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Abstract. We propose a methodology for carrying out refinement proofs
across declarative abstract models and concrete implementations in C,
using the VCC verification tool. The main idea is to first perform a system-
atic translation from the top-level abstract model to a ghost implementa-
tion in VCC. Subsequent refinement proofs between successively refined
abstract models and between abstract and concrete implementations are
carried out in VCC. We propose an efficient technique to carry out these
refinement checks inVCC.We illustrate ourmethodologywith a case study
in which we verify a simplified C implementation of an RTOS scheduler,
with respect to its abstract Z specification. Overall, our methodology leads
to efficient and automatic refinement proofs for complex systems that
would typically be beyond the capability of tools such as Z/Eves or Rodin.

1 Introduction

Refinement-based techniques are a well-developed approach to proving func-
tional correctness of software systems. In a correct-by-construction approach
using step-wise refinement, one begins with an abstract specification of the sys-
tem’s functionality, say M1, and successively refines it via some intermediate
models, to a concrete implementation, say P2 in an imperative language. Simi-
larly, in a post-facto proof of correctness, one begins with a concrete implemen-
tation P2, specifies its functionality abstractly in M1, and comes up with the
intermediate models by simultaneously refining M1 towards P2 and abstracting
P2 towards M1. This is depicted in Fig.1(a). We note that it is convenient to have
M1 specified in an abstract modelling language such as Z [16] or Event-B [1],
since this gives us a concise yet readable, and mathematically precise specifi-
cation of the system’s behaviour, which serves as a specification of functional
behaviour for users and clients of the system.

Refinement-based proofs of functional correctness have several advantages
over an approach of directly phrasing and proving pre and post conditions on
methods. To begin with, refinement-based approaches help to break down asser-
tions on complex programs using successive refinement steps, leading to more
modular and transparent proofs. Secondly, they provide a useful framework for
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verifying clients of a library more efficiently. In principle, one could reason about
assertions in a client program C that uses a concrete implementation of a library
P2, by showing that C with a more abstract library M1 satisfies the same asser-
tions. This could lead to considerable reductions in the verification effort as
reported in [9]. In a similar way, if one replaces a library implementation by a
more efficient one, one does not have to reprove certain properties of its possi-
bly numerous clients if one has shown that the new implementation refines the
old one.

There are nevertheless a couple of key difficulties faced in carrying out refine-
ment proofs between the successive models in a refinement-based approach, in
our experience. The first is that performing a refinement proof between the
abstract models (such as a proof that M1 is refined by M2), is challenging
because the level of automation in tools such as Z/Eves [14] and Rodin [2] is
inadequate, and requires non-trivial human effort and expertise in theorem prov-
ing to get the prover to discharge the proof obligations. The second hurdle we
encounter is in showing the refinement between the abstract model M2 and the
imperative language model P1. The problem here is that there is no tool which
understands both the modelling languages of M2 and P1. One way of getting
around this is to “import” the before-after-predicates (BAP’s) from M2 to P1,
by using requires and ensures clauses that are equivalent to formulas in which
the abstract state is existentially quantified away. But there are some disad-
vantages to this approach: (i) existential quantifications are difficult to handle
for the theorem prover and can lead to excessive time requirement or can even
cause the prover to run out of resources, and (ii) can be error-prone, and the
equivalence should ideally be checked using a general-purpose theorem prover
like Isabelle/HOL or PVS.

In this paper we propose a method of performing step-wise refinement and
proving the ensuing refinement conditions, fully within the VCC toolset [6],
with the aim of overcoming some of the hurdles described above. Continuing the
example above, the idea is to first translate the high-level specification M1 into
a model G1 in VCC’s “ghost” modelling language. Next we refine G1 to another
ghost implementation G2 in VCC, which will play the role of M2 subsequently.
How does this help us to get around the problems mentioned above? The first
problem of proving refinement between the abstract models is alleviated as VCC
is typically able to check the refinement between ghost models like G1 and G2

efficiently and automatically. The second problem of moving from an abstract
model to an imperative implementation is also addressed because we now have
both G2 and P1 in a language that VCC understands, and we can then proceed to
phrase and check the refinement conditions (for instance by using a joint version
of G2 and P1 together) within VCC.

