
A Method to Detect Repeated Unknown
Patterns in an Image

Paulo J.S.G. Ferreira and Armando J. Pinho(B)

IEETA/DETI, Universidade de Aveiro, Aveiro, Portugal
{pjf,ap}@ua.pt

Abstract. Consider a natural image that has been manipulated by
copying, transforming and pasting back fragments of the image itself.
Our goal is to detect such manipulations in the absence of any knowl-
edge about the content of the repeated fragments or the transformations
to which they might have been subject. The problem is non-trivial even
in the absence of any transformations. For example, copy/paste of a tex-
tured fragment of a background can be difficult to detect even by visual
inspection. Our approach to the problem is a two-step procedure. The
first step consists in extracting features from the image. The second step
explores the connection between image compression and complexity: a
finite-context model is used to build a complexity map of the image
features. Patterns that reappear, even in a somewhat modified form, are
encoded with fewer bits, a fact that renders the detection of the repeated
regions possible.

Keywords: Tampering detection · Finite-context models · Kolmogorov
complexity · SIFT

1 Introduction

Finding repetitions of exact or approximate unknown patterns in images
can be a difficult problem even for a human observer. This paper addresses
the problem and proposes an approach that combines feature extraction with
information-theoretic analysis.

Consider a natural image that has been manipulated by copying, transform-
ing and pasting fragments of the image itself. Our goal is to detect such manip-
ulations in the absence of any knowledge about the content of the repeated
fragments, or the transformations that they might have undergone.

We stress the fact that the repetitions are unknown. There is an important dif-
ference between known repetitions and unknown ones. Given one pattern (i.e. a
fragment of an image), it is easy to find matching patterns. However, if the

Funded in part by National Funds through FCT - Foundation for Science and Tech-
nology, in the context of the project PEst-OE/EEI/UI0127/2014.

c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 12–19, 2014.
DOI: 10.1007/978-3-319-11758-4 2



A Method to Detect Repeated Unknown Patterns in an Image 13

nature of the repeating pattern is totally unknown, the problem becomes much
harder (even for exact or almost exact repeats).

The first step in our approach consists in extracting as many relevant fea-
tures from the image as possible, bearing in mind one crucial condition: the
features must be invariant to any transformations that the manipulations might
have introduced. For example, if the transformations include rescaling, then the
feature extraction step should yield scale-invariant features.

In the examples the feature extraction step is performed using SIFT, a well
known method that provides invariance with respect to a number of transforma-
tions (see [1], also [2]). However, our approach is not tied to SIFT and the feature
extraction step could in principle be performed using other appropriate tech-
niques — either SIFT variants or refinements or totally distinct approaches. The
feature extraction step is followed by an analysis step which uses information-
theoretic tools. The goal of this second step is to determine the complexity of
the features using a class of compression algorithms able to approximate the
Kolmogorov complexity of the target. The key insight is that the Kolmogorov
complexity of a repeated pattern is essentially that of the pattern itself. Repe-
titions or quasi-repetitions are associated with low-complexity data regions. To
turn this idea into practice we use finite-context models that can capture, in a
compact form, the most relevant content in the set of features.

In the absence of any transformations the problem is simpler but still non-
trivial. The feature extraction step can then be omitted, and a complexity map
of the image itself is known to lead to interesting and useful results [3,4].

2 The Method

2.1 Feature Extraction and Quantization

As stated, the features can be extracted using SIFT or other methods, provided
that they are invariant to the transformations used during the image manip-
ulations. We assume that each feature extracted from the image is associated
with an image coordinate. For example, in SIFT there are at least four natu-
ral parameters: the coordinates, the scale σ and the angle θ. It is also assumed
that each feature is a vector with fixed dimension (dimension 128 for SIFT fea-
ture vectors). At the end of this step one has a collection of features or vectors,
associated with a specific image coordinate. The ith feature will be denoted by
fi(x, y), where (x, y) denotes the associated image coordinate pair. The feature
vectors are stored as columns in a data matrix, in no particular order.

It is advisable to go through the set of features and discard those of limited
usefulness. This depends on the features and on their parameters. For example, if
one is interested in detecting small repeated unknown fragments, SIFT features
associated with smaller scales σ are probably more relevant than those associated
with larger scales. We found that SIFT features with σ greater than 5 − 6 have
a negligible impact on the results. The elements of SIFT feature vectors are
integers in the range 0-255, but in general they may be real numbers. Even in



14 P.J.S.G. Ferreira and A.J. Pinho

the case of integers, one could wish to reduce the number of amplitude levels,
for reasons that will become clear later.

