
Chapter 2
Representations of Quivers

Abstract In this chapter a new language is introduced to study the examples of
matrix problems: that of representations of quivers. This approach leads naturally
to a more sophisticated language known as categories and functors and large part
of the chapter is devoted to the development of this new language. The benefit of it
will be that the list of “normal forms” will be enhanced by some internal structure.
At the end a the important example of a linear quiver is studied.

2.1 Quivers

Look again at the examples of Chap. 1. In the two subspace problem, we considered
pairs of matrices .A;B/ with the same number of rows under a certain equivalence
relation. Identifying matrices with linear maps, we have thus considered diagrams

(2.1)

and were trying to find “good bases” for the involved vector spaces. The dual
problem (see Exercise 1.3.2) corresponds to diagrams of the form

In the Kronecker problem, we considered two matrices of the same size and in
the three Kronecker problem three matrices of the same size under the equivalence
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16 2 Representations of Quivers

relation of simultaneous row transformations and simultaneous column transforma-
tions. Thus ŒAjB� and ŒAjBjC � corresponds to two and three “parallel” linear maps,
respectively:

Again, the equivalence relation is given by arbitrary change of basis in the two
vector spaces. Thus, these four matrix problems, are encoded by a simple diagram

(2.2)

The matrix problem may be recovered, by replacing the vertices by vector spaces
with basis, the arrows by linear maps (between the corresponding vector spaces)
and considering two corresponding tuples of matrices as equivalent if one can
be obtained from the other by change of basis. The diagrams we consider are
therefore oriented graphs, where loops and multiple arrows are explicitly allowed.
We formalize this in the following.

A quiver is a quadruple Q D .Q0;Q1; s; t/, where Q0 and Q1 are sets and s; t
are two maps Q1 ! Q0. The elements of Q0 are called vertices, the elements of
Q1 are called arrows. The vertices s.˛/ and t.˛/ are called the starting vertex
respectively the terminating vertex of the arrow ˛. We also say that ˛ starts in
s.˛/ and ends in t.˛/. A quiverQ is finite if Q0 and Q1 are finite sets.

Examples 2.1 (a) The quiver on the left in (2.2) is called two subspace quiver.

(b) The third quiver from the left in (2.2) is called Kronecker quiver.

(c) The quiver on the right in (2.2) is called three Kronecker quiver. More
generally, the n-Kronecker quiver consists of two vertices 1; 2 and n > 1 arrows,
which have 1 as starting vertex and 2 as terminating vertex. Þ

Usually, in examples, we will haveQ0 D f1; : : : ; ng. For arrows ˛ with s.˛/ D i

and t.˛/ D j , we usually write. ˛W i ! j . In general, we denote by N
Q0 the set of

all functionsQ0 ! N, thus, if Q0 D f1; : : : ; ng then N
Q0 D N

n.
To each quiver we can associate a matrix problem (the contrary is false, see

Comment 2.6 (b) at the end of Sect. 2.2). Let Q be a finite quiver. Then the matrix
problem associated to Q is the pair .MQ;�Q/ where

MQ D
[

d2NQ0
MQ;d ; MQ;d D f.M˛/˛2Q1 j M˛ 2 Kdt.˛/�ds.˛/g
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and .M˛/˛ �Q .N˛/˛ if and only if there exists a family .Ui/i2Q0 of invertible
matrices such that

N˛ D Ut.˛/M˛U
�1
s.˛/ (2.3)

for each arrow ˛ 2 Q1.
For each M 2 MQ;d the vector d 2 N

Q0 is called the dimension vector of M
and shall be denoted by d D dimM .

Exercises

2.1.1 Draw the diagram of the quiver Q given by the sets Q0 D f1; 2; 3; 4; 5g,
Q1 D f˛1; ˛2; ˛3; ˛4g, and the functions s.˛i / D i and t.˛i / D i C 1 for i D
1; : : : ; 4.

2.1.2 Draw the quiver corresponding to the three subspace problem, described in
Exercise 1.3.3. This quiver is called the three subspace quiver.

2.1.3 Let Q be the quiver 1
˛�! 2. Solve the corresponding matrix problem

.MQ;�Q/, that is, determine the indecomposables.

