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Abstract. Secure multiparty computation (MPC) – computation on dis-
tributed, private inputs – has been studied for thirty years. This includes
“one shot” applications as well as reactive tasks, where the exact com-
putation is not known in advance. We extend this line of work by explor-
ing efficient datastructures based on MPC primitives. The oblivious RAM
(ORAM) provides a completeness theorem. However, implementing the
ORAM-CPU using MPC-primitives is costly; current IT-secure construc-
tions incur a poly-log overhead on computation and memory, while com-
putationally secure constructions require MPC-evaluation of one-way
functions, which introduces considerable overhead. Using ideas radically
different from those in ORAM’s, we propose a secure priority queue. Data
accesses are deterministic, whereas ORAM’s hide the access pattern
through randomization. n priority queue operations – insertion and dele-
tion of the minimal element – require O(n log2 n) invocations of the cryp-
tographic primitives in O(n) rounds. The amortized cost of each operation
is low, thus demonstrating feasibility.

Keywords: MPC · Reactive functionalities · Datastructures

1 Introduction

Secure function evaluation considers the problem of evaluating a function f on
data held by N parties in a distributed manner. The goal is privacy : The parties
learn f (x1, . . . , xN ), but do so without revealing additional information about
the xi. This problem has been rigorously studied in the cryptographic community
since it was proposed by Yao more than thirty years ago, [Yao82]. The notion can
be extended to secure multiparty computation (MPC), which considers reactive
tasks: An MPC protocol may consist of multiple sequential function evaluations,
where each one depends on – and potentially updates – a secret state.

Different notions of security have been proposed, e.g., protocols can provide
passive or active security. In the former, all parties follow the protocol, but may
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collude in an attempt to break the privacy of others. For active security, an adver-
sary controls all corrupt parties who not only pool information, but can misbe-
have arbitrarily in a coordinated manner. Classic results demonstrate that any
function can be computed with active security and polynomial overhead given
a fully connected, synchronous network with authenticated channels (authenti-
cated and secure channels when the adversary is computationally unbounded,
i.e., the information theoretic (IT) case) [GMW87,BGW88,CCD88].

Many specialized protocols for specific, well-motivated problems have also
been proposed – auctions and data mining are two popular examples. Utilizing
domain specific knowledge and focusing solely on the task at hand may allow
considerable efficiency gains. Though solutions may be reactive, this is rarely the
case for the tasks themselves. Put differently: the topic of explicit datastructures
based on MPC primitives has received surprisingly little attention.

Contribution. With the exception of realizations of the oblivious RAM (ORAM;
see related work below), to our knowledge, we consider the first datastructure
based on MPC. We construct an efficient priority queue (PQ) based on proto-
cols providing secure storage and arithmetic over a ring, ZM , and inherit their
security guarantees. Formally, protocols will be presented in a hybrid model
providing secure black-box arithmetic; this can, e.g., be based on secret sharing.

Our PQ is inspired by the bucket heap of Brodal et al. [BFMZ04] and allows
two operations: INSERT(p, x) which inserts a secret element, x, into the queue
with secret priority p; and GETMIN() which deletes and returns (in secret form)
the element with minimal priority. Each operations use O(log2 n) primitive oper-
ations – arithmetic and comparisons – in O(1) rounds (both amortized).

The overall approach taken in this paper is to construct a datastructure where
the actions performed are completely independent of the inputs. From there it
is merely a matter of implementing the operations using MPC primitives. This
strategy presents an immediate path to the present goal, however, it is not at
all clear that it is the only one, or indeed the best one.

Related Work. We find three areas of related work: incremental cryptography
(IC) of Bellare et al. [BGG94,BGG95]; history independent (HI) datastructures
introduced by Naor and Teague building on Micciancio’s oblivious datastructures
[NT01,Mic97]; and the Oblivious RAM due to Goldreich and Ostrovky [GO96].

IC considers evaluating some cryptographic function – e.g. a digital signature –
on known, changing data without recomputing that function from scratch every
time. HI datastructures on the other hand focus the problem of eliminating
unintentional information leakages when datastructures containing known data
are passed on to other parties. E.g., the shape of the structure itself may reveal
information on the operations performed. Both consider security and structuring
data, but are fundamentally different as the data is known to some party.