Our contributions in this paper are the following. First, we provide a system-
atic and mechanizable translation procedure to translate specifications written
in a subset of the Z modelling language to a ghost specification in VCC. The
fragment of Z we target is chosen to cover the case study we describe next,
and essentially comprises finite sequences and operations on them. There is an
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Fig. 1. (a) A typical refinement chain, with M1 and M2 being abstract models in a
language like Z, and P1 and P2 being programs in a language like C. (b) The proposed
translation and refinement chain, with G1 and G2 being “ghost” implementations in
VCC. Dotted arrows denote the “refines” relationship.

inevitable blow-up of around 10x in the number of specification lines while going
from Z to VCC, as VCC does not support many data-types (such as sequences)
and operators that Z supports. While refining one ghost model to another (G1

to G2), the size of the model is not a problem: typically only a few aspects of the
models change in each refinement step.

Secondly, we propose a two-step technique of phrasing the refinement check
between ghost models and C programs in VCC that improves VCC’s efficiency
considerably. A näıve encoding of the refinement conditions can cause VCC to
run out of memory due to the size of the model and complexity of the verification
conditions. Using our two-step refinement check, VCC always terminates and
leads to a reduction of over 90 % in the total time taken by a näıve check, when
evaluated on our case-study.

The notion of refinement, theory and methodology for coming up with inter-
mediate models used in this paper, are all based on the work in [7], where the
functional correctness of a complex existing system—the FreeRTOS open-source
real-time operating system [12]—was specified and verified. Experience with that
case study, where we encountered the problems mentioned above, prompted us
to explore these issues in a simpler setting. In this paper we use a simpler ver-
sion of the FreeRTOS scheduler, which we built ourselves for this verification
exercise. This scheduler, which we call Simp-Sched provides the same task-
related API’s as FreeRTOS (like vtaskCreate and vtaskDelay), but uses a task id
(a number) instead of a full Task Control Block (TCB), and an array-based
list library instead of the more complex circular doubly-linked xList library
used in FreeRTOS. We begin with the Z specification of the scheduler API’s
that we used in [7], and apply the techniques described above to translate the
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initial model to VCC, and then carry out the refinement checks between succes-
sive models completely within the VCC platform. We carry out the refinement
checks using different approaches explained in Sect. 4 and report on the compar-
ative improvements we obtain over other approaches.

2 Preliminaries

In this section we introduce the notion of refinement we will use in this paper
and a running example to illustrate some of the techniques we propose.

Consider a C implementation of a queue Abstract Data Type (ADT) (or
library) shown in Fig. 2, whose functional correctness we want to reason about.
This example is taken from [7]. The library uses an integer array A to store the
elements of the queue. The variables beg and end denote positions in the array
and the elements of the queue are stored starting from beg to end - 1 in the
array, wrapping around to the beginning of the array if necessary. The library
provides the operations init , enq and deq to respectively initialize, enqueue, and
dequeue elements from the list. The enq operation inserts the given element into
the position end in the array, and the deq operation returns the element at the
position beg in the array. Both operations update the len variable and increment
the beg/end pointer modulo MAXLEN.

In a refinement-based approach we would begin by specifying the function-
ality of the queue abstractly. We could do this in the Z specification language
for instance, as shown in Fig. 3. The model specifies the state of the ADT and
how the operations update the state, using the convention that primed variables
denote the post-state of the operation.

