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Abstract. The Semantic Web provides an effective infrastructure that allows
data to be easily shared and reused across applications. At its core is the descrip-
tion of ontological knowledge using ontological languages which are powerful
knowledge representation tools with good decidability and tractability properties;
Datalog± is one of these tools.The problem of inconsistency has been acknowl-
edged in both the Semantic Web and Database Theory communities. Here we
introduce elements of defeasible argumentative reasoning in Datalog±, conse-
quences to represent statements whose truth can be challenged leading to a better
handling of inconsistency in ontological languages.
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1 Introduction and Motivation

The Semantic Web provides an effective infrastructure that allows data to be shared and
reused across applications. At its core is the description of ontological knowledge using
ontological languages which are powerful knowledge representation tools, since their
decidability and tractability properties makes them attractive for handling practical appli-
cations. In particular, Datalog± [9] is a family of ontology languages which enables a
modular rule-based style of knowledge representation. Datalog± provides the capability
of representing fragments of first-order logic so that answering a Boolean Conjunctive
query Q under a set Σ of Datalog± rules for an input database I is equivalent to checking
whether Q is classically entailed from I ∪ Σ. Furthermore, its properties of decidability
of query answering and good query answering complexity in the data complexity allow
to realistically assume that the database I is the only really large object in the input.
These properties and its expressive power make Datalog± very useful in scenarios such
as Ontology Querying, Web Data Extraction, and Ontology-based Data Access.

The problem of inconsistency in ontologies has been acknowledged in both the
Semantic Web and Database Theory communities, and several methods have been devel-
oped to deal with it. The most widely accepted semantics for querying inconsistent
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databases is that of consistent answers [1] (or AR semantics in [19]), which yields the
set of atoms that can be derived despite all possible ways of repairing the inconsistency.
This semantics is based on the “when in doubt, throw it out” principle. We argue that
the process of conflict resolution could be carried out through logical reasoning, using
as much information as possible to weigh out conflicting pieces of information.

We introduce in Datalog± elements of defeasible reasoning that have already shown
practical results [12,17], allowing consequences to represent statements whose accep-
tance can be challenged. Section 3 presents defeasible Datalog± ontologies extending
classical Datalog± ontologies with defeasible atoms and defeasible tuple-generating
dependencies (or TGDs) which are used as inference rules in Datalog±. Defeasible
atoms represent statements that can be challenged, while defeasible TGDs represent a
weaker connection between pieces of information. Conflicts among derived atoms are
resolved through an argumentative dialectical process. The argumentation-based rea-
soning mechanism described in Section 4 consider reasons for and against potential
conclusions and decides which are the ones that can be obtained (warranted) from the
knowledge base. In Section 5, we show that this extension allows to entail atoms that
are not yielded by several inconsistency-tolerant semantics from the literature, including
AR and several others designed to be sound approximations of AR; yet, we are guaran-
teed that a very important property holds: no conflicting atoms can be entailed – we
call this the NCE property. We then go on to show how to obtain sound approximations
(that also enjoy the NCE property) to a family of semantics called k-defeaters [7].

2 Preliminaries on Datalog± Ontologies

First, we briefly recall some basics on Datalog± [9], namely, on relational databases,
(Boolean) conjunctive queries ((B)CQs), tuple-generating dependencies (TGDs), nega-
tive constraints, the chase, and ontologies in Datalog±.

We assume (i) an infinite universe of (data) constants Δ (which constitute the “nor-
mal” domain of a database), (ii) an infinite set of (labeled) nulls ΔN (used as “fresh”
Skolem terms, which are placeholders for unknown values, and can thus be seen as
variables), and (iii) an infinite set of variables V (used in queries, dependencies, and
constraints). Different constants represent different values (unique name assumption),
while different nulls may represent the same value. We assume a lexicographic order on
Δ ∪ΔN , with every symbol in ΔN following all symbols in Δ . We denote by X sequences
of variables X1, . . . ,Xk with k≥0. We assume a relational schema R, which is a finite
set of predicate symbols (or simply predicates). A term t is a constant, null, or variable.
An atomic formula (or atom) a has the form P(t1, ..., tn), where P is an n-ary predicate,
and t1, ..., tn are terms. A database (instance) I for a relational schema R is a (possibly
infinite) set of atoms with predicates from R and arguments from Δ .

Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-
order formula ∀X∀YΦ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,Z) are con-
junctions of atoms over R (without nulls), called the body and the head of σ ,
respectively. Satisfaction of TGDs are defined via homomorphisms, which are map-
pings μ : Δ ∪ΔN ∪V → Δ ∪ΔN ∪V such that (i) c∈Δ implies μ(c)=c, (ii) c∈ΔN

implies μ(c)∈Δ ∪ΔN , and (iii) μ is naturally extended to atoms, sets of atoms, and
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conjunctions of atoms. A TGD σ is satisfied in a database I for R iff, whenever there
exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms of I, there exists an
extension h′ of h that maps the atoms of Ψ(X,Z) to atoms of I. A TGD σ is guarded iff
an atom in its body contains all universally quantified variables of σ . Since TGDs can
be reduced to TGDs with only single atoms in their heads, in the sequel, every TGD has
without loss of generalization a single atom in its head.

A conjunctive query (CQ) over R has the form Q(X)=∃YΦ(X,Y), where Φ(X,Y)
is a conjunction of atoms (possibly equalities, but not inequalities) with the variables
X and Y, and possibly constants, but without nulls. A Boolean CQ (BCQ) over R is a
CQ of the form Q(), often written as the set of all its atoms, without quantifiers. The
set of answers for a CQ Q to I and Σ, denoted ans(Q, I,Σ), is the set of all tuples a
such that a∈Q(B) for all B∈mods(I,Σ). The answer for a BCQ Q to I and Σ is Yes,
denoted I ∪ Σ |=Q, iff ans(Q, I,Σ) 	= /0. Note that query answering under general TGDs
is undecidable [3], even when the schema and TGDs are fixed [8]. Decidability of query
answering for the guarded case follows from a bounded tree-width property. The data
complexity of query answering in this case is P-complete (see [9] for details).

The chase algorithm for a database I and a set of TGDs Σ consists of an exhaustive
application of the TGDs [9] in a breadth-first (level-saturating) fashion, which outputs
a (possibly infinite) chase for I and Σ. The (possibly infinite) chase relative to TGDs
is a universal model, i.e., there exists a homomorphism from chase(I,Σ) onto every
B∈mods(I,Σ) [9]. This implies that BCQs Q over I and Σ can be evaluated on the
chase for I and Σ, i.e., I ∪Σ |=Q is equivalent to chase(I,Σ) |= Q.

A negative constraint (or simply constraint) γ is a first-order formula of the form
∀XΦ(X)→⊥, where Φ(X) (called the body of γ) is a conjunction of atoms over R
(without nulls). Under the standard semantics of query answering of BCQs in Datalog±
with TGDs, adding negative constraints is computationally easy, as for each constraint
∀XΦ(X)→⊥, we only have to check that the BCQ ∃XΦ(X) evaluates to false in I
under Σ; if one of these checks fails, then the answer to the original BCQ Q is true,
otherwise the constraints can simply be ignored when answering the BCQ Q. In this
work we restrict our attention to binary denial constraints. As we will show later, this
class of constraints suffices for the formalization of the concept of conflicting atoms.

As another component, the Datalog±language has special types of equality-
generating dependencies (EGDs). Without loss of generality we do not consider EGDs
in this work, since for our purposes they can also be modeled via negative constraints
(see [9] for details). We usually omit the universal quantifiers in TGDs, negative con-
straints, and we implicitly assume that all sets of dependencies and/or constraints are
finite.

Datalog± Ontologies. A Datalog± ontology KB=(I, Σ), where Σ=ΣT ∪ΣNC, consists
of a database I, a set of TGDs ΣT , and a set of negative constraints ΣNC. We say KB is
guarded (resp., linear) iff ΣT is guarded (resp., linear). Example 1 (used in the sequel
as a running example) illustrates a simple Datalog± ontology.

Example 1. Consider the following simple Datalog± ontology KB = (I,ΣT ∪ΣNC):
I = {collaborates(will, fbi),security agency(fbi),psychiatrist(hannibal,will),

victim(abigail)}
ΣNC = {risky job(P)∧unstable(P) → ⊥}
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ΣT = {collaborates(P,A) → works in(A,P), in therapy(P) → unstable(P),
lives depend on(A)∧works in(A,P) → risky job(P),
psychiatrist(S,P) → in therapy(P),security agency(A) → lives depend on(A)}.