2.1.4 Determine the dimension vectors of the indecomposables in the Kronecker
problem.

2.2 Representations

We will fix the ground field K and omit the dependence on K in our notation if no
confusion can arise.

A representation of a quiverQ is a pair

V D �
.Vi /i2Q0; .V˛/˛2Q1

�

of two families: the first, indexed over the vertices of Q, is a family of finite-
dimensional vector spaces and the second, indexed over the arrows of Q, consists
of linear maps V˛WVs.˛/ ! Vt.˛/.

The zero representation, denoted by 0, is the unique family with Vi D 0 (the
zero vector space) for each i 2 Q0.

It is common to write a representation “graphically” by replacing each vertex i
by the vectorspace Vi and each arrow ˛W i ! j by the linear map V˛WVi ! Vj . The
dimension vector of a representation V is the vector .dimVi/i2Q0 2 N

Q0 .
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Example 2.2 The indecomposable elements of the Kronecker problem with square
matrices are Œ1mjJ.m; �/� for � 2 K and ŒJ.m; 0/j1m�. They correspond to the
following indecomposable representations of the Kronecker quiver

where Vm D KŒX�=.Xm/. Þ

Let V and W be two representations of a finite quiver Q. A morphism from V

to W is a family of linear maps f D .fi WVi ! Wi/i2Q0 such that for each arrow
˛W i ! j we have

fjV˛ D W˛fi : (2.4)

We denote a morphism just like a function, that is, we write f WV ! W to indicate
that f is a morphism from V to W . Observe that Eq. (2.4) states that the following
diagram commutes:

A morphism is an isomorphism if each fi is invertible and we say that V andW
are isomorphic representations if there exists an isomorphism from V to W .

A basis of a representation V is a family .Bi /i2Q0 where Bi is a basis of the
space Vi for each vertex i 2 Q0. Each such basis yields a family of matrices V B D
.V B
˛ /˛2Q1 where V B

˛ represents the linear map V˛ in the bases Bs.˛/ and Bt.˛/.

Proposition 2.3 Let V and W be two representations of a finite quiver Q. Then V
is isomorphic to W if and only if for some (any) basis B of V and some (any) basis
C of W we have that V B and W C are equivalent elements of the matrix problem
associated to Q.

Proof Notice that by chosing bases, we translate the linear invertible map fi into an
invertible matrix Ui . Condition (2.4) corresponds then to (2.3). ut

Let V and W be two representations of a quiver Q. The direct sum V ˚ W is
then defined as the representation given by the spaces .V ˚W /i D Vi ˚Wi and the
linear maps .V ˚W /˛ D V˛ ˚W˛, which are defined componentwise. We denote
V ˚ V as a power by V 2 and inductively V i for lager exponents i .
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A representation V is indecomposable if and only if V ¤ 0 and it is impossible

to find an isomorphism V
���! V 0˚V 00 for any non-zero representationsV 0 and V 00.

Proposition 2.4 Let V be a representation of a finite quiver Q. Then V is
indecomposable if and only if V B is indecomposable for some (any) basis B of V .

Proof This an immediate consequence of the definitions and Proposition 2.3. ut
We thus achieved a perfect translation. Solving one of the matrix problems above

corresponds to classifying the indecomposable representations up to isomorphism.
For instance, we get the following result.

Proposition 2.5 Each indecomposable representation of the quiver corresponding
to the two subspace problem is isomorphic to precisely one representation of the
following list.

Comments 2.6 (a) Observe that the strange matrices of the two subspace problem
occurring in (1.3) correspond to natural representations.

(b) Notice that not every matrix problem we considered admits such a straightfor-
ward translation. For instance, in the coupled four-block problem of Sect. 1.4 we
looked at quadruples of matrices

�
C D

E F

�
;

where the row and column transformations for D are coupled by conjugation. The
corresponding quiver would look as follows (where we indicated the places of the
matrices):

This quiver defines a wild case and does not correspond to our original matrix
problem, since we have not expressed in our new language that we can add rows
from the lower stripe to the upper stripe nor that we can add columns from the left
to the right stripe.
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Exercises

2.2.1 Write the matrices given in Proposition 1.8 as representations of the corre-
sponding quiver.

2.2.2 Use the spaces Vn and VnC1 of Example 2.2 to write those indecomposable
representations of the Kronecker quiver which were not already given in the
Example.

