
Chapter 2
Ascoli–Arzela Theory

The first chapter illustrated the usefulness of the Ascoli–Arzela theorem in proving
analytic theorems. In this chapter, we’ll find out what this result is.

In the topological proof of the Cauchy–Peano theorem, the Ascoli–Arzela
theorem was used to conclude that a set A, in a space C Œx0 � ˛; x0 C ˛� of
functions, was compact. Analysis requires us to move out of the euclidean, that is,
finite-dimensional, world into the infinite-dimensional world of spaces of functions.
We will find that we can make the transition successfully if we carry enough
compactness along with us. We could build compactness into our hypotheses, but
we must be careful because we don’t want theorems with such strong hypotheses
that no interesting examples can satisfy them. Fortunately, there is a certain amount
of compactness that we do not have to hypothesize. A Theorem (2.7) that identifies
the compactness built into certain function spaces, a theorem that depends on the
Ascoli–Arzela theorem, is the ultimate goal of this section because we will use it
several times later in the book. That’s enough of generalities; now let’s find out just
what we’ve been talking about.

A set in a metric space is complete if every Cauchy sequence in the set converges.
If any of the words in the previous sentence aren’t part of your working vocabulary,
I assume you’ll go look them up in a real analysis book. There you will also be
reminded that the complete subsets of Rn are precisely the closed ones.

For � > 0, an �-net S in a metric space X is a subset of X with the property
that every point of X is within � of some point of S . To say the same thing more
precisely, for x 2 X , define

B.xI �/ D fy 2 X W d.x; y/ < �g;

where d is the metric of X , and say that a subset S of X is an �-net if X is the union
of all B.sI �/ for s 2 S . A metric space X is totally bounded (some people prefer the
term precompact) if given an � > 0, there is a finite �-net for X . For instance, every
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bounded subset of Rn has this property. Notice that a subset of a totally bounded set
is also totally bounded. Furthermore, it is not hard to see that if a subset of a space
is totally bounded, so is the closure of that subset.

It is easy to demonstrate that if X is a compact metric space, then it is totally
bounded: given � > 0, form the cover fBx D B.xI �/gx2X of X and, for a finite
subcover fBxj g, the set fxj g is an �-net for X . The first step on the road toward the
Ascoli–Arzela theorem is to show that, in complete metric spaces, the converse is
also true.

Theorem 2.1. Let X be a complete metric space. If X is totally bounded, then it is
compact.

Proof. Suppose that the complete, totally bounded space X is not compact, in other
words, that there is an open cover of X that has no finite subcover. We’ll see that
this leads to a contradiction. The existence of the cover will allow us to build a
sequence fxng in X with the following two properties: (1) d.xn; xnC1/ < 2�nC1;
(2) the subset B.xnI 2�nC1/ cannot be covered by a finite subfamily of the cover.
Before constructing the sequence, let’s see why it proves the theorem. First of all,
condition (1) implies that the sequence is Cauchy. To verify the Cauchy property,
suppose we are given � > 0, then choose natural numbers m and n with, say, m � n

and large enough so that 2�mC2 < �, then d.xm; xn/ < � because

d.xm; xn/ �
n�1X

kDm

d.xk; xkC1/ �
n�1X

kDm

2�kC1 � 2�mC2:

Let x be the limit of fxng and let U be a member of the cover that contains x. Choose
� small enough so that B.xI 2�/ � U . Then choose n large enough so that 2�nC1 <