3 Defeasible Datalog± Ontologies

Here we extend Datalog± ontologies to allow defeasible reasoning. First, to represent
statements whose acceptance can be challenged, we consider the existence of a set of
defeasible atoms; thus, the database instance of a defeasible Datalog± ontology consists
of two parts, a set of facts (i.e., strict knowledge) and a set of defeasible atoms.

Second, we also want to add defeasibility to express weaker connections between
pieces of information than in TGDs; thus, we extend the language accordingly. Defea-
sible TGDs are rules of the form ϒ(X,Y) �– ∃ZΨ(X, Z), where ϒ(X,Y) and Ψ(X, Z)
are conjunctions of atoms. As in DeLP’s defeasible rules [15], defeasible TGDs are
used to represent weaker connections between the body and the head of a rule. Unlike
strict (traditional) TGDs, acceptance of the body of a defeasible rule does not always
lead to the acceptance of the head, which means that consequences of such rule can be
challenged. For our running Example 1, we can represent the information that if A is a
security agency then it is the case that the lives of people depend on A as a defeasible
TGD instead of a strict one, reflecting that the connection between the two atoms holds
in general but is weak in nature. Defeasible TGDs are written using the symbol “ �– ”,
while the classical (right) arrow “→” is reserved to strict TGDs and NCs.

Then, a defeasible Datalog± ontology KB consists of a (finite) set F of ground
atoms, called facts, a set D of defeasible atoms, a finite set of TGDs ΣT , a finite set
of defeasible TGDs ΣD, and a finite set of binary negative constraints ΣNC. The follow-
ing example shows a defeasible Datalog± ontology that encodes the knowledge from
Example 1 changing some of the facts and TGDs to defeasible ones.

Example 2. The information from the ontology presented in Example 1 can be better
represented by the following defeasible Datalog± ontology KB = (F,D, Σ′

T , ΣD,ΣNC),
where F = {collaborates(will, fbi),security agency(fbi),psychiatrist(hannibal,will)}
and D = {victim(abigail)}. Note that we have changed the fact stating that abigail is
a victim to a defeasible atom since some suspicious actions from her indicate that she
may be an accomplice instead. The sets of TGDs, and defeasible TGDs are now given
by the following sets; note that we have changed some of the TGDs into defeasible
TGDs to make clear that the connection between the head and body is weaker.

ΣT ′ = {collaborates(P,A) → works in(A,P),psychiatrist(S,P) → in therapy(P)}
ΣD = {in therapy(P) �– unstable(P), lives depend on(A)∧works in(A,P) �– risky job(P),

security agency(A) �– lives depend on(A)}
As in classical Datalog±, derivations from a defeasible Datalog± ontology rely in

the application of (strict or defeasible) TGDs. Given a defeasible Datalog± ontology
KB the classical application of a TGD applies almost directly to defeasible TGDs and
ontologies. The difference is that for a (strict or defeasible) TGD σ to be applicable
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there must exist a homomorphism mapping the atoms in the body of σ into F ∪D. The
application of σ on KB generates a new atom from the head of σ if it is not already
in F ∪ D, in the same way as explained in Section 2. The following definitions follow
similar ones first introduced in [22]. Here we adapt the notions to defeasible Datalog±
ontologies.

Definition 1. Let KB = (F,D,ΣT ,ΣD,ΣNC) be a defeasible Datalog± ontology and L
an atom. An annotated derivation ∂ of L from KB consists of a finite sequence [R1,R2,
. . . ,Rn] such that Rn is L, and each atom Ri is either: (i) Ri is a fact or defeasible atom,
i.e., Ri ∈ F ∪D, or (ii) there exists a TGD σ ∈ ΣT ∪ΣD and a homomorphism h such that
h(head(σ)) = Ri and σ is applicable to the set of all atoms and defeasible atoms that
appear before Ri in the sequence. When no defeasible atoms and no defeasible TGDs
are used in a derivation, we say the derivation is a strict derivation, otherwise it is a
defeasible derivation.

Note that there is non-determinism in the order in which the elements in a deriva-
tion appear. Syntactically distinct derivations are, however, equivalent for our purposes.
When no confusion is possible, we assume that a unique selection has been made.