2.2.3 Decompose the following representation into indecomposables

2.3 Categories and Functors

We shall briefly explain the language of categories and functors, since it provides
a general language for the different concepts we shall encounter. If you are already
familiar with categories and functors you can skip all of this section except the
examples and read on in Sect. 2.4.

A category C is a class of objects (which we usually denote by the same letter
as the whole category) together with a family of sets C .x; y/ whose elements are
called morphisms (one set for each pair of objects x; y 2 C ) together with a family
of composition maps C .y; z/ � C .x; y/ ! C .x; z/; .g; f / 7! g ı f (one for
each triple of objects x; y; z 2 C ) such that for each object x 2 C there exists an
identity morphism 1x 2 C .x; x/, that is an element which satisfies 1x ı f D f

and g ı 1x D g for any f 2 C .w; x/, g 2 C .x; y/, any w; y 2 C and such that the
composition is associative, that is .h ı g/ ı f D h ı .g ı f / for any f 2 C .w; x/,
g 2 C .x; y/, h 2 C .y; z/, any w; x; y; z 2 C .

This is a long definition! Intuitively, a category is something similar to what you
obtain when you throw all sets and all maps between all these sets into one big bag
called Set, the category of sets.

To summarize: There are objects, which form a class; between any two objects
there is a set of morphisms (possibly the empty set); morphisms may be composed
and the composition is associative; and there are identity morphisms. We usually
write f Wx ! y for a morphism f 2 C .x; y/ to remind us of the similarity with
maps. We also often omit the composition symbol and write gf instead of g ı f .

Examples 2.7 (a) The category Set has as objects the class of all sets and as
morphisms just all maps. The composition of morphisms in the category is just
the composition of maps and the identity morphisms are the identity maps.
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(b) The category Vec has as objects K-vector spaces with the linear maps as
morphisms. The composition of morphisms and the identity morphism are again
the obvious ones. The category vec has as objects the class of finite-dimensional
K-vector spaces, again with the linear maps as morphisms.

(c) The category Top has the topological spaces as objects and continuous
functions as morphisms. Þ

As you see you can take for the objects all representatives of a fixed algebraic
structure like topological spaces, rings, groups, abelian groups, finitely generated
abelian groups and so on and so on. For the morphisms you take the structure
preserving maps between them, and for the composition just the composition of
maps. You always get a category. Let us look now at some more and stranger
categories.

Examples 2.8 (a) LetQ be a finite quiver. We will see that MQ can be viewed as a
category. The class of objects is by definition just the set MQ itself. IfM;N 2 MQ

then let

MQ.M;N/ D f.Ui/i2Q0 j 8˛ 2 Q1;N˛Us.˛/ D Ut.˛/M˛g:

Observe that the condition N˛Us.˛/ D Ut.˛/M˛ is the same as (2.3) except that we
do not require the matrices Ui to be invertible.

It is easy to verify that MQ is indeed a category if the composition is given by
componentwise matrix multiplication and the identity morphisms are the tuples of
identity matrices. However, morphisms are clearly not functions between two sets
in this example.

(b) The category repQ has as objects the representations of Q and as morphisms
just the morphisms of representations. The composition is given by componentwise
composition of linear functions and the identity morphisms are given by tuples of
identity functions. Note, that as in the example before, morphisms are not given by
a single function; in this case they consist of a family of functions satisfying some
compatibility property. If V and W are representations of the quiver Q, we denote
the morphism set repQ.V;W / also by HomQ.V;W /. Þ

In a category C a morphism f Wx ! y is called an isomorphism if there exists
a morphism gWy ! x such that f ı g D 1y and g ı f D 1x. Two objects are said
to be isomorphic in C if there exists an isomorphism between them.

Example 2.9 In the category MQ (see Example 2.8(a)) two objects are isomorphic
precisely when they are equivalent. So, the categorical concept of isomorphism has
just the right meaning we are interested in. Þ
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The following concept will be used to relate different categories among each
other.