The closest related concept is the ORAM, where a CPU (with O(1) private
memory) runs a program residing in main memory. An adversary observes the
memory access pattern (but not the data/instructions retrieved) and attempts
to extract information. Damg̊ard et al. observed (as hinted by Goldreich and
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Ostrovky) that implementing the CPU using MPC primitives provides a secure
RAM, i.e., allows arbitrary datastructures to be used in MPC.

Oblivious RAMs hide the access pattern by randomizing it. [GO96] achieved
this using a random oracle instantiated by a one-way function. In a recent
result (with security issues fixed in subsequent papers), Pinkas and Reinman
brought the computational overhead down to O(log2 n) and the memory over-
head down to O(1) [PR10]; this was further reduced to O(log2 n/ loglog n) by
Kushilevitz et al. [KLO12]. The approach used has two drawbacks when con-
sidering datastructures in MPC: The use of one-way functions implies that the
solution cannot be IT-secure. Moreover, the one-way function must be evalu-
ated using MPC; this can be done but will most likely be costly in terms of
secure computation. Independently, Ajtai [Ajt10], and Damg̊ard et al. [DMN10]
have proposed information theoretic ORAM’s. Though the solutions are dif-
ferent, both have poly-logarithmic overhead on both (secure) computation and
memory usage. Recently Lu and Ostrovsky have proposed a much more effi-
cient ORAM solution for the two party setting [LO11]. Combining their ideas
with a heap matches the theoretic complexity of the present solution. However,
recent advances by Damg̊ard et al. allow highly efficient IT-secure two-party
arithmetic, given a preprocessing phase [DPSZ12]. These are among the fastest
MPC protocols presently known, and it is unclear how to implement the shuffles
needed for the ORAM in that setting without using super-linear preprocessing
or online communication, i.e., without incurring an overhead.

Where the ORAM provides a completeness theorem, the present work focuses
on whether different strategies may provide more efficient means of reaching
specific goals. Indeed, the present approach is radically different than those used
when constructing ORAM’s: in stark contrast to the above, the access pattern
of the PQ solution presented is completely deterministic, whereas any IT secure
realization of the ORAM require at least log n bits of randomness per operation,
where n is the overall size of the memory, [DMN10]. This is possible since the
overall “program” is known: Actions may depend on the task at hand.

Despite the common ground, ORAM’s do not provide all answers regarding
MPC datastructures, at least not presently. In addition to the above, using MPC
to implement present ORAM solutions (other than [LO11]) incurs at least an
overhead of O(log2 n) on every read/write operation – this equals the cost of
our PQ operations. The sequential nature of the ORAM also implies that it
cannot provide round-efficient solutions. Further, both IT secure ORAM’s have
a poly-logarithmic overhead on memory usage, whereas the present construction
does not, thus, to our knowledge the present work contains the first IT secure
datastructure with constant memory overhead. Finally, there are no obvious
reasons why the secure PQ could not be improved, while an IT secure ORAM
with constant overhead seems less plausible.

2 The Basic Model of Secure Computation

We consider a setting where N parties, P1, . . . , PN , are pairwise connected by
authenticated channels in a synchronous network, and focus on MPC protocols
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based on linear primitives over a ring ZM . Secure storage and arithmetic is mod-
eled using an ideal functionality – the arithmetic black-box (ABB), FABB – and
protocols are constructed in the FABB-hybrid model. This functionality was intro-
duced by Damg̊ard and Nielsen [DN03]; the benefits include abstracting away
irrelevant low-level details as well as simplifying security proofs: The underlying
primitives provides security for any the application, thus privacy can only be
lost if we explicitly output a value.

2.1 The Arithmetic Black-Box

Reference [DN03] presents FABB in the UC framework of Canetti [Can00] and
realizes it efficiently based on Paillier encryption [Pai99]. The protocols are shown
secure against an active, adaptive adversary corrupting a minority of the parties.
For simplicity, we present a modified FABB focusing on passive corruption only:

– Input: If party Pi sends “Pi : x ← v” and all other send “Pi : x ←?”, FABB

stores v under the variable name x,1 and sends “Pi : x ←?” to everyone.
– Output: If all parties send “output(x)”, then assuming that value v was

stored under x, FABB sends “x = v” to everyone as well as the adversary.
– Arithmetic: Upon receiving “x ← y +z” from all parties, FABB computes the

sum of the values stored under y and z and stores the result as x. Similarly,
upon receiving “x ← y · z” from all parties, the product is stored under x.