We say an atom a is strictly derived from KB iff there exists a strict derivation for
a from KB, denoted with KB  a, and a is defeasibly derived from KB iff there exists a
defeasible derivation for a from KB and no strict derivation exists, denoted with KB ∼ a.

A derivation ∂ for L is minimal if no proper sub-derivation ∂ ′ of ∂
(every member of ∂ ′ is a member of ∂ ) is also an annotated derivation of L. Consider-
ing minimal derivations in a defeasible derivation avoids the insertion of unnecessary
elements that will weaken its ability to support the conclusion by possibly introducing
unnecessary points of conflict. Given a derivation ∂ for L, there exists at least one min-
imal sub-derivation ∂ ′ ⊆ ∂ for an atom L. Thus, we only consider minimal derivations.

Example 3. From the defeasible Datalog± ontology in Example 2, we can get the fol-
lowing (minimal) annotated derivation for atom unstable(will):
∂ =

[
psychiatrist(hannibal,will),psychiatrist(S,P) → in therapy(P),
in therapy(will), in therapy(P) �– unstable(P),unstable(will)

]

Then, we have KB  in therapy(will) (following from the fact that Will has a psychia-
trist) and KB ∼unstable(will) (by means of the defeasible rule that says that a person in
therapy generally is unstable).

We now show that classical query answering in defeasible Datalog± ontologies is equiv-
alent to query answering in Datalog± ontologies.

Proposition 1. Let L be a ground atom, KB = (F,D,ΣT ,ΣD,ΣNC) be a defeasible
Datalog± ontology, KB′ = (F ∪ D,Σ′

T ∪ ΣNC) is a classical Datalog± ontology where
Σ′

T = ΣT ∪{ϒ(X,Y)→ ∃ZΨ(X,Z) |ϒ(X,Y) �– ∃ZΨ(X,Z)}. Then, KB′ |= L iff KB  L
or KB ∼L.

Proposition 1 states the equivalence between derivations from defeasible Datalog±
ontologies and entailment in traditional Datalog± ontologies whose database instance
corresponds to the union of facts and defeasible atoms, and the set of TGDs corre-
sponds to the union of the TGDs and the strict version of the defeasible TGDs. As a
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direct consequence, all the existing work done for Datalog± directly applies to defea-
sible Datalog±. In particular, it is easy to specify a defeasible Chase procedure over
defeasible Datalog± ontologies, based on the revised notion of application of (defeasi-
ble) TGDs, whose result is a universal model. Therefore, a (B)CQ Q over a defeasible
Datalog± ontology can be evaluated by verifying that Q is a classical consequence of
the chase obtained from the defeasible Datalog± ontology. Despite this equivalence, the
main reason, for defining a defeasible extension of Datalog± ontologies, is that defea-
sible knowledge and reasoning allows the possibility of managing conflicts in a more
sensible way; i.e., aspects of the nature of the different pieces of knowledge in con-
flict and/or the way they are derived from previous knowledge can be considered in the
process of conflict resolution. For this reason, in the following section we propose an
argumentation-based procedure to answer queries in defeasible Datalog± ontologies.

4 Argumentation-Based Reasoning in Defeasible Datalog±

Conflicts in defeasible Datalog± ontologies come, as in classical Datalog±, from the
violation of negative constraints. Intuitively, two atoms are in conflict relative to a
defeasible Datalog± ontology whenever they are both derived from the ontology (either
strictly o defeasible) and together map to the body of a negative constraint.

Definition 2. Given a set of negative constraints ΣNC, two ground atoms (possibly with
nulls) a and b are said to be in conflict relative to ΣNC iff there exists an homomorphism
h such that h(body(υ)) = a ∧ b for some υ ∈ ΣNC.

In what follows, we say that a set of atoms is a conflicting set of atoms relative to ΣNC

if and only if there exist at least two atoms in the set that are in conflict relative to ΣNC,
otherwise will be called non-conflicting. Whenever is clear from the context we omit
the set of negative constraints.

Example 4. Consider the set ΣNC = {risky job(P)∧unstable(P)→ ⊥} of negative con-
straints from Example 3. In this case, the set of atoms {unstable(will),risky job(will)}
is a conflicting set relative to ΣNC. However, this is not the case for the set S =
{collaborates(will, fbi),psychiatrist(hannibal,will),security agency(fbi)}.