� and also, by convergence of the sequence, d.xn; x/ < �. But that tells us that
B.xnI 2�nC1/ � U so B.xnI 2�nC1/ certainly can be covered by a finite subfamily
of the cover, in fact by the single member U , contrary to (2). Thus once we construct
the sequence fxng we know it will lead us to a contradiction, as we had hoped, so
we now construct it—inductively. To identify x1, use the total boundedness of X

to construct a finite 1-net fy1; y2; : : : ; ymg. If each B.yj I 1/ could be covered by
a finite subcover of the cover, we would have a finite subcover that covered all of
X ; therefore there is a yj such that B.yj I 1/ cannot be so covered and we set x1

equal to that yj . Supposing that fx1; x2; : : : ; xng have been found which satisfy (1)
and (2), we need to produce xnC1. To do that, we note that B.xnI 2�nC1/ is totally
bounded since X is and concentrate now on the subspace to locate xnC1, essentially
in the same way we found x1. The subspace has a finite 2�n-net fy1; y2; : : : ; ymg.
Since (2) holds by assumption, that says B.xnI 2�nC1/ cannot be covered by any
finite subfamily of the given cover. Therefore there is a yj such that B.yj I 2�n/ has
the same property and we let xnC1 D yj , which gives us property (2), and of course
(1) holds because this all takes place within B.xnI 2�nC1/. ut
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It often happens that we don’t need a set within a space to be compact itself,
but we do want the set to lie in a compact subset of the space. When a subset S in
a space X is contained in a compact subset K of X , then S is called a relatively
compact subset of X . Since K is closed in X , it contains the closure S of S , as a
closed subset, and thus S is itself compact. Therefore an equivalent definition of a
relatively compact subset is one whose closure is compact.

Theorem 2.1 gives us a lot of relatively compact subsets of complete metric
spaces. If S is a totally bounded subset of a complete metric space X , then S is also
totally bounded and it is complete because it is closed in X . Thus, by Theorem 2.1,
we have

Corollary 2.2. A totally bounded subset S of a complete metric space X is
relatively compact.

It follows that bounded subsets of euclidean spaces are relatively compact, but
we knew that anyway. What we really want is a nice way to identify some relatively
compact subsets of another class of complete metric spaces which we describe next.

Let E be a metric space with metric denoted by d and let u W E ! R be a
real-valued function which, for the moment, need not be continuous. However, we
do want u to be bounded, that is, u.E/ must be a bounded subset of the reals. Then
we can define the supremum norm (known familiarly as the sup norm, pronounced
“soup”) kuk of u to be the least upper bound (also known as the supremum) of the
set fju.x/j W x 2 Eg. The set B.E/ of all bounded real-valued functions on E is
a metric space with distance between functions u and v given by ku � vk. Another
name for kuk is the uniform norm and that emphasizes the fact that convergence of a
sequence of functions in B.E/ is what real analysis texts call uniform convergence
of the sequence.

The space B.E/ is complete because it inherits that property from the reals. What
I mean by this is that if you start with a sequence fung in B.E/ that is Cauchy, then
for each x 2 E the sequence of reals un.x/ is Cauchy and therefore has a limit we’ll
call u.x/. This defines a function u and that function is bounded, so the limit is still
in B.E/.

The space we are really interested in, though, is C.E/, the bounded, continuous
real-valued functions on E. Since convergence in B.E/ is uniform convergence,
the limit of a sequence of continuous functions in B.E/ must also be continuous.
In more topological language, C.E/ is a closed subset of the space B.E/. Therefore,
C.E/ is also a complete metric space.

The main result of this section identifies a useful class of relatively compact
subsets of C.E/. By Corollary 2.2, since C.E/ is complete, all totally bounded
subsets will be relatively compact. However, total boundedness of a set of real-
valued functions isn’t an easy hypothesis to check, so we’ll replace it by two other
hypotheses. One of the hypotheses is boundedness: a set A in C.E/ is bounded if
there is a number ˇ such that kuk < ˇ for all functions u 2 A. To state the other
hypothesis, a set A in C.E/ is said to be equicontinuous at x 2 E if given � > 0,
there exists ıx > 0 such that if x; y 2 E with d.x; y/ < ıx , then ju.x/ � u.y/j < �

for all u 2 A. (Note that the functions u are real-valued and we are using the usual
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notion of distance in R when we write ju.x/ � u.y/j.) Call the set A equicontinuous
if it is equicontinuous at all x 2 E. Surprisingly, these hypotheses are reasonably
convenient to check, and that’s how we’ll find relatively compact subsets of C.E/

when E itself is a compact space (a hypothesis we haven’t used up to this point)
because of the following.