If C and D are categories then a covariant functor F WC ! D associates to
each object x 2 C an object of Fx 2 D and to each morphism g 2 C .x; y/ a
morphism Fg 2 D.Fx;Fy/ such that F1x D 1Fx for each object x 2 C and such
that the composition is preserved, that is F.h ı g/ D Fh ı Fg for any g 2 C .x; y/,
h 2 C .y; z/, any x; y; z 2 C . A contravariant functor F WC ! D is very similar
to a covariant functor except that it inverts the direction of the morphisms, that is
Fg 2 D.Fy;Fx/ for any g 2 C .x; y/ and consequently F.h ı g/ D Fg ı Fh for any
g and h.

We shall meet many functors during the course of this book and limit ourselves
here to two simple examples of covariant functors.

Examples 2.10 (a) Let Q be a finite quiver. Define a functor F W repQ ! vec
by FV D L

i2Q0
Vi for any representation V of Q and Fg D L

i2Q0
gi for any

morphism of representations g.

(b) Let Q be a finite quiver. Then define a functor GWMQ ! repQ as follows:
for an object M let .GM/i D Kdi , where d D dimM is the dimension vector, and
.GM/˛ D M˛ . Further, if U WM ! N is a morphism in MQ, then define GU D U ,
with the abuse of notation that U denotes a matrix as well as the associated linear
map in the canonical bases. Þ

If F WC ! D and GWD ! E are functors then we obtain a functor GFWC ! E
in the obvious way: .GF/x D G.Fx/ for each object x and .GF/f D G.Ff / for
each morphism f . The functor GF is called the composition of F with G.

If C is a category, then the functor 1C WC ! C defined by 1Cx D x and 1Cf D
f for each object x and morphism f is called the identity functor of C .

Two functors F WC ! D and GWD ! C are called inverse to each other
if FG D 1D and GF D 1C . Note that F and G necessarily must have the
same variance, that is, they both must be covariant or both contravariant, see
Exercise 2.3.4. If F and G are covariant, then they are called isomorphisms and
the categories C and D are called isomorphic. If F and G are contravariant then
they are called dualizations and the categories dual.

We will later see that it is rather seldom in practice that two categories are
isomorphic, see Sect. 2.5, where we develop a weaker notion called equivalence.
The last piece of categorical terminology relates two functors.

If F WC ! D and GWC ! D are two covariant functors, then a morphism
of functors (or natural transformation or just morphism) 'WF ! G is a family
.'x/x2C of morphism'x 2 D.Fx;Gx/ such that 'yıFh D Ghı'x for any morphism
h 2 C .x; y/.



2.4 The Path Category 23

If F WC ! D is a given covariant functor, then the morphism F ! F given
by the family .1Fx/x2C is called identity morphism and will be denoted by 1F .
A morphism 'WF ! G of covariant functors is an isomorphism if there exists a
morphism  WG ! F such that  ' D 1F and ' D 1G .

Exercises

2.3.1 Prove that a morphism f WV ! W of representations of a quiver is an
isomorphism if and only if for each vertex i the linear map fi is bijective. Show
that in that case the family .f �1

i /i2Q0 of inverse maps constitutes an isomorphism
W ! V of representations.

2.3.2 Prove a generalization of the previous exercise, namely, that a morphism
'WF ! G of functors F;GWC ! D is an isomorphism if and only if for each
object x 2 C the morphism 'x W Fx ! Gx is an isomorphism. Show that in that case
the family .'�1

x /x2C is an isomorphism of functorsG ! F .

2.3.3 Verify carefully that all the properties stated in the definition of a category are
satisfied in the two Examples 2.8.

2.3.4 Investigate when the functor GF is covariant and when it is contravariant,
depending on the variance of F and G.

2.3.5 Let F WC ! D and GWC ! D be two contravariant functors. What is the
appropriate condition for a family .'x/x2C of morphisms 'x 2 D.Fx;Gx/ to be a
morphism of covariant functors?

2.4 The Path Category

A representation looks very much like a functor Q ! vec where Q is viewed “as
a category” with vertices as objects and arrows as morphisms. But of course this is
nonsense, since there are no identity morphisms and no composition of arrows in
Q. In the following we will enhance the quiver Q to a proper category. Therefore
we will need the concept of paths in Q.

