + u2m + 1)y)

= Trm
1 (π(u)y),

where

π(u) = (u + u2m)2
k−1

+ (u + u2m)2
k+1 +

m−1∑

i=1

ci((u + u2m)2
i

+ (u + u2m)2
m−i

)

+cm(u + u2m + 1).
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Let

h(u) = Trm
1 (u2m+1(u + u2m)2

k

) +
m−1∑

i=1

ciTrn
1 (u2i+1) + cmTrm

1 (u2m+1).

Then the sum in Relation (5) is simplified as follows:

f
(c)
k (u + y) = Trym

1 (π(u)y) + h(u).

Denoting u + u2m by ξ, we have:

π(u) = ξ2
k+1 + ξ2

k−1
+ cmξ +

m−1∑

i=0

ci(ξ2
i

+ ξ2
m−i

) + cm

= ξ2
k+1 + ξ2

k−1
+ cmξ +

�m−1
2 �∑

i=1

(ci + cm−i)(ξ2
i

+ ξ2
m−i

) + cm

= ξ2
k+1 + L(ξ) + cm. (7)

This completes the proof.

Reference [19] addresses the problem of the bijectivity of functions of the
form z2

k+1 + L(z). But it does not address completely the case where k is not
co-prime with m:

Lemma 2. [19] Let gcd(d, 2m − 1) > 1 and L(z) be a linearized polynomial
on GF (2m). Then if L(z) is not a permutation on GF (2m), then zd + L(z) is
not a permutation. If d = 1 + 2k with gcd(k,m) = 1, then z1+2k + L(z) is a
permutation polynomial if and only if m is odd and L(z) = α2iz +αz2

i

for some
α ∈ GF (2m)∗.

Proposition 1. Let π(z) be given by (7). Then the following statements hold:

1. π(z) is a permutation only if cm = 1 and m/ gcd(m, k) is odd.
2. If k = 1, then π is a permutation only if ci +cm−i = 0 for all i = 1 . . . �m−1

2 �.
Proof. 1. If cm = 0, then π(z) can not be a permutation for π(0) = π(1). Now

we can assume that cm = 1. Then L(z) can not be a permutation on GF (2m)
since L(0) = L(1). And, if m/ gcd(m, k) is even, then gcd(2k +1, 2m−1) > 1.
Hence π(z) is not a permutation by Lemma 2.

2. From the conclusions above, we can suppose that cm = 1. If k = 1, then

π(z) = z3 +
�m−1

2 �∑

i=1

(ci + cm−i)(z2
i

+ z2
m−i

) + 1. By Lemma 2, π can not be

bijective if there exists some 1 ≤ i ≤ �m−1
2 � such that ci + cm−i �= 0. This

closed the proof.
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