Theorem 2.3 (Ascoli–Arzela Theorem). Let E be a compact metric space. If A is
an equicontinuous, bounded subset of C.E/, then A is relatively compact.

Proof. The idea is to prove that A is totally bounded by starting with a given � and
use it in conjunction with the definition of equicontinuity to produce a finite �-net
(of functions, remember) for A. Specifically, for each x 2 E we use ıx from that
definition, chosen so that if d.x; y/ < ıx then ju.x/ � u.y/j < �

4
for all u 2 A.

This gives us a cover fB.xI ıx/g of E and here is where we use the compactness
of the space E, to extract a finite subcover which we denote by fB.xj I ıj /g for
j D 1; 2; : : : ; n. (In a sense, we want the finite set fxj g to substitute for the points
of E.) For some xj (just one of them) look at the set of points fu.xj /g for all u 2 A,
which we denote by AŒxj �. The set AŒxj � is bounded in R since we assumed that A

is a bounded subset of C.E/, so there is a finite �
4
-net

fz1.xj /; z2.xj /; : : : ; zk.j /.xj /g
for the set AŒxj �. This just means that given u 2 A, there is some zs.xj / for which
ju.xj / � zs.xj /j < �

4
and we want the net to substitute in some way for AŒxj �. Let

� D f�1; �2; : : : ; �ng denote an n-tuple of integers with the property 1 � �s �
k.s/. For each �, let v� be a function in A such that

jv�.xj / � z�j .xj /j <
�

4

for all j D 1; 2; : : : ; n. It may be that there is no function in A with this property for
some of the n-tuples � and in that case there is no corresponding v� defined. In this
way, we obtain a set of at most k.1/k.2/ � � � k.n/ functions v� in A, and we claim
that these functions form an �-net for A. To prove it, we take any u 2 A and first we
find a candidate for the v� that we believe is within � of it. For each j D 1; 2; : : : ; n

there is an integer �j such that

ju.xj / � z�j .xj /j <
�

4

so, not surprisingly, we’ll use the corresponding v�. The function v� must exist for
that � since u itself satisfies the defining property, though of course it isn’t likely to
be the v� we chose for the net. To prove that ku � v�k < �, we take any x 2 E; then
by the cover property, x is in some B.xj I ıj / and, by the triangle inequality,

ju.x/ � v�.x/j � ju.x/ � u.xj /j C ju.xj / � z�j .xj /j
Cjz�j .xj / � v�.xj /j C jv�.xj / � v�.x/j < �
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because the first and last terms in the sum are less than �
4

by equicontinuity and the
other terms are each less than �

4
by the net property of the z’s. ut

If you look back to the topological proof of the Cauchy–Peano theorem in
Chap. 1, you’ll see that we have already met the concepts of total boundedness and
equicontinuity, in the space C Œx0 � ˛; x0 C ˛�. These properties are implied by the
conditions defining the subset A:

.1/ ju.x/ � y0j � a for all x 2 Œx0 � ˛; x0 C ˛�

.2/ ju.x1/ � u.x2/j � M jx1 � x2j for all x1; x2 2 Œx0 � ˛; x0 C ˛�

Condition (1) gives us a bound

ˇ D max.jy0 C aj; jy0 � aj/

for all kuk. Equicontinuity follows from (2) because, given � > 0, we can use
ıx D �

M
for all x 2 Œx0 � ˛; x0 C ˛�. The Ascoli–Arzela theorem then tells us that

A has a compact closure and, since A is closed, it is compact.
The way we used the Ascoli–Arzela in the approximation proof of the Cauchy–

Peano theorem was to conclude that a certain sequence has a convergent subse-
quence. That depends on some information from introductory topology, namely

Theorem 2.4. A metric space X is compact if and only if every sequence in X

contains a convergent subsequence.