Input/output can be though of as secret sharing/reconstruction, in which case
linear primitives implies that addition of shares is addition of secrets; multiplica-
tion then requires interaction. Shamir sharing along with the protocols of Ben-Or
et al. fit this description [Sha79,BGW88], see Appendix A, though we can equally
well instantiate FABB using homomorphic encryption, e.g., [Pai99,CDN01].

In case of active adversaries, minor alterations must be made to FABB to ensure
that it exactly captures the possible behavior. It is stressed that such change do
not invalidate our construction below. Consider, e.g., the case of honest majority
and guaranteed termination: Adversarial parties are allowed to abort, hence FABB

should only receive �(N + 1)/2� output messages before sending “x = v”. In a
similar vein, when fairness is not ensured, the adversary receives “x = v” first,
and can decide if the honest parties should receive it as well.

2.2 Complexity

As abstract primitives are used, one can merely count the number of operations
performed by FABB. These correspond directly to the computation and commu-
nication of the underlying primitives. We focus on communication complexity of
such operations; since linear primitives are assumed, this implies that addition
(and multiplication by public values) is costless. We will not distinguish between
the complexities of the remaining operations, but remark that multiplication is
generally both the most used and the most costly one.
1 For simplicity, consider these distinct, i.e., variables are never overwritten.
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Regarding instantiations of FABB, the basic operations are typically reasonably
cheap. For passive adversaries, typically only O(1) ring elements are communi-
cated per player or pair of players. E.g., performing a passively secure multipli-
cation of Shamir shared values can be done by having each party reshare the
product of its shares (plus local computation), i.e., two field elements per pair.
The dominating term of the Paillier based protocols of [DN03] – and in other
actively secure constructions – is O(N) Byzantine agreementson ring elements
(e.g., encryptions) per (non-costless) operation, i.e., O(1) Byzantine agreements
per player. Unless a broadcast channel is assumed, such an overhead is required
to guarantee robustness against actively malicious adversaries.

A second measure of complexity of protocols is the number of rounds required
(the number of message exchanges). For clarity this was left out of the presen-
tation above, however, it is easily incorporated: Assume that all operations take
the same, constant number of rounds. Now, rather than receiving one instruction
from each party, parties send lists of independent instructions to be performed by
the functionality. Each invocation of FABB then refers to one round of operations,
which in turn translates to one or more rounds of communication.

The straightline program notation used below improves readability, but has a
drawback: The description of the protocols is detached from the actual execution
in the FABB hybrid model. Hence, complexity analysis becomes slightly more
complicated, as the description does not explicitly state which operations can
be performed in parallel. Clearer descriptions easily makes up for this, though.

3 Extending the Arithmetic Black-Box

The secure priority queue is not constructed directly based on FABB. We extend
that functionality with additional operations. These are realized using nothing
more than the basic operations of FABB. This section can be viewed as containing
preliminaries in the sense that it introduces a number of known constructions.

3.1 Secure Comparison

Having priorities implies some notion of order with respect to the stored ele-
ments. Further, FABB must allow us to compare priorities to determine which is
larger. Extending the functionality with such an operation is straightforward:

– Comparison: Upon receiving “x ← y>?z” from all parties, FABB determines
if y is larger than z, and stores the result as x; 1 for true and 0 for false.

As an example, consider the “integer ordering” of ZM -elements. For prime M ,
this can be implemented using O(log M) non-costless operations in O(1) rounds,
e.g. [NO07]. When M is an RSA modulus – e.g., a public Paillier key – complex-
ity is increased to O(N log M) due to more expensive sub-protocols. In specific
settings other solutions may be preferable, e.g., [Tof11,LT13]. It is stressed that
these are merely options; any secure computation and any ordering works.
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For simplicity of the analysis, we assume that the comparison requires only
a constant number of rounds, and count the number of comparison invocations
separately from the basic operations due to its (in general) much higher cost.
Given a specific protocol one can determine the actual cost.

