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Abstract. Much work is focused upon music genre recognition (MGR)
from audio recordings, symbolic data, and other modalities. While reviews
have been written of some of this work before, no survey has been made
of the approaches to evaluating approaches to MGR. This paper compiles
a bibliography of work in MGR, and analyzes three aspects of evaluation:
experimental designs, datasets, and figures of merit.

1 Introduction

Despite much work [1–467], music genre recognition (MGR) remains a com-
pelling problem to solve by a machine. In addition to many background chap-
ters of master’s theses [39, 79, 113, 132, 153, 154, 188, 193, 239, 361, 367, 371, 418]
and doctoral dissertations [9,141,146,280,284,290,320,341,342,381,427,447] at
least five reviews are devoted specifically to MGR [23,85,123,241,373], and 19
other reviews discuss related aspects [24,25,51,71,84,100,101,152,181,198,224,
233,270,282,315,398,423,441,442]. Many of these reviews compile the variety of
feature extraction methods and classification algorithms that have been applied
to MGR, and some compare system performance using specific figures of merit
(FoM) on particular benchmark datasets. There have also been no fewer than
10 campaigns to formally evaluate and compare state-of-the-art algorithms for
MGR [170,171,293–299,316]. However, the variety of approaches used for eval-
uating performance in MGR has yet to be surveyed. How does one measure the
capacity of a system — living or not — to recognize and discriminate between
abstract characteristics of the human phenomenon of music?

There currently exists at least eleven works [77, 78, 116, 117, 246, 320, 404,
409,410,433,449] that address the difficult but clearly relevant question of how
to evaluate the performance of MGR systems, not to mention how to properly
create a dataset from which a machine is to learn an abstract and high-level
concept such as genre [468, 469]. A few works critically address evaluation in
MGR. For instance, [77, 78, 409, 410] argue for more realistic approaches than
having a system apply a single label to music, and comparing against a “ground
truth” — which itself can be quite wrong [404, 408]. Furthermore, [77, 78, 246,
449] argue for measuring performance in ways that take into account the natural
ambiguity arising from genre.
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In this paper, we take a different direction to answer the question we pose
above. We review a significant portion of published research touching upon aspects
of evaluation in MGR. We consider all work that is based upon recorded music,
and/or symbolic representations of the music, e.g., MIDI, and/or other modali-
ties, e.g., lyrics, album covers, user tags, movie scenes, etc. We do not, however,
consider work addressing the more general problem of “tagging,” e.g., [470]. While
we consider both “genre” and “style,” and make no attempt to differentiate them,
we do not include “mood” or “emotion,” e.g., [471]. We are herein interested only
in the ways systems for MGR are evaluated, be they algorithms, humans [79,169,
201,258,261,262,278,290,366,367,370,381,383,460], pigeons [347], sparrows [439,
440], koi [58], primates [278] or rats [317]. To facilitate this survey, we created a
spreadsheet summarizing every relevant paper we found in terms of its experi-
mental design, details of the datasets it uses, and the figures of merit it reports.
This resource provides a simple means to delimit sets of references sharing par-
ticular aspects of evaluation. The bibliography file we assembled for this work is
available here: http://imi.aau.dk/∼bst/research/MGRbibliography.bib; and the
spreadsheet we created identifying the characteristics of the references is available
here: http://imi.aau.dk/∼bst/research/MGRspreadsheet.xlsx.

Figure 1 shows how the number of the works we reference is distributed since
the 1995 work of Matityaho and Furst [271] — before which we have only found
the 1984 work of Porter and Neuringer [347]. Many papers allude to the 2002
article of Tzanetakis and Cook [426] as the beginning of research in automatic
MGR. We find their manuscript (received Nov. 2001 and growing from [425]) is
preceded by seventeen works [44,53,83,89,91,132,148,204,270,271,346,348,350,
401,443,472,473], and is contemporary with nine works [22,79,176,193,202,218,
351,385,448]. The dataset created by Tzanetakis and Cook for [426], however, is
the first “benchmark” MGR dataset to have been made publicly available, and
as a result continues to be the most used public dataset for MGR.

In our analysis, we do not include [474–479] as they are written in Turkish,
and [472] as it is written in German, and we can read neither. We could not
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Fig. 1. Annual numbers of publications in this survey.
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Fig. 2. Annual numbers of publications in this survey having an experimental compo-
nent (top number), and which use any form of statistical testing for making comparisons
(bottom number).

obtain [473, 480, 481], and so do not include them in the analysis. Finally, we
neither analyze nor cite seven published works because of plagiarism.

2 Evaluation Approaches in Music Genre Recognition

We now catalogue approaches to evaluation in MGR along three dimensions —
experimental design, datasets, and figures of merit (FoM) — and present sum-
mary statistics of each. Experimental design is the method employed to answer a
specific hypothesis, e.g., in the case of MGR, “System A recognizes ‘Blues’.” The
dataset is simply the collection of data used in the experiment. A FoM quantifies
the performance of a system in the experiment, e.g., accuracy. Figure 2 shows
how the number of works having an experimental component is distributed over
the years. Compared to Fig. 1, the remaining works are reviews, or primarily
concerning evaluation.