There is a proof of this fact that fits so nicely into the circle of ideas we have been
discussing, I can’t resist the temptation to include it, but I’ve placed it at the end of
this chapter so it will be easy to skip if you wish.

Now suppose that in the Ascoli–Arzela Theorem 2.3, the bounded, equicon-
tinuous set A is a sequence of functions A D fu1; u2; : : : ; un; : : : g. Since the
closure of A is compact, every sequence in it, so in particular A itself, contains a
convergent subsequence. (Keep in mind, however, that the convergence is in C.E/,
not necessarily in A.) Therefore we have the following important special case of the
Ascoli–Arzela theorem.

Corollary 2.5. Let E be a compact metric space. Every bounded, equicontinuous
sequence in C.E/ has a subsequence that converges in C.E/.

The approximation proof of the Cauchy–Peano Existence theorem depended on
Corollary 2.5 in the following way. The sequence of approximate solutions �n can
be shown to be bounded and equicontinuous. Therefore, the corollary furnishes a
convergent subsequence and it was its limit function � that turned out to be the
solution to the initial-value problem.

At the beginning of this chapter I promised you some compactness properties
for function spaces that you don’t have to include in hypotheses. Let’s next become
acquainted with some terminology from analysis which is used in describing those
properties.
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A normed (real) linear space is a linear space X along with a norm k�k W X ! R
which has the properties (i) kxk � 0 for all x 2 X , (ii) kcxk D jcjkxk for all real c

(where jcj is the absolute value of c) and x 2 X , and (iii) kx1 C x2k � kx1k C kx2k
for all x1; x2 2 X . The definition d.x; y/ D kx � yk produces a metric on X

under which addition and scalar multiplication are continuous. Thus we can view
the normed linear space X as a metric space with this metric, when it is convenient
to do so. We’ve seen some examples of normed linear spaces: euclidean spaces,
and also C.E/ (or B.E/) with the sup norm. A set S in X is bounded if there is
a number ˇ such that ksk < ˇ for all s 2 S . (That’s the same definition we used
in C.E/.)

It’s customary to call a continuous function a map, and that’s the term I’ll
generally use. Let f W X ! Y be a map where X and Y are normed linear spaces.
The map f is said to be compact if the image f .X/ is a relatively compact subset
of Y . A less restrictive but closely related concept is: the map f is completely
continuous if for any bounded subset S of X , the set f .S/ is relatively compact.
Thus a completely continuous map is one that is a compact map when you restrict
it to any bounded subset of its domain. Theorem 2.4 tells us how these maps behave
with respect to sequences in the domain. If fxng is a sequence in X and f W X ! Y

is a compact map, then the sequence ff .xn/g converges to some y 2 Y , though not
necessarily to a point of the image f .X/. If f is only completely continuous, then
we can draw the same conclusion about a sequence fxng provided that the sequence
is bounded.

A useful property of completely continuous maps is the way their nice behavior
is preserved when we compose them with continuous functions, as follows.

Theorem 2.6. Suppose that X; Y , and Z are normed linear spaces, f W X ! Y

is a completely continuous map, and g W Y ! Z is a map; then gf W X ! Z is
completely continuous.

Proof. Let S be a bounded subset of X and let fzng be a sequence in gf .S/ � Z.
We can therefore find a sequence fxng in S such that zn D gf .xn/ for all n.
The complete continuity of f gives us a convergent subsequence of the sequence
ff .xn/g; denote it by ff .xnk

/g. Since g is a continuous function, it takes convergent
sequences to convergent sequences, and it follows that gf .xnk