3.2 Secure Conditional Swap

Based on the ability to compare, it is possible to perform conditional swaps:
Given two values, swap them if the latter is larger than the former. This can be
viewed as sorting lists of length two, and is easily constructed within the ABB
by simply computing the maximal and minimal of the two.

max ← (
a>?b

)
(a − b) + b; min ← a + b − max

These expressions easily translate to messages from parties to FABB; work is
constant – O(1) basic operations and a single comparison – and multiple swaps
may be executed in parallel. The swap computation can be generalized to multi-
element values, say pairs consisting of a priority and a data element. It is simply
a question of having a well-defined comparison operator and using its output to
choose between the two candidates on a single element basis.

3.3 Secure Merging

The main, large-scale primitive is the ability to merge sorted lists of length �
stored within FABB. This is written MERGE (X,Y ), where X and Y refer to lists of
stored values. A solution is obtained from sorting networks – sorting algorithms
created directly based on conditional swaps. No branching is performed, hence
they are deterministic and oblivious to the inputs, except the problem size, �.

Any sorting network can be utilized to merge, by simply viewing the whole
input as a single unsorted list. However, for efficiency, we take the inner work-
ings of Batcher’s odd-even mergesort [Bat68]. The whole sorting network requires
O(� log2 �) conditional swaps, but merging alone requires only O(� log �) condi-
tional swaps in O(log �) rounds, and constants are low.

A primitive for merging lists of differing lengths, � �= �′, is also required. The
shorter list is simply padded – assume that some element, e∞, which is greater
than all others is reserved for this – such that they become of equal length. Now
merge the lists using the above solution and remove the padding; since these
elements are greater than any valid ones, all such elements are pushed to one side.
The size of the padding is known, so those elements can be removed by truncating
the list. Complexity is O(max(� log �; �′ log �′)) operations in O(max(log �, log �′))
rounds. We overload MERGE (·, ·) to avoid introducing additional notation.

We present a final, needed primitive which is highly related to merging: merge-
split. This operation, denoted MERGESPLIT (X,Y ), takes two lists as input as
above. As the name suggests, the goal is to merge two lists into one, which is then
split (cut into two parts whose concatenation is the sorted list). The only require-
ment is that lengths of the new lists must equal the lengths of the old ones.
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The effect of a merge-split is that the most significant elements end up in one
of the lists, while the least significant ones end up in the other. Naturally, both
new lists are still sorted. Clearly this operation is equivalent to a merge, as the
split merely renames variables. Hence, its complexity is the same as merging.

4 The Goal: A Secure Priority Queue

We are now ready to present the desired goal, an ideal functionality for a priority
queue, FPQ. However, the data of a datastructure is not separated from the rest
of the world in general and inputs to the datastructure may not originate from
some party, but could be the result of previous computation. Thus, the goal is
to further extend the arithmetic black-box with a priority queue. As with the
introduction of a comparison operator, we simply list all operations needed. I.e.,
FPQ contains the operations of the extended FABB in addition to the following:

– INSERT(p, x):2 Upon receiving “PQinsert(p, x)” from all parties, where p and
x are variables, FPQ stores the values associated with the pair (p, x) in an
internal, initially empty list, L. All parties then receive “PQinsert(p, x)”.

– GETMIN(): Upon receiving “y ←PQgetmin()” from all parties, FPQ determines
and deletes from L the pair with the lowest p-value. The corresponding x-value
is stored as y, and all parties receive “y ←PQgetmin()” from FPQ.

Naturally, parties engaging in a protocol may interleave these two operations
arbitrarily with other computation. This could even contain operations for other
priority queues. Note, however, that FPQ must treat the operations on a given
PQ as atomic with respect to each other. There is a small issue with the above
description: The behavior of FPQ is not specified if GETMIN() is executed on an
empty queue. In this case, FPQ may simply discard the operation. All parties
always know the exact number of elements in the queue, as they are notified
whenever operations occur, hence this has no consequences.