Let Q be a quiver (possibly infinite). A path of length l is a .l C 2/-tuple

w D .j j˛l ; ˛l�1; : : : ; ˛2; ˛1ji/ (2.5)

where i; j 2 Q0 and ˛1; : : : ; ˛l 2 Q1 such that s.˛1/ D i , t.˛i / D s.˛iC1/ for
i D 1; : : : ; l � 1 and t.˛l / D j .

We explicitly allow l D 0 but require then that j D i . The corresponding path
ei WD .i jji/ is called the identity path or trivial path in i . The length l of a path w
is denoted by len.w/.
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We extend the functions s and t in the obvious way: s.w/ D i and t.w/ D j if w
is the path (2.5). A path w of positive length l > 0 is called a cycle if s.w/ D t.w/.
Cycles are often also called oriented cycles in the literature. A cycle of length 1 is
called loop.

The composition of two paths v D .i j˛l ; : : : ; ˛1jh/ and w D .j jˇm; : : : ; ˇ1ji/
is defined by

wv D .j jˇm; : : : ; ˇ1; ˛l ; : : : ; ˛1jh/:

Notice that we defined the composition of paths in the same order as functions,
which is not at all standard in the literature, but rather up to the taste of the author.
A path .i j˛l ; : : : ; ˛1jh/ will often be denoted by ˛l˛l�1 � � �˛1.

LetQ be a quiver (possibly infinite). The path category KQ ofQ is the category
whose objects are the vertices of Q and the morphisms from i to j form a vector
space which has as basis the paths w with s.w/ D i and t.w/ D j . The composition
is extended bilinearly from the composition of paths.

At this point we should pause a little and look at the curious fact that we did
not define the category of paths having as morphisms just the paths, as one might
expect first. Indeed that would form a nice category also, but due to reasons which
shall become clear in the next chapter, we “linearize” the paths such that we can
take sums and multiples.

A category is a K-category if its morphism sets are endowed with a K-vector
space structure such that the composition is K-bilinear.

A functor F WC ! D between K-categories is K-linear if C .x; y/ !
D.Fx;Fy/; h 7! Fh is K-linear for each pair of objects x; y 2 C . If C is a
K-category then modC is the category of K-linear functors C ! vec, that is,
the objects of modC are those functors and the morphisms are the morphisms of
functors with the obvious composition. For two functors F;G 2 modC we write
HomC .F;G/ for the set of morphisms .modC /.F;G/.

Example 2.11 The path category KQ is a K-category. Moreover, each representa-
tion V of Q defines a K-linear (covariant) functor

QV W KQ ! vec :

Conversely, any such functor gives rise to a representation of Q. Þ

In a K-category C the direct sum of two objects x and y is defined as object z
together with maps
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such that �x�x D idx , �y�y D idy , �x�x C �y�y D idz, �y�x D 0 and �x�y D 0. So,
formally a direct sum is a quintuple .z; �x; �y; �x; �y/. However, the object z is—up
to isomorphism—uniquely determined by x and y, see Exercise 2.4.6. This justifies
the common abuse of language to call z itself the direct sum of x and y and denote
it as x ˚ y.

Example 2.12 If C D repQ, the categorical direct sum corresponds to the direct
sum defined for representations above. Also in case C D MQ the categorical direct
sum corresponds to the direct sum in the language of matrix problems. Þ

Exercises

2.4.1 Verify that the morphisms of representations are precisely the morphisms
between covariant K-linear functors KQ ! vec. Show that the category mod.KQ/
is isomorphic to the category repQ.

2.4.2 If Q denotes the Kronecker quiver:

then there are four morphism spaces in the category KQ. Determine the dimensions
of these spaces. Determine KQ.2; 1/ as set. How many elements does it have?

2.4.3 Let Q be a finite quiver. Show that different objects of KQ are non-
isomorphic.

2.4.4 For a finite quiver Q, prove that all morphism spaces in KQ are finite-
dimensional if and only if there is no cycle in the quiverQ.

2.4.5 The adjacency matrix AQ of a quiverQ with vertices 1; : : : ; n is the matrix
of size n � n whose entry .AQ/ij is the number of arrows ˛ 2 Q1 with s.˛/ D j

and t.˛/ D i . Prove that AQ is nilpotent (that is, there exists some positive integer
t such that AtQ D 0) if and only if there is no cycle in Q. For this, show first, that
for each t , the entry .AtQ/ij equals the number of paths w of length t with s.w/ D j ,
t.w/ D i .