/ D znk
is a

subsequence of fzng that converges (in Z), so gf .S/ is relatively compact. ut
You may have noticed that nothing in the definition of compact or completely

continuous map depended on the linear space structure of X and Y . For instance,
you can make sense of the idea of a bounded set in any metric space. That’s certainly
true, but we will meet these concepts only in the case of maps between linear spaces.
What is more to the point, the ideas and terminology have a close (but, as we shall
see, rather awkward) relationship with a subject that does make essential use of
the linear structures, as follows. For normed linear spaces X and Y , a function
L W X ! Y is linear if it preserves the addition and scalar multiplication operations,
that is L.x1 C x2/ D L.x1/ C L.x2/ for x1; x2 2 X and L.cx/ D cL.x/ for c 2 R
and x 2 X . Thus f .X/ is a linear subspace of Y and it certainly cannot be relatively
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compact unless L is the constant function. However, there is a concept of a compact
linear map L W X ! Y , namely, if S is a bounded subset of X , then L.X/ is
relatively compact in Y . In other words, in the setting of linear maps, “compact”
means what “completely continuous” means in the more general setting. That’s a
pretty messy situation, but the terminology is firmly established so I won’t try to
change it. If you are aware of the problem and distinguish clearly between the linear
and nonlinear contexts, it will not cause trouble.

We next introduce some important normed linear spaces. Let Œa; b� be a closed
interval in R, let u W Œa; b� ! R be a function, and let u.j / denote the j th derivative
of u, with u.0/ D u. Let C kŒa; b� be the set of all functions u W Œa; b� ! R such
that for each of j D 0; 1; : : : ; k, the function u.j / is well defined and continuous on
Œa; b�. Then C kŒa; b� is a linear space and we can define a norm k:kk on it, called
the C k norm, by

kukk D
kX

j D0

ku.j /k;

where ku.j /k is the sup norm of u.j /. Notice that the C 0 norm is the sup norm and
that then C 0Œa; b� is C Œa; b�.

A function in C kC1Œa; b� is also in C kŒa; b�, so there is an inclusion j W
C kC1Œa; b� ! C kŒa; b�. We will state the compactness property we have been
promising in terms of a property of j because it will be useful in that form. However,
it will help to know that the property can also be viewed as a comparison of the C k

and C kC1 norms. We will see that if a sequence in C kC1Œa; b� is bounded (with
respect to the C kC1 norm of course), then, when we view the same sequence as
lying in C kŒa; b�, it has a strong property: it contains a convergent subsequence,
but in the sense of convergence in the larger space. Thus requiring boundedness
of the sequence in terms of first k C 1 derivatives implies convergence (a form
of compactness—compare Theorem 2.4) in terms of the first k derivatives. The
property is stated in the terminology of not-necessarily linear functions, because
that is the way it will be used, though the inclusion of one linear space in another
certainly is a linear map.

Theorem 2.7. The inclusion j W C kC1Œa; b� ! C kŒa; b� is a completely continuous
map.

Proof. We have to show that every bounded subset of C kC1Œa; b� is relatively
compact as a subset of C kŒa; b�. This means every sequence in the set contains a
convergent subsequence, so we can replace that bounded set by a sequence fung
which is bounded in C kC1Œa; b� and we set out to prove that the sequence contains
a subsequence that converges in C kŒa; b�. We claim that for each j � k, the set
fu.j /

n g in C Œa; b� is equicontinuous. The sequence fung is bounded and that means
there is a number ˇ such that kunkkC1 < ˇ for all n. From the definition of the
C k norm, we can see that this implies ju.j /

n .x/j < ˇ for all j � k C 1 and all
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x 2 Œa; b�. Given � > 0, we will show that ı D �
ˇ

will establish all the equicontinuity
required. In other words, for any x 2 Œa; b�, we will see that if jx � yj < ı, then
ju.j /