We subject the elements of all non-discarded feature vectors to scalar quan-
tization. Our implementations have used Lloyd-Max quantization or the well
known K-means method. The main parameter is the number of clusters, which
determines the number of distinct intensities, the initialization policy (typically
random) and the overclustering factor (typically 1.0, meaning that no overclus-
tering is performed). In the case of K-means, we used the implementation in the
mlpack [5] C++ library.

2.2 Sorting

The quantization step yields a collection of quantized feature vectors, stored as
columns in a data matrix in no particular order. Before the complexity analysis
stage we need to convert the vectors into a single bitstream. First, we sort the
feature vectors. Then, we create the bitstream by vectorizing the sorted vectors,
i.e. by stacking the columns of the sorted data matrix. Sorting impacts the
performance significantly. We tried the following approaches:

1. Sort the features fi(x, y), i = 1, 2, . . . N by considering their coordinates
(x, y) on the image, in row-major order.

2. Idem, but use column-major order.
3. Sort the features fi(x, y), i = 1, 2, . . . N by the Euclidean (L2) distance to

the origin of (x, y).
4. Idem, using a zig-zag scan (essentially, the L1 distance to the origin of (x, y)).
5. Order the feature vectors by L2 norm.
6. Order the feature vectors by L1 norm.
7. Order the feature vectors by L∞ norm.
8. Cluster the features by proximity and sort them by cluster. Within the same

cluster, scan row-by-row.

Clustering the features by proximity leads to good results, since it tends to keep
any features that are close to each other on the image close to each other on the
sorted data matrix.

Consider an image that includes three features A, B and C, one at position
(x, y), another at (x+1, y) and a third at (x, y+1). Row-major or column-major
scans of the image are unlikely to preserve the proximity between these three
features. At least one of the three features is likely to end up in a distant column
of the sorted data matrix. By contrast, when clustering by distance,A, B and C
will be assigned to the same cluster with overwhelming probability. Sorting by
cluster creates a data matrix in which features close to each other on the image
tend to be assigned to columns that are also close to each other on the matrix.
The advantages of this will become clear later.

2.3 Finite-Context Encoding

The input to the finite-context encoders is the bitstream obtained by stacking the
columns of the sorted, quantized data matrix. A finite-context model provides



A Method to Detect Repeated Unknown Patterns in an Image 15

Fig. 1. Left: the original image. Center: the manipulated image. Right: The manipu-
lated image, with the edited regions outlined.

an information measure of the number of bits required to represent the current
symbol, conditioned on the accumulated knowledge of all past symbols. We use
this information to build a complexity profile of the bitstream, in which the
bitrate at one point of the bitstream indicates how complex it is. Since any
given point in the bitstream can be mapped to a feature vector and hence to
an image point, the complexity profile can be related to the complexity of the
image itself.

The data are scanned symbol by symbol. When a pattern is found for the first
time, the encoder assigns to it a certain complexity, i.e. number of bits needed
to represent it. When the pattern is seen again, the number of bits needed will
be smaller. The complexity assigned to a pattern therefore depends on the order
by which the stream is scanned, a fact that could mask the first occurrences of
some patterns.

To remove this dependency, we scan the sorted data twice, once in the for-
ward direction and once in the backward direction. The two complexity pro-
files obtained are then combined to produce the final complexity profile, pi =
min(di, bi), where di and bi denote the profiles in the forward and backward direc-
tions. This prevents the masking of the first occurrence of a repeating pattern
(in forward scans) or the masking of its last occurrence (in backward scans).

To encode the data we use a set of competing finite-context models as
described in [6]. The probability estimates provided by each model are aver-
aged using weights updated by a recursive procedure. We used models of depth
3, 5, 8, 10 and 15. As for the parameter α, we took α = 1 for the lower order
models and α = 0.05 for the models of order 10 and 15. A description of all the
parameters and their roles can be found in [6].

3 Why Finite-Context Models

The Kolmogorov complexity [7–12] of A is denoted by K(A) and represents
the size of the smallest program that produces A and stops. K(A) is not com-
putable, and so it has to be approximated by a computable measure, such as



16 P.J.S.G. Ferreira and A.J. Pinho

Lempel-Ziv based complexity measures [13], linguistic complexity measures [14]
or compression-based complexity measures [15], which provide approximations
and hence upper bounds on the Kolmogorov complexity.

The bitstream produced by a lossless compression algorithm, together with
the appropriate decoder, enables the reconstruction of the corresponding original
data. Thus, the number of bits required for representing the decoder and the bit-
stream can be viewed as an estimate of the Kolmogorov complexity of the data.
Lossless compression methods thus provide approximations to the Kolmogorov
complexity, with better compression algorithms yielding tighter bounds.