Given a defeasible Datalog± ontology KB = (F,D,ΣT ,ΣD,ΣNC), sets F and ΣT are
used to represent non-defeasible information, as it is the case with facts and strict rules
in DeLP [15,16]. Therefore, we require F to be representationally coherent, that is F
must be non-conflicting with respect to ΣNC and furthermore given KB there cannot be
strict derivations for conflicting atoms.

Whenever defeasible derivations of conflicting atoms exist, we use, as in DeLP, a
dialectical process to decide which information prevails, i.e., which piece of information
is such that no acceptable reason can be put forward against it. Reasons are supported by
arguments. An argument is an structure that supports a claim from evidence through the
use of a reasoning mechanism. Maintaining the intuition that led to the classic definition
of arguments in [27], given a defeasible Datalog± ontology, an argument A for a claim
L is a minimal (under ⊆) set of facts, defeasible atoms, TGDs, and defeasible TGDs
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contained in KB, such that L is derived from it and no conflicting atoms can be derived
from it, and AKB denotes the set of all arguments that can be built from KB.

Answers to atomic queries are supported by arguments built from the ontology.
However, it is possible to build arguments for conflicting atoms, and so arguments can
attack each other. We now adopt the definitions of counter-argument and attacks for
defeasible Datalog± ontologies from [15]. First, an argument 〈B,L′〉 is a sub-argument
of 〈A ,L〉 if B ⊆ A . Argument 〈A1,L1〉 counter-argues, rebuts, or attacks 〈A2,L2〉 at
literal L, iff there exists a sub-argument 〈A ,L〉 of 〈A2,L2〉 such that L and L1 conflict.

Example 5. Consider derivation ∂ from Example 3 and let A be the set of (defeasible)
atoms and (defeasible) TGDs used in ∂ . A is an argument for unstable(will). Also, we
can obtain a minimal derivation ∂ ′ for risky job(will) where B, the set of (defeasible)
atoms and (defeasible) TGDs used in ∂ ′, is such that no conflicting atoms can be defea-
sibly derived from B ∪ ΣT . As {unstable(will),risky job(will)} is conflicting relative
to ΣNC, we have that 〈A ,unstable(will)〉 and 〈B,risky job(will)〉 attack each other.

Once the attack relation is established between arguments, it is necessary to analyze
whether the attack is strong enough so one of the arguments can defeat the other. Given
an argument A and a counter-argument B, a comparison criterion is used to deter-
mine if B is preferred to A and, therefore, defeats A . Different preference criteria can
be applied for this purpose; specificity [28] is often used in the defeasible reasoning
and argumentation literature. In the presence of defeasible atoms, specificity might not
always return the intended results — other preference criteria have been developed for
such cases [15,22]. For our defeasible Datalog± framework, unless otherwise stated,
we assume an arbitrary preference criterion � among arguments.

Let 〈A1,L1〉 and 〈A2,L2〉 be two arguments. We say that argument 〈A1,L1〉 is a
defeater of 〈A2,L2〉 iff there exists a sub-argument 〈A ,L〉 of 〈A2,L2〉 such that 〈A1,L1〉
counter-argues 〈A ,L〉 at L, and either 〈A1,L1〉 � 〈A ,L〉 (it is a proper defeater) or
〈A1,L1〉 	� 〈A ,L〉, and 〈A ,L〉 	� 〈A1,L1〉 (it is a blocking defeater).

Definition 3. Given a defeasible Datalog± ontology KB defined over a relational
schema R, a Datalog± argumentation framework F is a tuple 〈LR,AKB,�〉, where
� specifies a preference relation defined over AKB.

To decide whether an argument 〈A0,L0〉 is undefeated within a Datalog± argumentation
framework, all its defeaters must be considered, and there may exist defeaters for their
counter-arguments as well. An argument line for 〈A0,L0〉 is defined as a sequence of
arguments that starts at 〈A0,L0〉, and every element in the sequence is a defeater of its
predecessor in the line [15]. Note that for defeasible Datalog± ontologies arguments in
an argumentation line can contain both facts and defeasible atoms.