We now want to show that the queue implementation refines the abstract Z
specification. Refinement notions are typically specified in terms of a simulation
between the concrete and abstract models. The simulation is witnessed by an
abstraction relation. In this case, a possible abstraction relation ρ we could use
is roughly as follows:

len = #content ∧
(beg < end) =⇒ ∀i ∈ N.((i < end − beg) =⇒ A[beg + i] = content(i)) ∧
(beg > end ∨ (beg = end ∧ len > 0)) =⇒

∀i ∈ N.((i < MAXLEN − beg) =⇒ A[beg + i] = content(i)) ∧
∀i ∈ N.((i < end) =⇒ A[i] = content(MAXLEN − beg + i)).

1: int A[MAXLEN]; 11: void enq(int t) {
2: unsigned beg, end, len; 12: if (len == MAXLEN)

/*noitpecxe*/;)0(tressa:31:3
4: void init() { 14: A[end] = t;
5: beg = 0; 15: if (end < MAXLEN-1)
6: end = 0; 16: end++;
7: len = 0; 17: else
8: } 18: end = 0;
9: 19: len++;
10 int deq() { ... } 20: }

Fig. 2. c-queue: a C implementation of a Queue library.
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z queue
content : seq Z

#content ≤ k

enq
Δz queue
n? : Z

#content < k

content ′ = content � 〈n?〉

init
Δz queue

content ′ = 〈〉

deq
Δz queue
n! : Z

content �= 〈〉
n! = head(content)
content ′ = tail(content)

Fig. 3. A Z specification, z queuek, of a queue library which allows a maximum of k
elements in the Queue. The notation ΔS for a Z schema S expands to the definition of
S with an additional definition S′ representing the post state with primed field names.

The direction of simulation varies: a common notion of refinement used in the
literature (for example in Event-B [1], and tools like Resolve [8], Dafny [11], and
Jahob [17]), is to require the abstract to simulate the concrete. In this paper we
use the notion from [7] where we require the concrete to simulate the abstract.
We choose to use this notion as it gives us stronger verification guarantees.
Nonetheless, the results we show in this paper are independent of the direction
of simulation used, and apply for refinement notions with the other direction of
simulation as well. We now briefly outline the notion of refinement used, and
point the reader to [7] for more details.

An ADT type is a finite set N of operation names. Each operation name n in
N has an associated input type In and an output type On, each of which is simply
a set of values. We require that there is a special exceptional value denoted
by e, which belongs to each output type On; and that the set of operations
N includes a designated initialization operation called init . A (deterministic)
ADT of type N is a structure of the form A = (Q,U,E, {opn}n∈N ) where Q
is the set of states of the ADT, U ∈ Q is an arbitrary state in Q used as an
uninitialized state, and E ∈ Q is an exceptional state. Each opn is a realisation
of the operation n given by opn : Q×In → Q×On such that opn(E,−) = (E, e)
and opn(p, a) = (q, e) =⇒ q = E.

Let A = (Q,U,E, {opn}n∈N ) and A′ = (Q′, U ′, E′, {opn}n∈N ) be ADT’s
of type N . We say A′ refines A (written A′ � A), if there exists a relation
ρ ⊆ Q′ × Q such that:

(init) Let a ∈ Iinit and let (qa, b) and (q′
a, b′) be the resultant states and outputs

after an init(a) operation in A and A′ respectively, with b 
= e. Then we
require that b = b′ and (q′

a, qa) ∈ ρ.
(sim) For each n ∈ N , a ∈ In, b ∈ On, and p′ ∈ Q′, with (p′, p) ∈ ρ, whenever

p
(n,a,b)−−−−→ q with b 
= e, then there exists q′ ∈ Q′ such that p′ (n,a,b)−−−−→ q′

with (q′, q) ∈ ρ. This is visualized in Fig. 4.
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Fig. 4. Illustrating the condition (RC-sim) for refinement.

The notation p
(n,a,b)−−−−→ q denotes the fact that the ADT in state p can allow a

call to operation n with argument a, return a value b, and transition to state q.
We call this condition (RC).