Kolmogorov theory can be used to measure object similarity. Li et al. pro-
posed a similarity metric [16] based on an information distance [17], defined as
the length of the shortest binary program that transforms A and B into each
other, and a practical analog based on standard compressors, called the nor-
malized compression distance [16]. These ideas have been successfully applied in
astronomy, genomics, handwritten digits languages, literature, music and virol-
ogy [18], but are less used in images for one reason. According to Li et al. [16],
a compression method needs to be “normal” in order to be used as a normal-
ized compression distance. This means that compressing the concatenation of A
with itself should generate essentially the same number of bits as compressing
A alone [18]. To satisfy this requirement, the compression algorithm needs to
accumulate knowledge about the data as the compression proceeds. It has to
collect statistics, i.e., it has to create an internal model of the data.

The Lempel-Ziv algorithms create internal data models and are among the
most often used compression algorithms in compression-based complexity appli-
cations, including those reported in the imaging field [19–21]. Unfortunately,
although they are quite effective for 1D data, they do not perform as well in
the case of images or multi-dimensional data. State-of-the-art image compres-
sors, such as JPEG2000 or JPEG-LS, perform better but are not normal. They
decorrelate the data using either a transformation or a predictive method, and
assume an a priori data model that remains essentially static during compres-
sion. The decorrelating step destroys most of the data dependencies, leaving to
the entropy coding stage the mere task of encoding symbols from an (assumed)
independent source. As a result, they cannot be used for conditional complexity
estimation. These obstacles lead us to propose compression algorithms based on
finite-context models that are both normal and adequate to images [22–25].

The fact that finite-context models are normal and show good performance
on images makes them useful to build compression-based image complexity mea-
sures. We used them to find unknown (non-transformed) repeated patterns in
images [3,4] and again in the present, more challenging application.

4 Results and Discussion

Fig. 1 shows the original image and the manipulated image, formed by copying,
translating and rotating a fragment of the image and pasting it back. The regions
are not immediately obvious under visual inspection. For convenience, they are
outlined in the image on the right.



A Method to Detect Repeated Unknown Patterns in an Image 17

Fig. 2. Detected regions (squares) and SIFT features (circles). The manipulated regions
are outlined for convenience only; the input to the algorithm was the image shown in
Fig. 1 (center).

Fig. 3. The median of the complexity profile. The curve below it measures the balance
between high and low complexity values in a running histogram of the profile (see text).

Fig. 2 shows the position of the SIFT features as circles (with σ ≤ 7) and the
low-complexity regions detected (the squares). In addition to the manipulated
regions, the algorithm also marked certain other image regions as similar among
themselves. This is unavoidable, since natural images may well contain such
regions. Any reasonable algorithm designed to detect unknown repetitions or
quasi-repetitions will very likely encounter and report both artificial repetitions,
the result of introduced manipulations, and natural repetitions.

Fig. 3 shows the median value of the complexity profile, computed over seg-
ments of 128 symbols. This corresponds to the median value of the complexity
over each feature (in the case of SIFT, over 128 symbols). The curve on the bot-
tom is obtained by comparing the number of times that in each feature vector
the complexity profile assumes small values with the number of times that it
assumes large values. By small and large we mean, respectively, the bottom 4
and the top 4 bins in a 10-bin running histogram of the profile.

The quantization is necessary to reduce the number of intensity levels and
therefore the alphabet size in the context models. We found that values of about



18 P.J.S.G. Ferreira and A.J. Pinho

20 levels are adequate, but found different values (as small as 15) also useful.
The sorting step is an important one. The optimal sorting strategy depends on
the image and the location of the repetitions, but clustering the features by
proximity appears to be the best general strategy. The reason is that it tends to
keep features that are close to each other on the image close to each other on
the sorted data matrix.

To fully appreciate the impact of this, consider an exact repeat of a region
containing n features. Assume that the repeated part also contains n features,
and that they are similar to the original ones, as one would expect. Sorting by
proximity tends to keep the features of the first region together on the data
matrix, forming a set of columns adjacent to each other. The same applies for
the repetition. The bitstream will therefore present two identical segments, of
size 128n symbols each. Other sorting strategies may lead to scattered identical
pairs of segments of 128 symbols each, which are harder to detect.

Concerning the context models, we found that it is important to combine a
number of models of different lengths, and it is important to use a smaller value
of α (typically 0.05) for deeper models (say, above 10). We have obtained good
results with 3, 4 and 5 models of depths between 3 and 15. It is important to
implement the deeper models using e.g. hash tables, since a context array would
require a prohibitive amount of memory.

The computational requirements depend mainly on the number of features
and the dimension of each feature vector. An image of average complexity with
several hundred features can be processed in a few seconds (this includes the
time necessary to extract the features and quantize the data). In the example
given there were 483 features and the total computation time did not exceed a
couple of seconds, with the algorithm running on a laptop computer.