5 The Secure Bucket Heap

A standard binary heap is not directly implementable using MPC primitives
as one cannot traverse a tree from root to leaf by a path depending on secret
data. The realization of FPQ is instead based off of the bucket heap of Brodal
et al. [BFMZ04], though a few significant changes are made. Jumping ahead,
the original solution merges sorted lists using linear scans – we must employ
Batcher’s solution from Sect. 3.3. Secondly, we impose a rigid structure (with
respect to the priorities) of the elements of each bucket. This actually causes the
name bucket heap to be slightly misleading. Finally, we consider a simple problem
than [BFMZ04] – the decrease-key operation has been eliminated, which implies
that the actual content can be ignored.
2 This is referred to as INSERT(p) below; x, is left implicit to avoid clutter.
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5.1 The Intuition of the Secure Bucket Heap

We stress that this section is not, strictly speaking, correct. However, it explains
the core ideas nicely: Store a list, D, containing all the data in sorted order.
Doing so naively makes inserts too costly, as a newly inserted element can end
up anywhere. Thus, rather than inserting directly into that list, elements are
placed in buffers until sufficiently many have arrived to pay for the combined
cost of all insertions. More formally, the data is split into sub-lists (buckets),
D0,D1,D2, . . ., where the elements of Di are less than those of Di+1. The size of
the Di double with each step (or level) – |Di| = 2i. In addition to this, at each
level, i, there is a buffer, Bi, of the same length as the data; see Fig. 1.

D0

B0

D1

B1

D2

B2

Di

Bi

Fig. 1. The structure of the bucket heap

Inserting new data means placing it in the uppermost buffer, B0, the intuition
being, that whenever a buffer Bi is full, its contents are processed. The elements
that “belong at this level” are moved to Di, while the rest are pushed down
to Bi+1. The Di can be viewed as a sorted list of “buckets” of elements, where
elements increase with each step. Thus, “belong at” means that an element is
smaller than some p ∈ Di. The minimal is obtained by returning the contents of
D0. Subsequent GETMIN()’s will find, D0 empty, but the desired element is found
in the top-most, non-empty bucket. The remainder of the content of its bucket
is then placed in the buckets above.

5.2 Invariants

Data is stored as specified above, but with a few additional requirements. Bucket
Di is either completely full or completely empty, |Di| ∈ {0, 2i}. Buffers are
slightly different as the Bi must contain strictly less than 2i elements. They may
temporarily exceed this limit – denoted that the buffer is full – at which point
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Protocol 1. FLUSH(i) – flushing buffer Bi at level i

Require: Full buffer, Bi, at level i.
Operation: Flush Bi, moving the elements contained into data or subsequent buffers.

if |Di| = 0 and i is the lowest level then
Di ← Bi(1..2

i)
Bi ← Bi((2

i + 1)..|Bi|)
if |Bi| ≥ 2i then

5: FLUSH(i)
end if

else
(Di, Bi) ← MERGESPLIT (Di, Bi)
Bi+1 ← MERGE (Bi, Bi+1)

10: Set Bi empty
if |Bi+1| ≥ 2i+1 then

FLUSH(i + 1)
end if

end if

the contents will be processed. Finally, the elements of buffer Bi are greater than
(have higher priority than) the elements of the higher-lying buckets, Dj , j < i.
In difference to the original bucket heap, the contents of the buckets and buffers
are stored sorted by priority. This is the rigid structure referred to above. Note
that the concatenation of the Di can be viewed as one long, sorted list.

5.3 The Operations

The datastructure must be maintained using only FABB-operations. The two oper-
ations needed are the insertion of a new value and the extraction of the present
minimal. The main parts of these operations are seen as Protocols 1 and 2.

The insert operation, INSERT(p), is performed by placing p in the top buffer,
B0. This fills it and it must be flushed using Protocol 1. The GETMIN() operation
is realized by the (attempted) extraction the element stored in the top-level
bucket. This is done by executing DELMIN (0); the details are seen as Protocol 2.

5.4 Correctness

To show correctness, it suffices to show that the invariants hold and that these
imply the desired behavior. It is clear that for the starting position – an empty
priority queue – all invariants hold. All buckets are empty which is acceptable;
further, there are no elements so the required ordering between elements of
different buckets and buffers as well as the internal ordering are clearly satisfied.