In the rest of the paper we describe our contributions with this background
in mind. Our aim is to carry out the refinement checks across abstract models
and C implementations, fully within the VCC tool, in a way that gets around
some of the problems with checking refinements outlined in the introduction.
In Sect. 3 we explain how we can systematically translate a Z model to a ghost
implementation in VCC. In Sect. 4 we explain different techniques for carrying
out refinement checking in VCC, beginning with the natural approaches, followed
by our more efficient two-step approach. We evaluate our techniques in a case
study involving a simple RTOS scheduler called Simp-Sched, which we introduce
in Sect. 5, and discuss the performance comparison in Sect. 6. Finally we conclude
with some pointers to related work in Sect. 7.

3 Translating Z to VCC

The objective here is to translate an abstract Z model M into a ghost imple-
mentation G in VCC such that G � M. The idea is to translate the state schema
like that of z queue in Fig. 3, comprising fields and invariants, into a structure
in VCC with corresponding fields and invariants. Similarly, for the operations as
well.

We translate each operation schema SM
op of M, corresponding to an opera-

tion op in the library, into function contracts (in terms of requires and ensures
clauses) for the corresponding implementation of the function in VCC, say
funcG

op. In this translation we classify the set of predicates in SM
op into preM

op

(precondition) and BAPM
op (before-after predicates). Here preM

op is the set of pred-
icates defined over the pre-state and input of SM

op , and the remaining predicates
relating the post-state to the pre-state are denoted by BAPM

op .
Table 1 presents a look-up procedure for encoding various Z objects in VCC.

If X is a set then the notation A X denotes an arbitrary subset of X. The Z
objects are encoded in VCC in a way that facilitates easy proofs for the required
verification conditions. This is crucial for scalability.

Figure 5 shows excerpts from the VCC code obtained by translating the Z
schema of Fig. 3.



Efficient Refinement Checking in VCC 27

Table 1. Table showing the translation of Z objects to VCC objects. It gives a suitable
encoding of Z objects in VCC which enables fast verification. If X is a set then the
notation A X denotes an arbitrary subset of X.

_(ghost int content[\natural]) void enq(int a)
_(ghost \natural contentLen) _(requires contentLen < MAXLEN)
_(invariant contentLen <= MAXLEN) ...
... _(ensures contentLen == \old(contentLen)+1)
void init(void) _(ensures (\forall \natural n; (n < \old(contentLen))
... => content[n] == \old(content[n])))
_(ensures contentLen == 0) {
{ _(ghost content[contentLen] = a)

_(ghost contentLen = 0) _(ghost contentLen = contentLen + 1)
} }

Fig. 5. Part of the translation of the Z specification z queue to a ghost version in VCC.
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In this paper we present only those Z constructs that are used in the Z model
of our case study in Sect. 5. Nevertheless other mathematical objects in Z can
be handled in a similar way.

4 Phrasing Refinement Conditions in VCC

In this section we describe three ways to phrase the refinement condition (RC)
of Sect. 2 as annotations in VCC. The first approach—which we call the “Direct-
Import” approach—is useful when the abstract library is not available as a ghost
model in VCC. Here one directly imports the abstract library as code level
annotations in VCC. The second is the so-called “Combined” approach, which
can be applied when the abstract library is available as a ghost implementation in
VCC. Finally we describe our proposed “Two-Step” approach, which can again
be applied when the abstract library is available as a ghost implementation, but
which VCC discharges far more efficiently.

In each of these approaches we consider the case when the abstract model M
is specified either as a Z specification or as a VCC ghost model, and the concrete
model is given as an implementation in C, say P. For clarity, we focus here only
on the (sim) condition of (RC).

4.1 Direct-Import Approach

This approach is applicable when the abstract model M is specified in a specifica-
tion language like Z. The idea is to existentially quantify away the abstract state
from a glued joint (abstract and concrete) state, and phrase this as pre/post con-
ditions on the concrete methods. The resulting requires and ensures conditions
are independent of the abstract state.