Different argumentation systems can be defined by setting a particular criterion for
proper attack or defining the admissibility of argumentation lines. Here, we adopt the
one from [15], which states that an argumentation line has to be finite, and no argument
is a sub-argument of an argument used earlier in the line; furthermore, when an argu-
ment 〈Ai,Li〉 is used as a blocking defeater for 〈Ai−1,Li−1〉 during the construction of
an argumentation line, only a proper defeater can be used for defeating 〈Ai,Li〉.

The dialectical process considers all possible admissible argumentation lines for
an argument, which together form a dialectical tree. Dialectical trees for defeasible
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Datalog± ontologies are defined following [15], and we adopt the notion of coherent
dialectical tree from [22], which ensures that the use of defeasible atoms is coherent
in the sense that conflicting defeasible atoms are not used together in supporting (or
attacking) a claim. We denote with Args(T ) the set of arguments in T .

Argument evaluation, i.e., determining whether the root node of the tree is defeated
or undefeated, is done by means of a marking or labelling criterion, similar to the
grounded semantics in abstract argumentation frameworks [2,13]. Each node in an
argument tree is labelled as either defeated (D) or undefeated (U). We denote the
root of T (〈A ,L〉) with root(T (〈A ,L〉)), and marking(N), where N is a node in a
dialectical tree, denotes the value of the marking for node N (either U or D). Deciding
whether a node is defeated or undefeated depends on whether or not all its children
are defeated: (1) if node N is a leaf then marking(N) = U , (2) node N is such that
marking(N) = D iff at least one of its children that is marked with U , and (3) node N is
such that marking(N) =U iff all its children are marked with D.

Definition 4. Let KB be a defeasible Datalog± ontology and F the corresponding
Datalog± argumentation framework. An atom L is warranted in F (through T ) iff there
exists an argument 〈A ,L〉 such that marking(root(T (〈A ,L〉))) =U . We say that L is
entailed from KB (through F), denoted with KB |=F L, iff it is warranted in F.

Example 6. Continuing with KB from Example 2, consider its corresponding Datalog±
argumentation framework F, the atom unstable(will) is warranted through F under the
assumption that arguments A and B from Example 5 are such that A � B.

The following proposition establishes that no conflicting sets of atoms can be entailed/
warranted from a Datalog± argumentation framework.

Proposition 2. Let KB = (F,D,ΣT ,ΣD,ΣNC) be a defeasible Datalog± ontology. No
two atoms L1 and L2 that are warranted in F are conflicting relative to ΣNC.

We regard this property as desirable for inconsistency-tolerant reasoning mechanisms
which is related to a similar one introduced in [10]. We formalize it as follows.

Non-Conflicting Entailment (NCE). Given a knowledge base K and a set of binary
negative constraints ΣNC, any entailment operator |= satisfies the NCE property iff for
any two atoms L1 and L2 K |= L1 and K |= L2 are non-conflicting relative to ΣNC.

5 A Comparison with Inconsistency-Tolerant Semantics

Although query answering in Datalog± does not contemplate the possibility of return-
ing meaningful answers in the presence of conflicts, a variety of inconsistency-tolerant
semantics have been developed in the last decade for ontological languages, includ-
ing lightweight Description Logics (DLs), such as EL and DL-Lite [7,19], and sev-
eral fragments of Datalog± [20]. In this section we analyze entailment in defeasible
Datalog± ontologies in relation to several inconsistency-tolerant semantics for ontologi-
cal languages: AR semantics [19], CAR semantics [19], IAR, k-support [7],
and ICAR semantics that are sound approximations of AR and of CAR, respectively,
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and finally, the k-defeater semantics [6] that comprises a family of complete approxi-
mation of AR.

We present the basic concepts needed to understand the different semantics on
Datalog± ontologies and then show how entailment under such semantics compare to
entailment on defeasible Datalog±. We first recall the notion of repair; in relational
databases a repair is a model of the set of integrity constraints that is maximally close,
i.e., “as close as possible” to the original database. Different notions of repairs have
been developed depending on the meaning of “closeness” used and on the type of con-
straints. For a Datalog± ontology KB = (I,ΣT ∪ΣNC), repairs are maximal subsets of I
such that their consequences with respect to ΣT are non-conflicting relative ΣNC.

AR Semantics. The AR semantics corresponds to the notion of consistent answers in
relational databases [1]. Intuitively, an atom L is said to be AR-consistently entailed
from a Datalog± ontology KB, denoted KB |=AR L iff L is classically entailed from
every ontology that can be built from every possible repair.