An INSERT(p) operation places p in B0. Note that all invariants holds except
that B0 is full – no relationship to other elements is required of the sole element
in B0. After this, the buffer is flushed. There are two possible states, as seen
from the “outer” if-statement of Protocol 1: either this is the lowest level and
Di is empty; or there is data here or below. At the bottom we simply move the
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Protocol 2. DELMIN(i) – return the 2i smallest elements from level i and below
(or everything if there are fewer than 2i elements)
Require: Non-empty bucket heap; all levels above the i’th are completely empty.
Operation: DELMIN(i) – determine and return the 2i minimal elements

if |Di| = 2i then
(Di, Bi) ← MERGESPLIT (Di, Bi)
Return Di and set it empty

else if i is the lowest level then
5: Return Bi and set it empty

else
Bi+1 ← MERGE (Bi, Bi+1)
Set Bi empty
if |Bi+1| ≥ 2i+1 then

10: FLUSH(i + 1)
end if
D̃ ← DELMIN (i + 1)
if |D̃| = 2i+1 then

Di ← D̃(2i + 1..2i+1)
15: Return D̃(1..2i))

else if |D̃| > 2i then
Bi ← D̃(2i + 1..|D̃|)
Return D̃(1..2i))

else
20: Return D̃

end if
end if

2i smallest elements into the bucket (buffers are only flushed when they contain
2i elements). As all the elements in the buffer are bigger than the elements in
the buckets above, then the new relationship with all buckets hold.

Alternatively, there is data in the present bucket, Di, or below. By the invari-
ant, all elements are greater than the elements of the buckets above. Thus, per-
forming the merge-split, line 8, does not violate invariants. This step ensures
that the smallest elements of the level end in Di; these are at most as big as the
previous largest element of Di, and must therefore be smaller than the elements
of the levels below. Additionally, it is guaranteed that the elements of Di are
smaller than those of Bi, so the latter can be pushed into the buffer below. All
invariant still hold, except that Bi+1 may now have become full; if so, flush it.

The minimal element is obtained using DELMIN(0). The intuition behind Pro-
tocol 2 is that the minimal element must come from a bucket. Only when no
such elements exist will a buffer-element be taken, line 5. The invariant implies
that the minimal element will be in the top-most, non-empty bucket or in a
buffer above. Starting with B0, buffers are flushed until a non-empty bucket is
found, lines 7 and 12. Note that these buffer merges do not affect the invariant.

Once a non-empty bucket is found, it is merge-split with its buffer to ensure
that it contains the 2i smallest elements, not only at this level, but overall :
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buckets and buffers above are empty, and any element in the bucket is less
significant than any at a level below. The bucket is then emptied into the buckets
above, filling them and leaving one element to be returned – this task is trivial
as all buckets (and their concatenation) are sorted. It is easily verified that the
invariants hold at this point.

If all buckets are empty, then all buffers are merged until only a single non-
empty one exists (at the lowest level, i). Viewing Bi as a sorted list, its contents
may be distributed to the top buckets above, exactly as with the emptying of
a bucket above, except that there may be “excess elements.” For |Bi| = 2j + k,
with k < 2j , the minimal element can be returned and the j top-most buckets
filled. This leaves the k largest elements; these are placed in the buffer Bj+1.
The elements of Bi are easily distributed such that the invariant holds.

5.5 Complexity

Complexity of both INSERT(p) and DELMIN(0) is O(log2 n) amortized, where n
is the overall number of operations. This follows from a coin argument, where
each coin pays for a conditional swap.

When inserting an element into B0, Θ(log2 n) coins are placed on it. The
invariant is that every element in Bi has Θ(((log n) − i) log n) coins, which is
clearly satisfied for both the initial (empty) datastructure and for the newly
inserted element. These coins pay for the flushes caused by full buffers,
Protocol 1.

Moving elements from the buffer to the empty bucket at the lowest level is
costless. In the other case, the buffer Bi is merged with bucket, Di, (in the merge-
split) and with buffer Bi+1 below. Both merges require O(2i log 2i) conditional
swaps – the lists are at most a constant factor longer than 2i. This cost is
paid using Θ(2i log n) coins from the elements of Bi. The merge-split potentially
moves elements between the buffer and bucket, however, the number of elements
in the buffer remains the same. The second merge moves the contents to the level
below. As Bi was full, it contained at least 2i elements; thus, it suffices if each
one moved pays Θ(log n) coins. As the entire contents of the buffer is pushed
one level down, the elements only require Θ(((log n) − (i + 1)) log n) to ensure
that the invariant holds. Hence, the invariant holds after each element has paid
the coins needed for the flush. This implies the stated complexity for INSERT(p).