Figure 6 shows a schematic for how one can apply the direct-import method
in VCC. We use s and s′ to denote respectively the pre and post states of the
abstract model, and t and t′ to represent the pre and post states of the concrete
model. For an operation op, preM

op represents the precondition of op in library
M. We use invρ to represent the abstraction relation which relates concrete and
abstract states, and BAP to represent the predicates on pre and post states
describing the transitions in the respective models.

Unfortunately this approach is not feasible in VCC as it is difficult for the
theorem prover to handle the existential quantification. A possible way out is to
transform the annotations to remove the existential quantification, and get an
equivalent condition on the concrete state. For instance, for the queue example
of Sect. 2, we could phrase the directly imported annotations by eliminating the
existential quantification, as shown in Fig. 7 for the deq operation. The before-
after predicates from the z queue model of Fig. 3 are phrased as annotations
over data structures in the C implementation.

This approach has two disadvantages. Firstly, the manual transformation can
be error prone and the equivalence should ideally be checked in a theorem prover
like PVS or Isabelle/HOL. Secondly, the invariants and preconditions need to
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op(Xop x)
(requires ∃ s : preM

op (s) ∧ invρ(t, s))

(ensures ∃ s, s′ : BAPM
op (s, s′) ∧ invρ(s, t)

∧invρ(s
′, t′))

(ensures \result = s′.y) {
// function body

}

Fig. 6. Directly importing abstract
library (M) using code level annota-
tions in VCC.

int deq()
_(requires len != 0)
_(ensures \result == \old(A[\old(beg)])
_(ensures len == \old(len) - 1)
_(ensures \forall unsigned i; (i < len)

==> ((\old(beg) < end) =>
A[beg+i] == \old(A[beg+i]))
...

{
// function body

}

Fig. 7. Manually transforming the directly-
imported before-after-predicates from the Z
specification of Fig. 3 into the queue imple-
mentation of Fig. 2.

struct {
_(ghost int lContent[\natural])
_(ghost \natural lLen)
-(invariant lLen <= l)

_(ghost int kContent[\natural])
_(ghost \natural kLen)

// gluing invariant
_(invariant (lLen == kLen) &&

(\forall \natural i;(i < lLen)
==> (lContent[i] == kContent[i])))

} LK;

Fig. 8. Joint structure combining the
states of Gl and Gk.

void deqCombined()
_(requires LK.lLen != 0)
_(requires (LK.lLen == LK.kLen) &&

(\forall \natural i;(i < LK.lLen)
==> (LK.lContent[i] == LK.kContent[i])))

_(ensures (LK.lLen == LK.kLen) &&
(\forall \natural i; (i < lLen)
==> (LK.lContent[i] == LK.kContent[i])))

_(ensures lOut == kOut) {
// function body of lDeq
// function body of kDeq

}

Fig. 9. Combined function to check
refinement condition.

be specified directly on the concrete state. This can be quite complex for both
the human and the tool, especially in the presence of potentially aliased data
structures.

4.2 Combined Approach

A second technique can be used to prove the refinement between two libraries
when both are available as ghost or concrete implementations in VCC. The
refinement condition (RC) of Sect. 2 can be phrased in VCC by using a combined
function to update the instance of a joint structure which combines the fields
of abstract and concrete libraries. The abstraction relation ρ can be specified as
an invariant in the joint structure which we call a gluing invariant. To illustrate
this on a simple example, consider an abstract ghost implementation Gl of the
queue library (Sect. 2) and another ghost implementation Gk such that k ≥ l,
where the subscript represents the maximum size of the queue. Figure 8 shows
the joint structure to phrase the refinement condition between Gl and Gk and
Fig. 9 shows the combined function to check the refinement between the abstract
and concrete implementation of the deq operation.
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Unfortunately when the concrete model is a C program, this approach could
cause the prover to take lot of time or even run out of resources. In our opinion
this is mainly due to the fact that a large number of extra annotations are
required when reasoning about a joint (abstract and concrete) state that are
both mutable. These annotations are required as loop invariants and as function
contracts, to specify that each ghost object in the system is kept unmodified by
a loop or function to modify the concrete data object. For instance, there should
be a loop invariant in the combined function for updating the array A in the
queue example of Fig. 2, which essentially says that each element in the abstract
map (like lContent above) is kept unchanged. Similar predicates are required
in the function contract if functions are used to update the concrete state. In
our case study (Sect. 5), the number of such annotations required in a loop
or function contract is about twice the number of annotations required in the
proposed Two-Step approach to prove refinement conditions.