CAR Semantics. Another definition of repairs was also proposed in [19] that includes
knowledge that comes from the closure of the database instance with respect to the set
of TGDs. Since the closure of an inconsistent ontology yields the whole language, they
define the consistent closure of an ontology KB = (I,ΣT ∪ΣNC) as the set CCL(KB) =
{α | α ∈ H (LR)s.t. ∃S ⊆ I and mods(S,ΣT ∪ ΣNC) 	= /0 and (S,ΣT ) |= α}. A Closed
ABox repair of a Datalog± ontology KB is a consistent subset I′ of CCL(KB) such that
it maximally preserves the database instance [19]. It is said that an atom L is CAR-
consistently entailed from a Datalog± ontology KB, denoted by KB |=CAR L iff L is
classically entailed from every ontology built from each possible closed ABox repair.

The following result shows that every atom that is AR-consistently (resp., CAR-
consistently) entailed from a Datalog± ontology KB = (I,ΣT ∪ ΣNC) is also entailed
from the defeasible Datalog± ontology KB′ = ( /0, I,ΣT , /0,ΣNC) constructed from KB.
This transformation from Datalog± to defeasible Datalog± is without loss of generality;
the inconsistency-tolerant semantics that we study here assume that the knowledge con-
tained in I is somehow challengeable as it can be in conflict once considered together
with the set of constraints. Defeasible Datalog± ontologies allow to express both strict
and defeasible knowledge, however the strict part is assumed to be consistent in itself (in
particular, it could be empty), therefore, to make a fair comparison between approaches
we need to translate the data contained in I to defeasible atoms.

Theorem 1. Let KB = (I,ΣT ∪ ΣNC) be a Datalog± ontology, KB′ = ( /0, I,ΣT , /0,ΣNC)
be a defeasible Datalog± ontology and F= 〈LR,AKB′ ,�〉. Then, (i) if KB |=AR L then
KB′ |=F L, and (ii) if KB |=CAR L then KB′ |=F L.

The converse does not hold. In our running example, unstable(will) is not entailed
by AR neither by CAR since every (closed) ABox repair either entails unstable(will) or
risky job(will), but not both. However, as shown in Example 6, it is entailed from KB as
A � B. Depending on the preference criterion, it could be the case that unstable(will)
would not be entailed, in which case risky job(will) could be, or neither would be. The
results from Theorem 1 directly extends to the sound approximations for AR and ICAR
defined in [19] and the family of k-support semantics from [7].
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Finally, we analyze the k-defeater semantics from [7]. Given a Datalog± ontology
KB = (I,ΣT ∪ ΣNC), an atom L is entailed from KB under the k-defeater semantics,
KB |=k-def L, for some k ≥ 0, iff no set of facts with size smaller than k is such that
it contradicts every minimal set from I that yields L. From an argumentation point of
view, this semantics looks for counter-arguments for L up to a certain size – the size of
an argument being the number of (defeasible) atoms used. If no such argument can be
found, L is entailed from KB. Conflicting atoms could be entailed from KB for any k
(except for that in which converges to AR), therefore it does not enjoy the NCE property.

In the following, consider �k-def, a preference criterion such that A �k-def B iff the
number of facts and defeasible atoms used in A is less than or equal to k, for any k ≥ 0.

Theorem 2. Let KB = (I,ΣT ∪ ΣNC) be a Datalog± ontology, KB′ = ( /0, I,ΣT , /0,ΣNC)
be a defeasible Datalog± ontology, F = 〈LR,AKB′ ,�〉, and F′ = 〈LR,AKB′ ,�k-def〉,
Then, (i) if KB′ |=F L then KB |=0-def L, and (ii) for any 0 ≤ k < k′ if KB′ |=F′ L then
KB |=k-def L, where k′ is the point where AR and k-defeater semantics coincide.

Statement (i) from Theorem 2 shows, unsurprisingly, that independently of the pref-
erence criterion defined over AKB′ , |=F is a sound approximation to 0-defeaters, which
corresponds to the brave semantics in which anything that can be classically entailed
from some repair is consistently entailed from the ontology. Furthermore, given Propo-
sition 2, this approximation is not only sound but it also satisfies the NCE property.