2.1 Experimental Design

Table 1 describes the ten different experimental designs we find, along with their
appearance in the literature. We see that the most common experimental design
to test MGR systems is Classify. More than 91 % (397)1 of the referenced work
having an experimental component (435) uses such a design [1–9,11–21,26–43,
45,47–50,52–56,58–60,62–65,68–70,72–76,79–83,86–90,92–99,102–106,108–122,
124–135,137–148,150,151,153–165,167–172,174–180,182–197,199–202,204–217,
219–223,225–232,234,235,238–240,242–261,263–269,271–281,283–287,289–301,
303,305–307,309–313,317,319–333,335–349,352–359,361–364,366–372,375–383,
385–393,395–397,399,401–403,405–407,409–412,414,416,418–422,424–433,435–
440,443–445,447,448,450–465,467]. For instance, Matityaho and Furst [271] test

1 Numbers in parentheses are the number of works in the references.
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Table 1. Ten experimental designs of MGR, and the percentage of references having
an experimental component (435) in which they appear

Design Description %

Classify To answer the question, “How well does the system identify the
genres used by music?” The system applies genre labels to
music, which researcher then compares to a “ground truth”

91.3

Features To answer the question, “At what is the system looking to
identify the genres used by music?” The system ranks and/or
selects features, which researcher then inspects

32.6

Generalize To answer the question, “How well does the system identify genre
in varied datasets?” Classify with two or more datasets having
different genres, and/or various amounts of training data

15.9

Robust To answer the question, “To what extent is the system invariant
to aspects inconsequential for identifying genre?” The system
classifies music that researcher modifies or transforms in ways
that do not harm its genre identification by a human

6.9

Eyeball To answer the question, “How well do the parameters make sense
with respect to identifying genre?” The system derives
parameters from music; researcher visually compares

6.7

Cluster To answer the question, “How well does the system
group together music using the same genres?” The system
creates clusters of dataset, which researcher then inspect

6.7

Scale To answer the question, “How well does the system identify
music genre with varying numbers of genres?” Classify with
varying numbers of genres

6.7

Retrieve To answer the question, “How well does the system identify
music using the same genres used by the query?” The system
retrieves music similar to query, which researcher then
inspects

4.4

Rules To answer the question, “What are the decisions the system is
making to identify genres?” The researcher inspects rules used
by a system to identify genres

3.7

Compose To answer the question, “What are the internal genre models of
the system?” The system creates music in specific genres,
which the researcher then inspects

0.7

a neural network trained to discriminate between classical and pop music. They
extract features from the audio, input them to the neural network, and compare
the output labels against those they assigned to the excerpts of their dataset.
Almost all of the experimental work that applies Classify employ a single-label
approach, but at least ten employ a multi-labeling approach [31, 255, 258, 280,
367–369, 373, 415, 437]. For instance, McKay [280] looks at how genres at both
root and leaf nodes are applied by his hierarchical approach to classification.
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One extension of the Classify experimental design is Generalize [1, 2, 9, 13,
15, 16, 19, 30, 31, 38, 45, 55, 58, 62, 66, 75, 82, 94, 97, 128, 137, 146, 153, 161–164, 199,
200, 209, 214, 218, 222, 223, 225, 226, 231, 238, 240, 249, 262, 268, 269, 285, 287, 289,
290, 302, 303, 307, 312, 313, 319, 320, 327, 335, 341, 347, 349, 361, 364, 374, 378, 426,
427, 435, 439, 440, 461]. For instance, Porter and Neuringer [347] test whether
pigeons trained to discriminate between music by J. S. Bach and Stravinsky are
able to discriminate between music by composers contemporary with J. S. Bach
(Buxtehude and Scarlatti) and Stravinsky (Carter and Piston). Another exten-
sion of Classify is Scale [9, 13,14,19,45,48,49,53,62,68,83,94,132,144,199,225,
226, 238, 261, 275, 280, 303, 320, 336, 337, 339–341, 390]. For instance, Chai and
Vercoe [53] test their system on various class pairs from their dataset of three
folk music genres, as well as on all three classes together.

The second most-used experimental design is Features [1, 7, 9, 16, 17, 26, 27,
33–35, 37, 43, 48, 49, 53, 68, 69, 72, 93, 95, 102, 103, 105, 109, 115, 122, 126, 127, 139,
141,143,144,146,153,157–160,179,182–184,187–189,192,196,197,199,200,211–
213,219–221,226–230,232, 236–238,240, 242, 244, 245, 247, 249–252,272–277,280,
281, 283–287, 289–291, 300–303, 307, 309, 320, 327, 333, 337, 340, 341, 345, 361, 362,
364, 370, 371, 376, 377, 379, 385, 387, 390, 393, 396, 397, 401, 403, 406, 417, 420, 421,
425–427, 430, 432, 434, 436, 438, 443, 447, 451, 454–456, 460, 462, 464, 465, 467]. We
do not include in this experimental design work that performs feature selection
without an interpretation of the results. For instance, Tzanetakis et al. [425]
use Classify in comparing rhythmic features (statistics of an autocorrelation of
wavelet decomposition) and timbral features (spectral centroid, rolloff, etc.).
On the other hand, Yoon et al. [459] explore two different feature selection
approaches using Classify, but do not discuss or list the selected features. Akin to
Features is a fifth design, Rules, which appears in at least sixteen works [3,5,13,
14,26,42,43,70,94,98,139,303,308,340,341,434]. For instance, Bickerstaffe and
Makalic [43] look at a decision stump that discriminates “rock” and “classical”
music. As another example, Abeßer et al. [5] provide the details of a decision
tree algorithmically built for discriminating between 13 genres.

Another experimental design is Cluster [22, 33, 66, 67, 72, 107, 126, 136, 189,
196, 218, 236, 237, 242, 253, 261, 301, 302, 304, 318, 320, 334, 350, 351, 365, 415, 417,
430, 438]. For instance, Rauber and Frühwirth [350] employ the self-organizing
map method with features extracted from 230 music excerpts, and analyze the
contents of the resulting groupings. We find that both Classify and Cluster are
used in about 2.6 % (12) of the experimental work [33,72,126,189,196,242,253,
261,301,320,430,438]. A seventh experimental design is Retrieve, which appears
in at least 19 works [10,46,57,61,86,118,119,121,203,222,232,262,320,348,384,
388,446,447,466]. For instance, Kuo and Shan [203] incorporate style recognition
into their music retrieval system.