4.3 Two-Step Approach

We now propose an efficient approach, which we call the Two-Step approach,
which overcomes some of the difficulties of the previous two approaches. The idea
is to divide the refinement check into two steps. The first step is to prove the
BAPs for the abstract and concrete functions separately by manually supplying
the BAPs. The second step is to prove that the output states as defined by the
BAPs satisfies the gluing invariant. The problem with the combined approach
is avoided as in Step 1, we are interested in proving only the concrete BAP as
the post condition of the concrete function and hence there is no need to specify
the extra set of predicates in loops and concrete function contract to specify
preservation of the abstract state.

Figure 10 illustrates the two steps of our approach. Figure 11 shows the skele-
ton of the function in VCC to prove the abstract BAP for an library operation
op. Here A and B represent the abstract and concrete libraries respectively,
preA represents the abstract precondition (like lLen 
= 0 for deq) and invρ

BAPP
n

ρ

t

s ∈ preM
n

t′

n

ρ

t

s ∈ preM
n

=⇒

(a) Step 1 for concrete
model

BAPP
n

BAPM
n

=⇒ρ

BAPP
n

BAPM
n

ρ

nn

ρ

tt ′ t t′

sss ′s′

(b) Step 2

Fig. 10. Illustrating the conditions checked in the two-step approach.
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opA( )
(requires preA)

(ensures BAPA
op)

{
// body of opA

}

Fig. 11. Step 1 of the two-step app-
roach for proving the abstract BAP.

op( )
(requires preA ∧ invρ)

(decreases 0)

(ensures BAPB
op)

{
// body of opB

}

Fig. 12. Step 1 of the two-step app-
roach for proving the concrete BAP.

Blocked

Delayed

Deleted

Running
Ready but−
not running

Ready

Fig. 13. Task states in FreeR-
TOS/Simp-Sched

listInsertEnd, 
listInsert,
listRemove,
listIsEmpty, ...

listInitialise,
List library

init, taskCreate,
taskStartScheduler, 
taskDelay, taskDelete,
taskBlock, taskUnblock,
taskTickIncrement

task APIs

Simp-Sched architecture

Fig. 14. Components in the scheduler
implementation

represents the gluing invariant. For instance, the BAP of the deq operation
is (ret = \old(content[0]) ∧ (len = old(len) − 1) ∧ (0 ≤ i < len | content[i] =
\old(content[i + 1])). Figure 12 shows the skeleton of the function in VCC to
prove the concrete BAP. The annotation (decreases 0) says that the function
terminates.

The second step of the Two-Step approach is checking the validity of the
following implication and one can use a dummy function in VCC to check its
validity.

preA
op ∧ invρ ∧ BAPA

op ∧ BAPB
op =⇒ inv′

ρ ∧ retA = retB.

5 Case Study: Simp-Sched

Here we describe our experiences with building specifications and a correct-
by-construction implementation of a software system. The system we chose to
work with is the scheduler component of FreeRTOS, which is a popular real-
time operating system (RTOS) that is widely used in the embedded systems
community both in academic settings as well as in industry [3].