Conclude from this that in case Q has no cycle then AnQ D 0, where n is the
number of vertices. Furthermore show that the matrix B D 1n C AQ C A2Q C
: : : C An�1

Q measures the dimension of the morphism spaces in KQ, namely Bij D
dimK .KQ.j; i//.

2.4.6 Let C be a K-category. Suppose that the quintuples .z; �x; �y; �x; �y/ and
.z0; � 0

x; �
0
y; �

0
x; �

0
y/ are two direct sums of the objects x and y in C . Proof that z is

isomorphic to z0.
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2.5 Equivalence of Categories

As we have seen there is a very close relationship between the category of
representations repQ and the category of matrix problems MQ associated to Q.
In the following we would like to clarify this relationship completely.

We recall that two categories C and D are called isomorphic if there exist two
functors F WC ! D and GWD ! C such that GF D 1C and FG D 1D .

However, this notion is in most concrete cases far too restrictive. It is more
convenient to look at some slight generalization: two categories C and D are
called equivalent if there exist two functors F WC ! D and GWD ! C such
that GF ' 1C and FG ' 1D , that is, if there exists isomorphisms of functors
'W GF ! 1C and  W FG ! 1D . In that case the functors F and G are called
equivalences or quasi-inverse to each other.

Proposition 2.13 Let Q be a finite quiver. Then the categories repQ and MQ are
equivalent.

Proof We already have constructed the functor

F WMQ �! repQ;

as application on the objects, see Example 2.10(b). The definition on morphisms is
straightforward.

To define a quasi-inverse G of F we choose a basis BV for each representation
V . Define nV;i D dimVi for each representation V and each vertex i . We recall that
for each arrow ˛W i ! j we get a matrix MV

˛ 2 KnV;j�nV;i representing the linear
map V˛ in the bases BV

i and BV
j . Moreover, the tuple G.V / D .MV

˛ /˛2Q1 defines
an object of MQ. Furthermore, for each morphism f WV ! W of representations

of Q we define G.f / D .U
f
i /i2Q0 , where Uf

i is the matrix representing the linear
map fi in the bases BV

i and BW
i .

To see that

GW repQ �! MQ

is a functor we have to verify that G preserves identity morphisms and the
composition. Indeed G.1V / D 1G.V / holds since the morphism 1V is the family
of identity maps 1Vi WVi ! Vi which are expressed as identity matrices, since
for both spaces we choose the same basis BV

i . For the composition, let U; V and
W be representations of Q and f WU ! V and gWV ! W be morphisms of
representations. Then, for a vertex i of the quiver,G.f /i is the matrix representing
fi WUi ! Vi in the basis BU

i and BV
i respectively. Similarly, G.g/i represents gi in

the Basis BV
i and BW

i respectively. Therefore G.g ı f /i D G.g/iG.f /i holds for
all i . This shows G.g ı f / D G.g/G.f / and finishes the proof that G is a functor.
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It remains to see that F and G are quasi-inverse to each other. Furthermore, we
denote by  V;i WKnV;i ! Vi the linear map representing the identity matrix in the
canonical basis andBV

i respectively. Note thatKnV;i D FG.V /i holds by definition.
To see that the family  V D . V;i /i2Q0 defines a morphism FG.V / ! V , we have
to verify that for each arrow ˛W i ! j the following diagram commutes:

We show this by looking at these maps in special bases: for Vi and Vj we chose
the bases BV

i and BV
j respectively and for FG.V /i and FG.V /j we choose the

canonical bases. The linear map V˛ is then represented by the matrixG.V /˛ D MV
˛ ,

the maps V;i and V;j by identity matrices and FG.V /˛ also byG.V /˛. This shows
that  V is a morphism of representations. Since for each vertex  V;i is bijective, it
is an isomorphism, see Exercise 2.3.1.

Thus we have now a family . V /V2repQ of isomorphisms  V W FG.V / ! V of
representations. To see that this family constitutes a morphism FG ! 1repQ of
functors repQ ! repQ it must be shown that for each morphism f WV ! W of
representations the following diagram on the left hand side commutes.