An eighth experimental design is Eyeball, which appears in at least 29 works
[26, 29, 44, 83, 91, 105, 146, 149, 155, 166, 173, 189, 218, 242, 259, 261, 288, 300, 302,
304,310,314,320,358,360,402,403,413,463]. For instance, Dannenberg et al. [83]
visually inspect class separability for a few pairs of features to explore the reason
for a discrepancy in performance in identifying style between an expert approach
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and machine learning approach. Bigerelle and Iost [44] visually compare means
of fractal dimensions computed from several musical excerpts of various genres.

A ninth experimental design is Robust [3,10,21,27,38,48,49,52,55,58,75,79,
131,142,200,235,247,267,268,290,313,320,333,347,387,388,401,409,428,439]. For
instance, Porter and Neuringer [347] test whether pigeons that have been taught
to discriminate between music by J. S. Bach and Hindemith demonstrate their
ability regardless of excerpt content and loudness. Soltau et al. [401] investigate
the variability of their system using Classify by using features computed from
excerpts of several durations. Burred and Lerch [48] consider the effect of noise
and filtering in feature extraction using Classify.

The final experimental design we consider is Compose, which appears in only
three works [80,82,409]. For instance, Cruz-Alcáza and Vidal-Ruiz [80,82] invert
their music style identification system to compose music in the styles it has
learned, which the authors then qualitatively evaluate. While Cruz-Alcáza and
Vidal-Ruiz do not directly use this as a means to assess the extent to which
their system has learned a style, [409] shows by a formal listening test that
excerpts composed to be genre-representative by two high-accuracy MGR sys-
tems embody little in common with what is commonly held to be characteristic
of those genres.

The bias that results from training and testing MGR systems using music
data from the same artist and/or excerpted from the same album are well-
documented, e.g., [117–119,319]. Among the 435 works that include experimental
work, we find that only 8.3 % (36) explicitly mention the use of an artist or album
filter [30,57,74–76,117–119,153,174,187,194,209,222,225,239,254,262,266,319,
320,349,353,355,367–369,376,378,381,383,384,401,418,447,461], or attempt to
apply one to datasets without known artists [382]. The earliest article applying
an artist filter is from 1998 by Soltau et al. [401].

We find that at least twelve works use human evaluation in the analysis of the
experiment [22,46,80,82,83,260,320,347,409,410,434,447]. For instance,Dannenberg
et al. [83] discuss the performance of their system in a live-performance context.
Cruz-Alcáza and Vidal-Ruiz [80] rate the quality of the melodies composed by their
style recognition system. And Pampalk [320] uses a formal listening test to show
genre labels are strongly correlated with perceptual similarity.

Figure 1 shows the number of experimental works employing formal statistics
over each year. Only 16.5 % (72) of the experimental work we survey contains
formal statistical testing [9,15,25,27,37,44,46,58,68,75,79,114–117,121,122,124,
131, 132, 145, 146, 169, 174, 201, 221, 252, 258, 272, 273, 275, 277, 278, 283–285, 289–
291, 295–299, 304, 308–310, 314, 317, 320, 333, 337, 341, 349, 357, 377, 384, 395, 397,
409–412,422,434,439,440,444,447,457,466]. For instance, Flexer [116] provides
excellent argumentation for the need for statistical testing in music information
research, and provides a demonstration of its use in comparing the performance
between two MGR systems. We find half of the work using living subjects (11
of 22) employ formal statistical tests [58,79,131,169,201,258,278,290,317,439,
440]. For instance, Chase [58] uses a one-tailed paired t-test of percentages of
non-responses of koi fish to test the null hypothesis that the koi are unable to
discriminate between music that uses Blues or Classical genres.



A Survey of Evaluation in Music Genre Recognition 35

Nearly half (213) of the experimental work we survey employs only one exper-
imental design from Table 1. For instance, in several formal MGR challenges
[170, 171, 293–299], performance is evaluated only by Classify. We find about
32 % (142) of the work we survey employ two experimental designs. For instance,
Golub [132] uses Classify to test his MGR system for a three-genre problem,
and then uses Scale to observe how its behavior changes when he augments the
dataset with four other genres. More than 18 % (80) employ more than two
experimental designs. For instance, the only two experimental designs not used
by Pampalk [320] are Rules and Compose.

2.2 Datasets

We find that of the works we survey having experimental components (435) over
58 % (253) use private data [1–5,7–11,13–16,18,19,22,26,28–31,34,40,43–49,53,
56–58,62–70,72,73,79–83,87–89,91–99,104,105,109–111,118–120,125–128,130–
138, 142–146, 148–151, 154, 156–160, 163, 164, 166, 169, 172, 173, 175, 176, 178–180,
184–188,190,191,193,196,197,199–205,207,209–211,217–221,225,226,228,229,231,
232, 242, 243, 245–253,255, 257–261,266, 271–275,277, 281, 287–292,300–305,308,
312, 313, 317–320,327–331,334–342,344, 346–348,350, 358, 360, 361, 363–365,372,
374,385–387,389,390,401,413,416,418,425–435,437–440,443–448,452,453,455,458,
459,462–465,467]. Of those works that use private data, we find over 75 % (191)
exclusively use private data. Some work provides a detailed description of the
composition of the data such that one can recreate it. For instance, Tsatsishvili
[418] lists the 210 names of the albums, artists, and songs in his dataset. Schedl
et al. [374] provide a URL for obtaining the list of the artists in their dataset,
but the resource no longer exists. Mace et al. [258] also provide a list, but since
they only list the song and artist name uncertainty arises, e.g., which recording
of “The Unanswered Question” by Ives do they use? It is impossible to recreate
the dataset used in [48, 49] since they only state that they assemble 850 audio
examples in 17 different genres. We find that about 51 % (224) of the works we
survey having experimental components use datasets that are publicly available.
Of these, over 79 % (177) only use public data.