The FreeRTOS scheduler API provides operations to create, schedule, and
remove tasks, as well as to delay and resume task operation (see Fig. 13 for
a summary of task states). Application programmers can use these operations
to implement application functionality using these tasks as units of behaviour.
For our case study, we create a simplified version of the FreeRTOS scheduler,
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called Simp-Sched. Our new implementation maintains all key aspects of timing
and scheduling. The simplification is based on two things:

1. Tasks in the FreeRTOS scheduler are maintained in a struct called a task
control block, which includes pointers to function behaviour. In Simp-Sched,
we simply use an integer task ID to represent the TCB of a task.

2. All task lists (ready, delayed, etc.) are maintained in a data structure called
xlist, which is implemented as a circular doubly-linked list. In Simp-Sched,
we replace this data structure with array implementations of the task lists.

All other aspects of the scheduler implementation are maintained. As such,
the stock FreeRTOS scheduler implementation is a refinement of our Simp-Sched
implementation. Given this, one of the key uses of our Simp-Sched implementa-
tion is use in a runtime monitor that can be used to identify potential scheduling
inconsistencies and errors. Each API operation implementation in FreeRTOS can
be instrumented to include a call to the corresponding operation in Simp-Sched,
so that the two scheduler implementations are running in parallel.

The C implementation of Simp-Sched includes 769 lines of C code and 106
lines of comments [15]. The task lists are implemented as a separate library in
which list is implemented using arrays in C. Figure 14 shows the components in
the Simp-Sched implementation with interface operations.

5.1 Refinement Strategy for Simp-Sched

We now describe our methodology for constructing a correct C program from
a mathematical specification of Simp-Sched by applying the refinement theory
from [7]. The methodology involves five stages.

1. We start with a mathematical model in Z which we call M1 capturing the
high-level functionality of Simp-Sched.

2. We apply our mechanizable procedure explained in Sect. 3 to translate M1

to a declarative model in VCC, which we call G1. Note that the translation
guarantees that G1 � M1.

3. We then refine G1 to a more concrete model G2 in VCC to capture some
machine level requirements. For example, the system clock is unbounded in
G1, which is not directly realizable in the C language. In G2 the clock value
cycles in the interval [0, maxNumVal] where maxNumVal is the maximum value
that an unsigned int in C can take. This change has another effect: the
delayed tasks are maintained in a single delayed list in G1, which has to be
broken into two lists in G2 to cope with the bounding of the clock value.
The refinement between G2 and G1 is verified using the combined approach
explained in Sect. 4.2.

4. Next, we refine G2 to P1 where every data object except task lists in G2 is
implemented using executable objects and functions in C. The refinement
between P1 and G2 is verified using the Two-Step approach explained in
Sect. 4.3.
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map based list
implementation

implementation
array based list

lArray − 

Refined VCC

Z model VCC model

implementation
in C

implementation
in C

lMap −

P1

P2

model

abstract

Concrete

M1 G1

G2

Fig. 15. Overview of the construction
of Simp-Sched.

Model LOA LOC Model LOA LOC
M1 222 - G2 � G1 741 3271
G1 1580 1317 P1 � G2 7639 24
G2 2287 1954 L1 � L2 837 20
P1 293 609 L1 602 240
P2 - 769 L2 56 104

Fig. 16. Code metrics and human
effort involved. Here LOA and LOC
respectively represent the number of
Lines Of Annotations and number of
Lines Of Code without comments and
blank lines, L1 and L2 represent lMap
and lArray respectively.

5. Finally we refine P1 to P2 where the map-based abstract implementation of
the list library (lMap) is replaced with an array-based list implementation
(lArray). The refinement between P2 and P1 is verified using the Two-Step
approach explained in Sect. 4.3.

P2 is a C program and we conclude using the transitivity and substitutability
theorems from [7] that P2 � M1. The verification artifacts from this case study
are available at [15] (Fig. 15).