By definition, this means that for each vertex i the diagram on the right hand
side commutes. Indeed, in the bases BV

i and BW
i for Vi and Wi respectively and

the canonical bases for FG.V /i and FG.W /i , the linear maps fi and FG.f /i are
represented by G.f /i , whereas  V;i and  W;i are represented by identity matrices.

To see that  is an isomorphism of functors we have to give an inverse. For
this we use Exercise 2.3.2 to see that for each representation V , the family  �1

V D
. �1

V;i /i2Q0 is an isomorphism of representations which is an inverse of  .
To get an isomorphism GF ! 1MQ we could proceed very similarly. But we

will choose a much simpler way by restricting the choice of the bases for each
vector space of the form Kt to be always the canonical basis. It then happens that
GF.M/ D M for eachM 2 MQ. Thus GF D 1MQ and ' is the identity morphism.

ut
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We have intentionally written down all the details in the proof to show how each
categorical definition, which is involved, can be brought down in our setting to
statements about linear maps and matrices representing them.

Exercises

2.5.1 Let Q be the quiver which has a single vertex and no arrows. Show that vec
and repQ are isomorphic categories. In this sense the study of representations of
quivers generalizes linear algebra of finite-dimensional vector spaces.

2.5.2 Let Mat be the category whose objects are the natural numbers (including 0)
and whose morphism spaces Mat.n;m/ are the setsKm�n of matrices of size m� n
and entries in the field K . The composition in Mat is given matrix multiplication.
Show that vec and Mat are equivalent categories.

2.6 A New Example

We will consider a new class of problems starting from a family of quivers, which
are called linearly oriented, and look as follows:

We shall denote this quiver by
�!
A n. The following result shows, that the classification

problem can be solved completely for
�!
A n.

Theorem 2.14 Each indecomposable representation of
�!
A n is isomorphic to a

representation

Œj; i � W 0 ! : : : ! 0 ! K
Œ1��! : : :

Œ1��! K ! 0 ! : : : ! 0;

where the first (that is, leftmost) occurrence of K happens in place j and the last
(that is, rightmost) in place i for some 1 � j � i � n.

In particular,
�!
A n is of finite representation type and there are n.nC1/

2
indecom-

posables, up to isomorphism.

Proof Let V be an indecomposable representation of
�!
A n. Let i be the minimal

index such that V˛i is not injective and set i D n if no such index exists. Similarly,
let j be the maximal index such that V˛j�1 is not surjective and set j D 1 if no such
index exists. We shall show that V is isomorphic to Œj; i �.
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If i < n then V˛1; : : : ; V˛i�1 are all injective, but V˛i is not. Then we let Si
be a complement of Li D KerV˛i , and set inductively Sh D V �1

˛h
.ShC1/, Lh D

V �1
˛h
.LhC1/ for h D i � 1; i � 2; : : : ; 1. Note, that Sh ˚ Lh D Vh for h D 1; : : : i .

We thus see that V decomposes into

.L1 ! : : : ! Li ! 0 ! : : : ! 0/˚ .S1 ! : : : ! Si ! ViC1 ! : : : ! Vn/

and since V is indecomposable and Li ¤ 0 the right summand must be zero.
Thus we have shown so far that Vh D 0 for h > i and that all maps V˛h are

injective for h < i . This implies that j � i . We observe that if i D n then all these
statements are trivially true or void.

If j > 1 then V˛j ; V˛jC1
; : : : ; V˛i�1 are surjective and hence bijective, but V˛j�1

is not. Let Rj be a complement of Mj D V˛j�1 .Vj�1/ and set inductively Mh D
V˛h�1

.Mh�1/, Rh D V˛h�1
.Rh�1/, for h D j C 1; : : : i . We therefore conclude that

V decomposes into

.0 ! : : : ! 0 ! Rj ! : : : ! Ri ! 0 ! : : : ! 0/˚
.V1 ! : : : ! Vj�1 ! Mj ! : : :Mi ! 0 ! : : : ! 0/:

The indecomposability of V implies now that the latter one is zero, since Rj ¤ 0.
This shows that Vh D 0 for h < j and that V˛h is bijective for h D j; : : : ; i � 1.