Table 2 lists 18 publicly available datasets used in the work we survey. GTZAN
appears in 23 % (100) of the work having an experimental component [6,12,15,17,
19,27,33,35–39,41,46,55,59–61,94,103,121,122,124,129,146,147,153,155,161,162,
182,183,195,200,206,214,222,223,226,227,230–232,234,235,238–240,243,244,249,
263–265,269,276,303,306,321–326,352,356,357,361,362,364,371,377,379–382,384,
387,388,405–407,409–412,416,419–422,426,427,450,451,454,456,457,461,466]. This
dataset has only recently been analyzed and shown to have faults [408]. The second
most-used publicly available dataset is that created for the 2004 Audio Description
Contest of ISMIR [170], which appears in 76 works [15,32,45,50,75,94,114,116,117,
161,162,167,170,174,189,208,209,212–216,222,223,225,238–240,242,243,256,264–
268,276,290,303,311,319–327,332,342,343,345,357,359,366,367,370,377,379,381,
382,384,395–397,402,403,412,417,424,436,450,457,460,461]. Datasets derived from
Magnatune, e.g., Magnatagatune [485] but excepting ISMIR2004 [170], appear in
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Table 2. Datasets used in MGR, the type of data they contain, the references in
which they are used, and the percentage of experimental work (435) that use them.
All datasets listed after Private are public.

Dataset Description %

Private Constructed for research but not made available; used
in: see text

58.2

GTZAN Audio; http://marsyas.info/download/data sets; used
in: see text

23.0

ISMIR2004 Audio; http://ismir2004.ismir.net/genre contest; used
in: see text

17.4

Latin [394] Features; http://www.ppgia.pucpr.br/∼silla/lmd/; used
in [74–76,97,102,242,254,267,268,295–299,377,
391–397]

5.1

Ballroom Audio; http://mtg.upf.edu/ismir2004/contest/
tempoContest/; used in [115,139–141,163,164,333,
345,378,381,382,384,419–421]

3.4

Homburg [165] Audio; http://www-ai.cs.uni-dortmund.de/audio.html;
used in [20,21,46,108,165,302,303,307,345,353,355,
378,381,382,384]

3.4

Bodhidharma Symbolic; http://jmir.sourceforge.net/Codaich.html;
used in [52,86,128,192,279–281,284,285,293,399]

2.5

USPOP2002 [482] Audio; http://labrosa.ee.columbia.edu/projects/
musicsim/uspop2002.html; used in [38,42,239,262,
290,293,349,354]

1.8

1517-artists Audio; http://www.seyerlehner.info; used in [378,
381–384]

1.1

RWC [483] Audio; http://staff.aist.go.jp/m.goto/RWC-MDB/;
used in [106,107,153,353]

0.9

SOMeJB Features; http://www.ifs.tuwien.ac.at/∼andi/somejb/;
used in [177,236,237,351]

0.9

SLAC Audio & symbols; http://jmir.sourceforge.net/Codaich.
html; used in [283–286]

0.9

SALAMI [400] Features; http://ddmal.music.mcgill.ca/research/salami;
used in [309,310,400]

0.7

Unique Features; http://www.seyerlehner.info; used in [381,382,
384]

0.7

Million Song [484] Features; http://labrosa.ee.columbia.edu/millionsong/;
used in [90,168,376]

0.7

ISMIS2011 Features; http://tunedit.org/challenge/music-retrieval;
used in [171,194,375]

0.4

http://marsyas.info/download/data_sets
http://ismir2004.ismir.net/genre_contest
http://www.ppgia.pucpr.br/~silla/lmd/
http://mtg.upf.edu/ismir2004/contest/tempoContest/
http://mtg.upf.edu/ismir2004/contest/tempoContest/
http://www-ai.cs.uni-dortmund.de/audio.html
http://jmir.sourceforge.net/Codaich.html
http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://www.seyerlehner.info
http://staff.aist.go.jp/m.goto/RWC-MDB/
http://www.ifs.tuwien.ac.at/~andi/somejb/
http://jmir.sourceforge.net/Codaich.html
http://jmir.sourceforge.net/Codaich.html
http://ddmal.music.mcgill.ca/research/salami
http://www.seyerlehner.info
http://labrosa.ee.columbia.edu/millionsong/
http://tunedit.org/challenge/music-retrieval
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at least 5.7 % (25) of the references having an experimental component [16,28–31,
38,112,113,146,225,269,290,293,319,320,342,349,353,355,367–369,414,446,447].

Over 79 % (344) of the experimental work we survey approaches MGR using
audio data or features of audio [1–3, 6–10, 12, 13, 15–22, 27–32, 35–39, 42, 44–50,
52,55–58,60–64,68,73–76,79,88–93,96,97,99,102–119,121,122,124,127,129–141,
143–151,153–155,161–165,167–179,182,183,186–191,193–195,200,201,204–217,
222,223,225–228,230–232,234–240,244,246–250,252,254–256,258,260–269,271,
273–277,283,285–307,309–313,317–320,327–334,341–345,347–353,355–362,364–
372,375,376,378–384,386–397,401–403,405–407,409–412,414,416–422,424–433,
436–440, 443–448, 450–457, 459–467]. The use of symbolic data, e.g., MIDI and
humdrum, appears in over 18 % (81) of these references [1–5,11,13–15,26,34,43,
52,53,65–67,69,70,72,80–83,86,87,94,95,120,128,156–160,166,180,184,185,192,
196, 197, 199, 202, 203, 218–221, 229, 240, 243, 245, 251, 253, 257, 259, 261, 279–281,
283–286,293,335–341,346,363,385,399,413,428,434,435]. We find about 6 % (27)
of the work having an experimental component approaches MGR using other
kinds of data, e.g., lyrics, co-occurrences on the WWW, album covers, and so on
[25, 40, 62, 98, 125, 142, 272–277, 283–286, 308, 309, 354, 374, 381, 415, 438, 448, 458,
464,465].