A limitation of the approach is that it is oblivious to tampering in regions
for which SIFT returns no features. This is not a limitation of SIFT, but of the
approach itself. Given any other feature extraction algorithm and a region S of
the image, if there are no features fi(x, y) with (x, y) ∈ S, we will not be able
to detect repetitions of subsets of S. This becomes more serious as the size of
the edited regions decreases, since the probability of a feature lying on a region
naturally decreases with its size. In general, however, SIFT seems appropriate
and produces a sufficiently rich feature set, for all but the smallest edits. Despite
the limitations, we feel that our approach provides an interesting solution to the
challenging problem of detecting unknown repeats in images.

References

1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60(2), 91–110 (2004)

2. Otero, I.R., Delbracio, M.: The anatomy of the SIFT method. Image Processing
On Line (2012), http://demo.ipo.im/demo/82

3. Pinho, A.J., Ferreira, P.J.S.G.: Finding unknown repeated patterns in images. In:
EUSIPCO 2011, Barcelona, Spain, pp. 584–588 (2011)

http://demo.ipo.im/demo/82


A Method to Detect Repeated Unknown Patterns in an Image 19

4. Pratas, D., Pinho, A.J.: On the detection of unknown locally repeating patterns in
images. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part I. LNCS, vol. 7324,
pp. 158–165. Springer, Heidelberg (2012)

5. Curtin, R.R., Cline, J.R., Slagle, N.P., March, W.B., Ram, P., Mehta, N.A., Gray,
A.G.: MLPACK: A scalable C++ machine learning library. J. of Machine Learning
Research 14, 801–805 (2013)

6. Pinho, A.J., Pratas, D., Ferreira, P.J.S.G.: Bacteria DNA sequence compression
using a mixture of finite-context models. In: IEEE SSP 2011, Nice, France, pp.
125–128 (2011)

7. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and
Control 7(1), 1–22 (1964)

8. Solomonoff, R.J.: A formal theory of inductive inference. Part II. Information and
Control 7(2), 224–254 (1964)

9. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.
Problems of Information Transmission 1(1), 1–7 (1965)

10. Chaitin, G.J.: On the length of programs for computing finite binary sequences.
Journal of the ACM 13, 547–569 (1966)

11. Wallace, C.S., Boulton, D.M.: An information measure for classification. The Com-
puter Journal 11(2), 185–194 (1968)

12. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471
(1978)

13. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. on Inf.
Theory 22(1), 75–81 (1976)

14. Gordon, G.: Multi-dimensional linguistic complexity. Journal of Biomolecular
Structure & Dynamics 20(6), 747–750 (2003)

15. Dix, T.I., Powell, D.R., Allison, L., Bernal, J., Jaeger, S., Stern, L.: Comparative
analysis of long DNA sequences by per element information content using different
contexts. BMC Bioinformatics 8(Suppl. 2), S10 (2007)

16. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE
Trans. on Inf. Theory 50(12), 3250–3264 (2004)

17. Bennett, C.H., Gács, P., Li, M., Vitányi, P.M.B., Zurek, W.H.: Information dis-
tance. IEEE Trans. on Inf. Theory 44(4), 1407–1423 (1998)

18. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Trans. on Inf.
Theory 51(4), 1523–1545 (2005)

19. Tran, N.: The normalized compression distance and image distinguishability. In:
Human Vision and Electronic Imaging XII - Proc. of SPIE, p. 64921D (January
2007)

20. Mallet, A., Gueguen, L., Datcu, M.: Complexity based image artifact detection.
In: DCC 2008, Snowbird, Utah, p. 534 (2008)

21. Gondra, I., Heisterkamp, D.R.: Content-based image retrieval with the normalized
information distance. Computer Vision and Image Understanding 111, 219–228
(2008)

22. Pinho, A.J., Neves, A.J.R.: Lossy-to-lossless compression of images based on binary
tree decomposition. In: IEEE ICIP 2006, Atlanta, GA, pp. 2257–2260 (2006)

23. Pinho, A.J., Neves, A.J.R.: L-infinity progressive image compression. In: PCS 2007,
Lisbon, Portugal (2007)

24. Pinho, A.J., Neves, A.J.R.: Progressive lossless compression of medical images. In:
IEEE ICASSP 2009, Taipei, Taiwan (2009)

25. Neves, A.J.R., Pinho, A.J.: Lossless compression of microarray images using image-
dependent finite-context models. IEEE Trans. on Medical Imaging 28(2), 194–201
(2009)



http://www.springer.com/978-3-319-11757-7


	A Method to Detect Repeated Unknown Patterns in an Image
	1 Introduction
	2 The Method
	2.1 Feature Extraction and Quantization
	2.2 Sorting
	2.3 Finite-Context Encoding

	3 Why Finite-Context Models
	4 Results and Discussion
	References