A similar argument is needed for deletion, DELMIN(0). However, rather than
placing coins on the elements themselves, the deletion coins are placed on the
buffers. Each operation places Θ(log n) coins on each of the buffers, Bi; this
requires Θ(log2 n) coins overall. The invariant is, that Bi has Ω(k log n) coins,
where k is the combined size of the empty buckets above, i.e. k =

∑i−1
j=0;|Dj |=0 2j .

Whenever DELMIN(i) is called, it implies that the buckets of all levels j < i above
are empty. Hence, the buffer Bi has Ω((2i − 1) log n) coins allowing it to pay
for a merge at level i, either with the contents of bucket Di or the buffer below.
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Either way, all buckets above are filled,3 implying that Bi no longer needs coins to
satisfy the invariant. Thus, earlier delete operations pay for the required merge.

Regarding round complexity, the operations require at most a constant
number of merges per level, so worst-case complexity is O(log2 n). Amortized
complexity is only constant, though. Lower levels are rarely processed (Ω(2i)
operations occur between the ones “touching” level i) and upper levels are cheap
(only O(i) rounds are required to merge at level i); for n operations,

∑logn
i=0

n
2i i

2

rounds are needed overall implying O(1) rounds on average.

5.6 Security

Intuitively, security of the bucket heap follows directly from the security of FABB:
An adversary, A, can only learn information when the ideal functionality outputs
a value, i.e., when the underlying primitives explicitly reveal information. How-
ever, at no point in the present computation is an output command given by any
of the honest parties. Hence, as A does not control what amounts to a qualified
set, it cannot make FABB perform an output operation. By similar reasoning, it
can be seen that no adversary – i.e., set of parties behaving incorrectly – can
influence the computation resulting in incorrect values stored in FABB.

The above is of course only the intuitive explanation. Formally, the view of A
must be simulated in the FABB-hybrid model. The required simulator, however, is
trivial. It simply “executes” the realizing PQ computation, except that for every
operation that the basic FABB should be instructed to perform, the simulator
will simply play the role of FABB towards the corrupt players. It will receive their
commands and send the messages (acknowledgments) to the corrupt players that
they expect to receive. This is clearly indistinguishable from the point of view
of any adversary. For each PQ operation, it simply sees a fixed set of messages,
namely the ones corresponding to the secure computation implementing the
operation, which it “knows” is being executed.

5.7 Hiding Whether an Operation Is Performed

A simple variation consists of conditional operations, i.e., operations based on
secret bit, b. To achieve this, we add an additional key, e−∞, smaller than any
real key and implement conditional INSERT(p) as INSERT (b · (p − e∞) + e∞) –
this inserts p or e∞ depending on b. Similarly, we can implement a conditional
GETMIN() as INSERT (b · (e∞ − e−∞) + e−∞) ; GETMIN () . If b = 0 e−∞ is inserted
and immediately removed. Otherwise e∞ is inserted and the minimal removed.

Note that we no longer know the number of real keys in the PQ. This is
unavoidable – a conditional GETMIN() cannot decrease the number of elements
stored, while INSERT(·) must always add an element. If desired, one can keep
count of the actual size, adding (subtracting) b for every INSERT(·) (GETMIN()).

3 The only possible exception occurs when all buckets are empty and the buffers
contain too few elements to fill them all. In this case a “completely full” structure
is constructed from scratch so no coins are needed.
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Consider a passive adversary and Shamir’s secret sharing scheme over ZM = FM

for prime M , [Sha79]. Secret sharing allows one party to store a value privately
and robustly among multiple others. If and only if sufficiently many agree, the
value will be revealed. Input (respectively output) simply refers to secret shar-
ing a value (respectively reconstructing a secret shared value). To implement
arithmetic, note that Shamir’s scheme is linear, so addition is simply addition
of shares, while secure multiplication can be obtained through the protocols of
Ben-Or et al. when less than N/2 parties are corrupt [BGW88]. It can be shown
(given secure communication between all pairs of players, and assuming that all
parties agree on the secure computation being performed) that these protocols
realize FABB with perfect security in the presence of passive adversaries. Further,
the protocols of [BGW88] even realize (a variation of) the presented FABB in the
presence of active adversaries if the corruption threshold is reduced to N/3 –
this solution guarantees termination.
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