Figure 3 shows the number of experiments in the evaluative work we survey
using datasets with specific numbers of labels. We can clearly see the influence
of the GTZAN (10 genre labels) and ISMIR2004 (6 genre labels) datasets. We
find 16 works using datasets having 25 or more labels [25,30,31,40,106,107,153,
199,228,232,280,309,353,376,434,437], and only two using datasets having more
than 100 labels [40, 437]. Over 72 % (316) of the papers with an experimental
component uses only a single dataset, at least 20 % (90) use two datasets, and
6.2 % (27) use more than two datasets. Three references provide no details about
the dataset used [54,145,331].
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Fig. 3. The number of experiments in this survey employing datasets with specific
numbers of labels.

We find a majority of the works with experimental components involves
datasets that consist primarily of Western music. For instance, the label “classical”
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is part of GTZAN, ISMIR2004, and RWC, and exists in the private datasets
used in [22, 125, 144, 146, 173, 209, 225, 246, 266, 313, 341, 342, 344, 360, 363, 387].
The label “blues” is in GTZAN, ISMIR2004, and Homburg, and exists in the
private datasets used by [4, 5, 19, 22, 125, 313, 342, 344, 358, 387]. And the label
“jazz” is in GTZAN, ISMIR2004, Homburg, and RWC, and exists in the private
datasets used by [19,22,57,125,144,146,173,209,225,229,266,303,313,341,342,
344,358,360,387,389]. However, we find that only about 10 % (48) of the private
datasets used include music from around the world, such as Asia, Africa, and
South America [3–5,11,19,22,57,96–98,125,133–135,137,163,164,173,179,187,
202, 205, 209, 225, 229, 242, 243, 247–250, 255, 257, 266, 303, 308, 312, 313, 342, 344,
358, 360, 363, 385, 389, 430, 462, 463]. Finally, we find only 5 % (22) of the work
with experimental components perform human validation of the “ground truth”
labels in the public and/or private datasets used [8, 9, 34, 45, 79, 246, 247, 287,
289–291, 301, 346, 366, 367, 370, 383, 387, 394, 401, 408, 434]. For instance, Soltau
et al. [401] validate the labels in their private four-class dataset with a human
listening experiment.

2.3 Figures of Merit (FoMs)

Table 3 defines several FoMs we find in the work we surveyed. The FoMs most
often reported in the work we survey here are those that accompany the Clas-
sify experimental design: Mean accuracy, Recall, Precision, F-measure, Receiver
Operating Characteristic (ROC), and the Contingency table. We find Mean accu-
racy in over 82 % (385) of the references. For instance, Fu et al. [123] compare
the reported mean accuracies of 16 MGR algorithms using Classify in GTZAN.
This computation can also involve taking into consideration “partial credit” for
labelings in the correct hierarchical branch, e.g., [293,294,296]. When it appears,
Mean accuracy is accompanied by a standard deviation (SD), or standard error
of the mean (SEM), about 25 % (96) of the time. For instance, [116] uses these
statistics to test the null hypothesis that the Mean accuracy of two MGR systems
are not significantly different.

We find Recall in over 25 % (119) of the references. For instance, this FoM
appears in the MIREX evaluations of MGR algorithms [295,297–299]. When it
appears, Recall is accompanied by the standard deviation or standard error of
the mean in about 10 % (12) of the references. Precision appears in over 10 %
(47) of the references. Together, Mean accuracy, Recall and Precision appear
in over 6 % (31) of the work we survey. The F-measure can be computed in
“Micro form” and “Macro form” [437], but we make no distinction here. This
FoM appears in at least 17 works. For instance, Burred and Peeters [50] cite
the F-measure of their MGR system, as well as its Mean accuracy, Recall, and
Precision. We find the ROC in only 7 references [105,121,245,349,432,440,466].
For instance, Watanabe and Sato [440] plot the ROC of their sparrows trained
to discriminate Baroque and Modern music.

We find a Contingency table reported in over 32 % (150) of the work we survey.
For instance, Soltau et al. [401] show their MGR system often confuses the music
in their private dataset having the labels “rock” or “pop,” and rarely confuses
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Table 3. Figures of merit (FoMs) of MGR, their description, and the percentage of
work (467) that cite them

FoM Description %

Mean accuracy Proportion of the number of correct trials to the total
number of trials of the system

82

Contingency table Counts of labeling outcomes of the system for each labeled
input

32

Recall Proportion of the number of correct trials of the system to
the total number of a specific input label

25

Confusions Discussion of confusions of the system in general or with
specifics

24

Precision Proportion of the number of correct trials of the system to
the total number of a specific output label

10

F-measure Twice the product of Recall and Precision divided by their
sum

4

Composition Observations of the composition of clusters created by the
system, and distances within and between

4

Precision@ k Proportion of the number of correct items of a specific
label in the k items retrieved by the system

3

ROC Precision vs. Recall for several systems, parameters, etc. 1

music labeled “classic” with music labeled “techno” or “rock.” Of those works
that present contingency tables, only 52 % (78) of them are accompanied by some
musical reflection of the results. For instance, in the analysis of their Contingency
table, Dixon et al. [93] reason that the high number of confusions produced
between three of eight classes come from the fact that they are indistinguishable
using meter- and tempo-sensitive features employed in their system. When they
expand their feature set, the new Contingency table confirms this hypothesis.