5.2 Code Metrics and Human Effort Involved

We spent two human-months to complete this work. The code metrics are pre-
sented in the table in Fig. 16. Even though there are around 22,500 lines of
code/annotations there is only a small modification required in successive refine-
ments and hence the size of the initial model G1 and L1 model extracted from
G2 are the important parts deciding the human effort required. The models G1

and L1 contain 2,422 lines of annotation in VCC, which is about 3 times the size
of the executable code in P2.

6 Performance Comparison

We report the time taken by VCC to prove the refinement conditions between
different models in the case study. Table 2 shows the time taken under the
three different approaches, namely the Direct-Import, Combined, and Two-Step
approaches described in Sect. 4. Our Two-Step approach takes only 7.4% of the
total time taken by the Direct-Import approach. The time taken by the Combined
approach is much longer than the time taken by the Direct-Import approach.
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Table 2. Time taken by VCC to prove refinement conditions with the different
techniques.

Sl.No. API Time taken by VCC (in seconds)

Direct import Combined Two-step

Step1 Step2 Total

1. init 257.56 89.63 231.01 3.52 234.53

2. taskCreate 357.09 780.88 9.41 4.28 13.69

3. taskStartScheduler 10.36 13.95 5.13 4.55 9.68

4. taskDelay 285.09 18773.61 22.19 8.47 30.66

5. taskDelete 436 18391.04 68.23 7.86 76.09

6. taskBlock 422.7 20699.25 21.64 5.28 26.92

7. taskUnblock 227.06 16838.05 27.44 6.02 33.46

8. listInitialise 2.11 2.7 2.34 1.88 4.22

9. listGetNumberOfElements 2.02 2.19 2.06 1.89 3.95

10. listIsEmpty 1.97 2.34 3.86 2.14 6.00

11. listIsContainedIn 2.31 2.19 2.83 4.44 7.27

12. listGetIDofFirstFIFOtask 3.05 2.3 2.26 2.97 5.23

13. listGetIDofFirstPQtask 1.69 2.59 2.52 4.39 6.91

14. listGetKeyOfFirstPQtask 1.83 3.08 2.36 1.97 4.33

15. listInsertEnd 2.49 2.69 2.19 4.52 6.71

16. listInsert 31.77 8.89 2.77 2.22 4.99

17. listRemove 4447.67 42.7 3.7 2.23 5.39

Total time taken by each technique 6492.77 75658.08 489.94

This is because of the presence of the abstract objects, abstract invariants, glu-
ing relation and abstract function body in addition to the overhead involved in
the Direct-Import approach.

7 Related Work and Conclusion

As already mentioned, the work in this paper uses the foundation laid in [7], in
terms of the theory of refinement and methodology used. There again, VCC is
the main tool used for refinement checking: first for checking the refinement con-
ditions between abstract Z models by translating them to VCC, and secondly for
checking the refinements between the refined Z model and the concrete imple-
mentation. However the Z to VCC translation was partial, as they only needed to
check the refinement between the changed API’s. As a result the approach used
for phrasing the refinement conditions for the abstract to imperative implementa-
tion step was the “Direct-Import” technique described in Sect. 4.1. In contrast,
in this paper we have (a) given a systematic translation from Z to VCC and
(b) proposed a two-step refinement check to phrase the refinement conditions in
VCC that we show leads to significant improvements in our case study.

VCC was used extensively in the Verisoft XT project [5] at Microsoft, where the
goal was verification of Hyper-V hypervisor [10] and PikeOS [4] operating systems.
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The methodology used there appears to have been to define an abstract specifica-
tion as a ghost model in VCC, and to prove conformance of the C implementation
to this abstract model. However it is not clear if these works make use of a formal
theory of refinement and if so, how the refinement conditions are checked in VCC.

In future work, we plan to automate the Z to VCC translation and expand
the subset of the language we handle. We would also like to explore the further
translation of the VCC ghost model to a simple executable implementation in
C, with the aim of acting as a simulator for the model along the lines of ProZ
animator [13].
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