More interesting is statement (ii) showing that, using �k-def, argumentation-based
entailment on defeasible Datalog± is a sound approximation of the k-defeater semantics
for every k (up to the point where k-defeater coincides with AR). Furthermore, since
Proposition 2 ensures the NCE property independently of the preference criterion, we
have obtained a family of semantics that soundly approximate the k-defeater semantics
and ensure that no conflicting atoms can be entailed from a defeasible ontology.

6 Related Work

Within Artificial Intelligence, many efforts to deal with inconsistent information have
been developed in the last four decades. Frameworks such as default logic [26] can be
used to represent a database DB with integrity constraints IC as a default logic the-
ory where the background theory consists of the IC and the facts in D constitutes the
defaults rules, i.e., a fact in D is assumed to be true if it can be assumed to be true. Argu-
mentation [13,15,23,27] has been used for handling uncertainty and inconsistency by
means of reasoning about how contradictory arguments defeat each other.

The most widely accepted semantics for querying a possibly inconsistent database
is that of consistent answers, which yields the set of tuples (atoms) that appear in the
answer to the query over every possible repair, which we have discussed in more detail
in Section 5. More recently, Ontology-based Data Access approach to data integration,
has led to a resurgence of interest in this area, specially focusing on the development of
efficient inconsistency-tolerant reasoning and query answering in DLs and other ontol-
ogy languages. Lately, several works have focused on inconsistency handling for dif-
ferent classes of DLs, adapting and specializing general techniques previously con-
sidered for traditional logics [18,21,24]. In [19], the adaptation of CQA for DL-Lite
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ontologies and several sound and complete approximation are studied. Computing con-
sistent answers is an inherently hard problem, [19] shows co-NP completeness for
ground atomic queries in DL-Lite, though some works identify cases for very simple
ontologies and restricted queries (within the DL-Lite family) for which tractable results
can be obtained [6]. In [20], an alternative semantics called k-lazy is proposed, which
relaxes the notion of repairs by adopting a compromise between quality of answers and
tractability for fragments of Datalog±. Section 5 presents some preliminary comparison
between these semantics and our approach, a more detailed analysis is leave for future
work.

Finally, more recently, there have been several developments in combining argu-
mentation methods with description logics in order to overcome inconsistency and inco-
herence in such ontological languages, such as the work of [29] and [11]. In [29] an
argumentation framework for reasoning and management in (inconsistent or incoherent)
description logic ontologies, based Besnard and Hunter’s framework [5], is proposed.
In [11], on the other hand, Dung’s abstract frameworks are used instead, and consis-
tent answers under de ICR semantics [6] are obtained by means of obtaining the sets
of accepted answers under some of the classical argumentation semantics. The main
difference with our approach is that these frameworks are based on classical logic con-
sequences and therefore, in the end answers and repairs are equivalent to those obtained
for particular semantics of CQA, whose relationship we have discussed in Section 5.

7 Conclusions

We have introduced the idea of defeasible reasoning over Datalog± ontologies by intro-
ducing the construction of arguments, the definition of conflict using the negative con-
strains available in the system, and completing the argumentative infrastructure by
characterizing defeat employing a preference criterion that has remained as an abstract
element to be instantiated. The dialectical process to decide what arguments are war-
ranted is done applying the classic techniques of argumentation theory. Furthermore,
we show how such approach ensures the reasonableness of the answers given by it, as
no conflicting atoms can be entailed/warranted in it [4,25].

We have also shown that atoms entailed from a Datalog± ontology, under well-
known inconsistency-tolerant semantics, namely AR and CAR semantics, and sound
approximations of these, are also entailed from the corresponding defeasible Datalog±
ontology that includes the database instance of the ontology as defeasible atoms. More-
over, we have shown that the converse property does not hold in general, and there-
fore argumentation-based query answering for defeasible Datalog± ontologies allows
to produce answers that though are involved in conflicts, and therefore are not consis-
tent answers, the ontology contains enough information in order to warrant them. Fur-
thermore, we show how to construct a Datalog± argumentation framework that yields
a semantics that is a sound approximation to the k-defeaters semantics from [6], that
enjoys the property of never entailing conflicting atoms.

Future work will involve a full complexity study of argumentation-based entail-
ment for defeasible Datalog± ontologies to complete the comparison with the different
inconsistent-tolerant semantics and better understand possible implementation prob-
lems for the framework [14].
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