General discussions about observed confusions without reference to a Con-
tingency table are reported in over 8 % (39) of the references. For instance,
Matityaho and Furst [271] note that their MGR system trained to discrimi-
nate between music labeled “classic” and “pop” classifies as “classic” a signal
of complete silence and a “complex tone,” and as “pop” a signal of white noise.
Using Eyeball, Bigerelle and Iost [44] argue that “Music classification becomes
very logical [by comparing the fractal dimension]. ... Progressive music has the
same fractal dimension as the electronic one: we could explain this fact by the
abundance of synthesizers used in progressive music.” Only 15 works mention
confusions in detail, e.g., a specific piece of misclassified music [3,68,98,210,228,
301,342,366,367,370,407–410,412]. For instance, [410] notices that one MGR sys-
tem persistently misclassifies as Hip hop “Kung Fu Fighting” by Carl Douglas,
and as Classical “Why?” by Bronski Beat.

We find over 44 % (175) of the 397 works employing Classify report only one
FoM and over 53 % (214) report more than one FoM. Only 21 present four or
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more FoM [6,34,50,56,93,156,188,200,208,238–240,333,353,355,367,368,410,412,
418, 433]. For instance, Lidy [239] reports mean accuracies, recalls, precisions,
F-measures, and contingency tables of the systems he tests.

The FoM most often reported in the case of the Retrieve experimental design
is Precision@k. This FoM is reported in 12 of the 19 works using Retrieve [10,
57,61,86,203,222,262,320,384,446,447,466]; and [388] reports “normalized preci-
sion” and “normalized recall,” which takes into account the ranking of retrieved
elements. Of the references using Retrieval, the ROC is reported in [121, 466].
For instance, Fu et al. [121] plot the ROC of four systems to show their retrieval
approach provides statistically significant improvement.

The FoMs most often reported in the case of Cluster experimental design are
based on observations of the cluster compositions. The contents of clusters are
analyzed in over 62 % (18) of the Clustering experiments [33, 107, 136, 196, 236,
237,253,301,302,304,318,320,334,350,351,365,415,430]. For instance, Rauber and
Frühwirth [350] show that one cluster created by the self-organizing map method
consists mainly of music labeled “classical.” Comparisons of cluster distances,
e.g., that within classes to that between classes, are reported in five works [22,
72, 302, 318, 334]. For instance, Aucouturier and Pachet [22] compare average
distances between neighbors of the same class to those between neighbors of
different classes. Visualizations of the clusters, e.g., using self-organizing maps,
are presented in seven works [189, 218, 241, 242, 350, 351, 473]. Both [233, 417]
report the “purity” of a collection of clusters, which measures the mean class
homogeneity of the clusters.

Human-weighted ratings of classification and/or clustering results are reported
in at least six works [22, 154, 203, 246, 366, 370]. Other FoMs include, “staying
time” [278, 439] (measuring the time during which the subject stayed in the
presence of musical stimuli for particular classes), “stability measure” [161,162]
(essentially inter-intra class distance), “Hamming loss” [367–369] (describing
instance-label pair misclassifications in a multilabel scenario), and “persistent mis-
classifications” [65,342,409,410] (noting instances that a system always mislabels).

3 Conclusion

While genre is an inevitable condition of human communication in general [469],
a way to automatically identify it in music remains elusive. In this paper, we
have attempted to present an exhaustive survey of evaluation in MGR, and
to organize it along three dimensions: experimental design, datasets, and fig-
ures of merit. By the sheer size of this task, it is certain that we have missed
some relevant work, misunderstood aspects of evaluation in some of the works
we cite, and committed errors in the bibliography. We will thus continue to
maintain this bibliography, and expand it when new work is published. The
bibliography file we assembled for this work is available here: http://imi.aau.
dk/∼bst/research/MGRbibliography.bib; and the spreadsheet we created iden-
tifying the characteristics of the references is available here: http://imi.aau.dk/
∼bst/research/MGRspreadsheet.xlsx.

http://imi.aau.dk/~bst/research/MGRbibliography.bib
http://imi.aau.dk/~bst/research/MGRbibliography.bib
http://imi.aau.dk/~bst/research/MGRspreadsheet.xlsx
http://imi.aau.dk/~bst/research/MGRspreadsheet.xlsx
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Aug–Sept 2010
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339. Pérez-Sancho, C., Rizo, D., Iñesta, J.: Stochastic text models for music catego-
rization. In: da Vitoria Lobo, N., et al. (eds.) SSPR & SPR 2008. LNCS, vol.
5342, pp. 55–64. Springer, Heidelberg (2008)
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419. Tsunoo, E., Tzanetakis, G., Ono, N., Sagayama, S.: Audio genre classification by
clustering percussive patterns. In: Proceedings of the Acoustical Society of Japan
(2009)

420. Tsunoo, E., Tzanetakis, G., Ono, N., Sagayama, S.: Audio genre classification
using percussive pattern clustering combined with timbral features. In: Proceed-
ings of the ICME (2009)

421. Tsunoo, E., Tzanetakis, G., Ono, N., Sagayama, S.: Beyond timbral statistics:
improving music classification using percussive patterns and bass lines. IEEE
Trans. Audio Speech Lang. Process. 19(4), 1003–1014 (2011)

422. Turnbull, D., Elkan, C.: Fast recognition of musical genres using RBF networks.
IEEE Trans. Knowl. Data Eng. 17(4), 580–584 (2005)

423. Typke, R., Wiering, F., Veltkamp, R.C.: A survey of music information retrieval
systems. In: Proceedings of the ISMIR, London, UK, Sept 2005

424. Tzagkarakis, C., Mouchtaris, A., Tsakalides, P.: Musical genre classification via
generalized Gaussian and alpha-stable modeling. In: Proceedings of the ICASSP,
May 2006

425. Tzanetakis, G., Essl, G., Cook, P.: Automatic music genre classification of audio
signals. In: Proceedings of the ISMIR (2001)

426. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE
Trans. Speech Audio Process. 10(5), 293–302 (2002)

427. Tzanetakis, G.: Manipulation, analysis and retrieval systems for audio signals.
Ph.D. thesis, Princeton University, June 2002