We observe that in case j D 1 all these statements are trivially true or void. Thus V
is isomorphic to

0 ! : : : ! 0 ! Kd 1d�! : : :
1d�! Kd ! 0 ! : : : ! 0;

where d denotes the dimension of the spaces Vj ; : : : ; Vi . But this representation is
isomorphic to the direct sum of d copies of Œj; i �. By the indecomposability of V it
follows that d D 1 and that V is isomorphic to Œj; i �. ut

Thus, we have determined the objects of the category rep
�!
A n: they are, up to

isomorphism, direct sums of the representations Œj; i �. Now we turn our attention to

morphisms between representations of
�!
A n. If V andW are two representations, we

first write them as direct sum of indecomposable representations, say V ' Ls
aD1 Va

and W ' Lt
bD1 Wb , where each Va and each Wb is of the form Œj; i � for some

1 � j � i � n. A morphism 'WV ! W is then given by a matrix of morphisms
'baWVa ! Wb . Therefore, we are reduced to determine the morphisms between two
indecomposable representations Œj; i � and Œj 0; i 0�.

Lemma 2.15 The morphism space Hom.Œj; i �; Œj 0; i 0�/ is non-zero if and only if
j 0 � j � i 0 � i . Moreover, in that case, Hom.Œj; i �; Œj 0 ; i 0�/ is one-dimensional.
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Proof Suppose that  W Œj; i � ! Œj 0; i 0� is a morphism. Clearly, there is always the
zero morphism with  h D 0 for all h. If we suppose that  is not identically
zero then the two intervals Œj; i � and Œj 0; i 0� must have some intersection, that is,
m D max.j; j 0/ � min.i; i 0/ D M . For each h with m � h � M , the map  h is
just scalar multiplication with some factor �h. But if m � h; hC 1 � M , then the
commutative square

shows that �h D �hC1. Hence, if there is a non-zero morphism then it is just a non-
zero scalar multiple of the morphism � D �

j 0;i 0

j;i W Œj; i � ! Œj 0; i 0�, where �h D Œ1� for
each h D max.j; j 0/; : : : ;min.i; i 0/.

It remains to determine the condition, when a non-zero morphism  can exist. If
j < j 0 then we have a commuting square

which shows that  j 0 D 0 and consequently  D 0. Similarly, the case i < i 0 is
excluded. Sincem � M we get j � i 0 and therefore j 0 � j � i 0 � i is a necessary
condition for Hom.Œj; i �; Œj 0 ; i 0�/ to be non-zero and in that case this space is one-
dimensional. ut

Hence we have

Hom.Œj; i �; Œj 0 ; i 0�/ D
(
K �

j 0;i 0

j;i ; if j 0 � j � i 0 and j � i 0 � i

0; else.

Notice that the maps �j
0;i 0

j;i behave multiplicatively, that is �j
00;i 00

j 0;i 0 ı �j 0;i 0

j;i D �
j 00;i 00

j;i .
We call a non-zero morphism between two indecomposable representations of a

quiver Q irreducible if it cannot be written as a sum of compositions, where each
composition consists of two non-isomorphisms between indecomposables.

Hence from Œj; i � there are, up to scalar multiples, at most two irreducible
morphisms starting, namely �j�1;i

j;i (if 1 < j ) and �j;i�1j;i (if j < i ).
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Putting everything together, we have the following diagram of irreducible maps
between indecomposable representations in case n D 5.

(2.6)

Notice that the whole diagram is commutative, i. e. each square in it is commutative.
But there is still more structure inside of it which we shall discover in Sect. 6.3.

Exercises

2.6.1 Decompose the following representation V of
�!
A n into indecomposables:

Vi D K2 for all i D 1; : : : ; n and V˛i D
�
0 1

0 0

�
for all i D 1; : : : ; n � 1.

2.6.2 Show that if f WV ! W is a morphism of representations of a quiver Q
then Imf D .fi .Vi //i2Q0 defines a subrepresentation of W , that is a family of
subspaces W 0

i � Wi such that W˛.W
0
i / � W 0

j for each arrow ˛W i ! j . Explain
howW˛ defines .Imf /˛.

2.6.3 Use the previous exercise to prove that an irreducible morphism f WV ! W

between indecomposable representations satisfies that either all fi are injective or
all fi are surjective.
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