n .x/ � u.j /
n .y/j < � for any n and any j � k. The reason is the mean value

theorem which implies that

ˇ̌
ˇ̌
ˇ
u.j /

n .x/ � u.j /
n .y/

x � y

ˇ̌
ˇ̌
ˇ D ju.j C1/

n .c/j < ˇ

for some c 2 Œa; b�. The Ascoli–Arzela theorem (specifically its Corollary 2.5)
gives us a function g<0> in C Œa; b� which is the limit of a subsequence of fung. The
derivatives of the functions in the subsequence are still bounded and equicontinuous,
so they also have a subsequence which converges to a function in C Œa; b� that we
will call g<1>. If we differentiate the functions in that subsequence, we can repeat
the argument to obtain a continuous function g<2>. We continue in this way until we
have the function g<k>. To avoid some potentially disastrous notational problems
replace the original sequence, using only those terms that were used in the last step
(which are a subset of those used in every previous one), but still call the sequence
fung. In this way, we have constructed functions g<0>; g<1>; g<2>; : : : ; g<k> such
that u.j /

n ! g<j > for j D 0; 1; 2; : : : ; k, where the arrow indicates uniform
convergence. Letting u D g<0>, we will show that g<j > D u.j / for j � k, which
implies that u 2 C kŒa; b� and also that fung converges to u in that space, that is, we
can make kun � ukk as small as we want by choosing n big enough. For 1 � j � k,
use the fundamental theorem of calculus to write

u.j �1/
n .x/ D

Z x

a

u.j /
n .t/ dt C u.j �1/

n .a/:

Taking the limit, on the left-hand side we have g<j �1>.x/ and on the other side
we get

Z x

a

g<j >.t/ dt C g<j �1>.a/:

By uniqueness of the limit, we see that g<j > is the derivative of g<j �1>. ut
We now have a useful tool for extracting convergent sequences, although I’m

afraid you’ll have to wait a while to see it employed. The difficulty is that you can’t
do much with it alone, so we’ll have to build more machinery in order to get a
good payoff from all the work we did in this section. On the other hand, a lot of the
concepts we met here will turn up again.

To conclude the chapter, here is the proof I promised earlier.

Proof of Theorem 2.4 (A metric space is compact if and only if every sequence has
a convergent subsequence). If we assume we have a sequence fxng in a compact
space X , it’s not hard to extract a convergent subsequence; here’s how to do it.
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If for each x 2 X we could find �x > 0 such that B.xI �x/ contained only a finite
subset of fxng, then a finite subcover of fB.xI �x/g would fail to cover all of the
sequence, so it could hardly cover X . Thus there exists x 2 X such that B.xI 1

n
/

contains infinitely many points of the sequence, so we can choose a different point
xj.n/ 2 B.xI 1

n
/ in the sequence for each n and that subsequence will do the job.

The proof in the other direction uses the ideas of this chapter. We will show that
if X is a space in which every sequence has a convergent subsequence (called a
sequentially compact space) and X is metric, with metric d , then X is complete
and totally bounded, so it is compact by Theorem 2.1. We can get completeness out
of the way very quickly. Take a Cauchy sequence fxj g in the sequentially compact
metric space X , so there is a subsequence fxjk

g converging to some point x, but we
want the entire sequence to converge to x. Given � > 0, there exists N1 > 0 such
that jk � N1 implies d.xjk

; x/ < �
2
. By the Cauchy property, there exists N2 > 0

such that j; jk � N2 implies d.xj ; xjk
/ < �

2
. Therefore, if j is greater than both

N1 and N2, we get d.xj ; x/ < �. To prove total boundedness and finish this chapter
at last, we use a contrapositive argument. That is, we suppose that X is not totally
bounded so there exists � > 0 for which X has no finite �-net and show that X

is therefore not sequentially compact, by constructing a sequence in X that has no
convergent subsequence. Let any point of X be x1, but choose x2 so it is not within �

of x1, where the � is the one for which there is no finite net. If there were no such x2,
that would mean x1 by itself was an �-net for X . Choose x3 to be a point of X at a
distance of more than � from both x1 and x2. Continuing in this way, we choose xn 2
X that is in the complement of the union of the B.xj I �/ for j D 1; 2; : : : ; n � 1.
The next point of the sequence has to exist since otherwise the previous points
would constitute a finite �-net for X . By construction, no subsequence of fxng
converges. ut
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