428. Tzanetakis, G., Ermolinskyi, A., Cook, P.: Pitch histograms in audio and symbolic
music information retrieval. J. New Music Res. 32(2), 143–152 (2003)

429. Umapathy, K., Krishnan, S., Jimaa, S.: Multigroup classification of audio signals
using time-frequency parameters. IEEE Trans. Multimed. 7(2), 308–315 (2005)

430. Valdez, N., Guevara, R.: Feature set for philippine gong music classification by
indigenous group. In: Proceedings of the IEEE Region 10 Conference, pp. 339–
343, Nov 2011

431. Vatolkin, I., Theimer, W.M., Botteck, M.: Partition based feature processing for
improved music classification. In: Proceedings of the Annual Conference of the
German Classification Society, pp. 411–419 (2010)

432. Vatolkin, I., Preuß, M., Rudolph, G.: Multi-objective feature selection in music
genre and style recognition tasks. In: Genetic and Evolutionary Computation
Conference (2011)

433. Vatolkin, I.: Multi-objective evaluation of music classification. In: Gaul, W.A.,
Geyer-Schulz, A., Schmidt-Thieme, L., Kunze, J. (eds.) Challenges at the Interface
of Data Analysis, Computer Science, and Optimization, pp. 401–410. Springer,
Berlin (2012)

434. Volk, A., van Kranenburg, P.: Melodic similarity among folk songs: an annotation
study on similarity-based categorization in music. Musicae Scientiae 16(3), 317–
339 (2012)



64 B.L. Sturm

435. Völkel, T., Abeßer, J., Dittmar, C., Großmann, H.: Automatic genre classifica-
tion of Latin music using characteristic rhythmic patterns. In: Proceedings of the
Audio Mostly Conference, Pite̊a, Sweden (2010)

436. Wang, L., Huang, S., Wang, S., Liang, J., Xu, B.: Music genre classification based
on multiple classifier fusion. In: Proceedings of the International Conference on
Natural Computation (2008)

437. Wang, F., Wang, X., Shao, B., Li, T., Ogihara, M.: Tag integrated multi-label
music style classification with hypergraph. In: Proceedings of the ISMIR (2009)

438. Wang, D., Li, T., Ogihara, M.: Are tags better than audio? The effect of joint use
of tags and audio content features for artistic style clustering. In: Proceedings of
the ISMIR, pp. 57–62 (2010)

439. Watanabe, S., Nemoto, M.: Reinforcing property of music in Java sparrows
(Padda oryzivora). Behav. Process. 43(2), 211–218 (1998)

440. Watanabe, S., Sato, K.: Discriminative stimulus properties of music in Java spar-
rows. Behav. Process. 47(1), 53–57 (1999)

441. Watanabe, S.: How animals perceive music? Comparative study of discriminative
and reinforcing properties of music for infrahuman animals. CARLS Series of
Advanced Study of Logic and Sensibility vol. 2, pp. 5–16 (2008)

442. Weihs, C., Ligges, U., Morchen, F., Mullensiefen, D.: Classification in music
research. Adv. Data Anal. Classif. 1(3), 255–291 (2007)

443. Welsh, M., Borisov, N., Hill, J., von Behren, R., Woo, A.: Querying large collec-
tions of music for similarity. Technical report, University of California, Berkeley
(1999)

444. West, K., Cox, S.: Features and classifiers for the automatic classification of musi-
cal audio signals. In: Proceedings of the ISMIR (2004)

445. West, K., Cox, S.: Finding an optimal segmentation for audio genre classification.
In: Proceedings of the ISMIR, pp. 680–685 (2005)

446. West, K., Lamere, P.: A model-based approach to constructing music similarity
functions. EURASIP J. Appl. Signal Process. 1(1), 149 (2007)

447. West, K.: Novel techniques for audio music classification and search. Ph.D. thesis,
University of East Anglia (2008)

448. Whitman, B., Smaragdis, P.: Combining musical and cultural features for intelli-
gent style detection. In: Proceedings of the ISMIR, Paris, France, Oct 2002

449. Wiggins, G.A.: Semantic gap?? Schemantic schmap!! Methodological considera-
tions in the scientific study of music. In: Proceedings of the IEEE International
Symposium on Multimedia, pp. 477–482, Dec 2009

450. Wu, M.J., Chen, Z.S., Jang, J.S.R., Ren, J.M.: Combining visual and acoustic
features for music genre classification. In: International Conference on Machine
Learning and Applications (2011)

451. Wülfing, J., Riedmiller, M.: Unsupervised learning of local features for music
classification. In: Proceedings of the ISMIR, Porto, Portugal, Oct 2012

452. Xu, C., Maddage, M., Shao, X., Cao, F., Tian, Q.: Musical genre classification
using support vector machines. In: Proceedings of the ICASSP (2003)

453. Yang, W., Yu, X., Deng, J., Pan, X., Wang, Y.: Audio classification based on
fuzzy-rough nearest neighbour clustering. In: Proceedings of the International
Conference on Wireless Communications and Mobile Computation, pp. 320–324
(2011)

454. Yang, X., Chen, Q., Zhou, S., Wang, X.: Deep belief networks for automatic music
genre classification. In: Proceedings of the INTERSPEECH, pp. 2433–2436 (2011)



A Survey of Evaluation in Music Genre Recognition 65

455. Yao, Q., Li, H., Sun, J., Ma, L.: Visualized feature fusion and style evaluation
for musical genre analysis. In: International Conference on Pervasive Computing,
Signal Processing and Applications (2010)

456. Yaslan, Y., Cataltepe, Z.: Audio music genre classification using different clas-
sifiers and feature selection methods. In: Proceedings of the ICPR, pp. 573–576
(2006)

457. Yeh, C.C.M., Yang, Y.H.: Supervised dictionary learning for music genre clas-
sification. In: Proceedings of the ACM International Conference on Multimedia
Retrieval, Hong Kong, China, June 2012

458. Ying, T.C., Doraisamy, S., Abdullah, L.N.: Genre and mood classification using
lyric features. In: International Conference on Information Retrieval and Knowl-
edge Management (2012)

459. Yoon, W.-J., Lee, K.-K., Park, K.-S., Yoo, H.-Y.: Automatic classification of west-
ern music in digital library. In: Fox, E.A., Neuhold, E.J., Premsmit, P., Wuwongse,
V. (eds.) ICADL 2005. LNCS, vol. 3815, pp. 293–300. Springer, Heidelberg (2005)

460. Zanoni, M., Ciminieri, D., Sarti, A., Tubaro, S.: Searching for dominant high-
level features for music information retrieval. In: Proceedings of the EUSIPCO,
Bucharest, Romania, pp. 2025–2029, Aug 2012

461. Zeng, Z., Zhang, S., Li, H., Liang, W., Zheng, H.: A novel approach to musical
genre classification using probabilistic latent semantic analysis model. In: Pro-
ceedings of the ICME, pp. 486–489 (2009)

462. Zhang, Y., Zhou, J.: A study on content-based music classification. In: Proceed-
ings of the International Symposium on Signal Processing and Its Applications,
pp. 113–116, July 2003

463. Zhang, Y.B., Zhou, J., Wang, X.: A study on Chinese traditional opera. In: Pro-
ceedings of the International Conference on Machine Learning and Cybernetics,
pp. 2476–2480, July 2008

464. Zhen, C., Xu, J.: Solely tag-based music genre classification. In: Proceedings of
the International Conference on Web Information Systems and Mining (2010)

465. Zhen, C., Xu, J.: Multi-modal music genre classification approach. In: Proceed-
ings of the IEEE International Conference on Computer Science and Information
Technology (2010)

466. Zhou, G.T., Ting, K.M., Liu, F.T., Yin, Y.: Relevance feature mapping for
content-based multimedia information retrieval. Pattern Recogn. 45, 1707–1720
(2012)

467. Zhu, J., Xue, X., Lu, H.: Musical genre classification by instrumental features. In:
Proceedings of the ICMC (2004)

468. Fabbri, F.: A theory of musical genres: two applications. In: Proceedings of the
International Conference on Popular Music Studies, Amsterdam, The Netherlands
(1980)

469. Frow, J.: Genre. Routledge, New York (2005)
470. Bertin-Mahieux, T., Eck, D., Mandel, M.: Automatic tagging of audio: the state-

of-the-art. In: Wang, W. (ed.) Machine Audition: Principles, Algorithms and Sys-
tems. IGI Publishing, Hershey (2010)

471. Kim, Y., Schmidt, E., Migneco, R., Morton, B., Richardson, P., Scott, J., Speck,
J., Turnbull, D.: Music emotion recognition: a state of the art review. In: Pro-
ceedings of the ISMIR, pp. 255–266 (2010)

472. Soltau, H.: Erkennung von Musikstilen. Ph.D. thesis, Universität Karlsruhe,
Karlsruhe, Germany, May 1997

473. Kiernan, F.J.: Score-based style recognition using artificial neural networks. In:
Proceedings of the ISMIR (2000)



66 B.L. Sturm

474. Avcu, N., Kuntalp, D., Alpkocak, V.A.: Musical genre classification using higher-
order statistics. In: Proceedings of the IEEE Signal Processing and Communica-
tion Applications Conference, pp. 1–4, June 2007

475. Bagci, U., Erzin, E.: Inter genre similarity modeling for automatic music genre
classification. In: Proceedings of the IEEE Signal Processing and Communications
Applications, pp. 1–4, Apr 2006

476. Herkiloglu, K., Gursoy, O., Gunsel, B.: Music genre determination using audio fin-
gerprinting. In: Proceedings of the IEEE Signal Processing and Communications
Applications, pp. 1–4, Apr 2006

477. Sonmez, A.: Music genre and composer identification by using Kolmogorov dis-
tance. Master’s thesis, Istanbul Technical University, Istanbul, Turkey (2005)

478. Yaslan, Y., Cataltepe, Z.: Music genre classification using audio features, differ-
ent classifiers and feature selection methods. In: Proceedings of the IEEE Signal
Processing and Communications Applications, pp. 1–4, Apr 2006

479. Yaslan, Y., Cataltepe, Z.: Audio genre classification with co-MRMR. In: Pro-
ceedings of the IEEE Signal Processing and Communications Applications, pp.
408–411, Apr 2009

480. Allamanche, E., Kastner, T., Wistorf, R., Lefebvre, N., Herre, J.: Music genre
estimation from low level audio features. In: Proceedings of the International
Audio Engineering Society Conference (2004)

481. Seo, J.S.: An informative feature selection method for music genre classification.
Trans. Japanese Eng. Tech. Org. 94–D(6), 1362–1365 (2011)

482. Berenzweig, A., Logan, B., Ellis, D.P.W., Whitman, B.: A large-scale evaluation
of acoustic and subjective music-similarity measures. Comput. Music J. 28(2),
63–76 (2004)

483. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: music
genre database and musical instrument sound database. In: Proceedings of the
ISMIR (2003)

484. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song
dataset. In: Proceedings of the ISMIR (2011)

485. Law, E.: Human computation for music classification. In: Li, T., Ogihara, M.,
Tzanetakis, G. (eds.) Music Data Mining, pp. 281–301. CRC Press, Boca Raton
(2011)



http://www.springer.com/978-3-319-12092-8


	A Survey of Evaluation in Music Genre Recognition
	1 Introduction
	2 Evaluation Approaches in Music Genre Recognition
	2.1 Experimental Design
	2.2 Datasets
	2.3 Figures of Merit (FoMs)

	3 Conclusion
	References


