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Abstract. Over the past thirty years, the field of spoken language
processing has made impressive progress from simple laboratory demon-
strations to mainstream consumer products. However, commercial appli-
cations such as Siri highlight the fact that there is still some way to go in
creating Autonomous Social Agents that are truly capable of conversing
effectively with their human counterparts in real-world situations. This
paper suggests that it may be time for the spoken language processing
community to take an interest in the potentially important developments
that are occurring in related fields such as cognitive neuroscience, intel-
ligent systems and developmental robotics. It then gives an insight into
how such ideas might be integrated into a novel Mutual Beliefs Desires
Intentions Actions and Consequences (MBDIAC) framework that places
a focus on generative models of communicative behaviour which are
recruited for interpreting the behaviour of others.
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1 Introduction

Since the 1980s, the introduction of stochastic modelling techniques - particularly
hidden Markov models (HMMs) - into the field of spoken language processing
has given rise to steady year-on-year improvements in capability [1,2]. Cou-
pled with a relentless increase in the processing power of the necessary comput-
ing infrastructure, together with the introduction of public benchmark testing,
the field has developed from a specialist area of engineering research into the
commercial deployment of mainstream consumer products. With the advent of
smartphone applications such as Apple’s Siri, Microsoft’s Cortana and Google’s
Now, speech-based interaction with ’intelligent’ devices has entered the popular
imagination, and public awareness of the potential benefits of hands-free access
to information is at an all-time high [3].

The gains in performance for component technologies such as automatic
speech recognition and text-to-speech synthesis have accrued directly from the
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deployment of state-of-the-art machine learning techniques in which significantly
large corpora of annotated speech (often thousands of hours) are used to estimate
the parameters of rich context-sensitive Bayesian models. Indeed, the immense
challenges posed by the need to create accurate and effective spoken language
processing has meant that speech technology researchers have become acknowl-
edged pioneers in the use of the most advanced machine learning techniques
available. A recent example of this is the performance gains arising from the use
of deep neural networks (DNNs) [4].

However, notwithstanding the immense progress that has been made over the
past thirty or so years, it is generally acknowledged that there is still some way
to go before spoken language technology systems are sufficiently reliable for the
majority of envisaged applications. Whilst the performance of state-of-the-art
systems is impressive, it is still well short of what is required to provide users
with an effective and reliable alternative to traditional interface technologies such
as keyboards and touch-sensitive screens [5]. Moreover, it is clear that spoken
language capabilities of the average human speaker/listener are considerably
more robust in adverse real-world situations such as noisy environments, dealing
with speakers with foreign accents or conversing about entirely novel topics. This
means that there is still a clear need for significant improvements in our ability
to model and process speech, and hence it is necessary to ask where these gains
might arise - more training data, better models, new algorithms, or from some
other source [6]?

It is posited here that it is time for the spoken language processing com-
munity to look outside the relatively narrow confines of the discipline in order
to understand the potentially important developments that are taking place
in related areas. Fields such as cognitive neuroscience, intelligent systems and
developmental robotics are progressing at an immense pace and, although some
of the tools and techniques employed in spoken language processing could be of
value to those fields, there is a growing understanding outside the speech area
of how living systems are organised and how they interact with the world and
with each other. Some of these new ideas could have a direct bearing on future
spoken language systems, and could provide a launchpad for the kinds of devel-
opments that are essential if the potential of speech-based language interaction
with machines is to be realised fully. This paper addresses these issues and intro-
duces a number of key ideas from outside the field of spoken language processing
which the author believes could be of some significance to future progress.

2 Looking for Inspiration Outside

It is often remarked that spoken language could be the most sophisticated behav-
iour of the most complex organism we know [7–9]. However, the apparent ease
with which we as human beings interact using speech tends to mask the variety
and richness of the mechanisms that underpin it. In fact the spoken language
processing research community has become so focused on the rather obvious
surface patterning - such as lexical structure (i.e. words) - that the founda-
tional principles on which spoken interaction is organised has a tendency to be
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overlooked. In reality, long before spoken language dialogue evolved as a rich
communicative behaviour, the distant ancestors of modern human beings were
coordinating their activities using a variety of communicative modes and behav-
iours (such as the synchronisation of body postures, making explicit gestures,
the laying down of markers in the environment and the use of appropriate sounds
and noises). Interactivity is thus a fundamental aspect of the behaviour of living
systems, and it would seem appropriate to found spoken language interaction on
more primitive behaviours.

Interestingly, interactivity is not solely concerned with the behavioural rela-
tionship between one organism and another. In the general case, interactivity
takes place between an organism and its physical environment, where that envi-
ronment potentially incorporates other living systems. From an evolutionary
perspective, interactive behaviour between an organism and its environment can
be seen to emerge as a survival mechanism aimed at maintaining the persistence
of an organism long enough for successful procreation, and these are issues that
have engaged deep thinking theorists for any years. Of particular relevance here
is the growth of an approach to understanding (and modelling) living systems
known as enactivism.

2.1 Enactivism

Enactivism grew out of seminal work by Humberto Maturana and Francisco
Varela [10] in which they tackled fundamental questions about the nature of
living systems. In particular, they identified autopoiesis (a process whereby
organisational structure is preserved over time) as a critical self-regulatory mech-
anism and cognition (the operation of a nervous system) as providing a more
powerful and flexible autopoietic mechanism than purely chemical interactions.
They defined a minimal living system such as a single cell as an autopoietic
unity whereby the cell membrane maintains the boundary between the unity and
everything else. Hence, a unity is said to be structurally coupled with its exter-
nal environment - 1st-order coupling - and, for survival, appropriate interactive
behaviours are required to take place (such as moving up a sugar gradient).

Likewise, unities may be coupled with other unities forming symbiotic or
metacellular organisational structures - 2nd -order coupling - which can then be
viewed organisationally as unities in their own right. The neuron is cited as a
special type of cell emerging from particular symbiotic coupling, and the ner-
vous system is thus seen as facilitating a special form of 2nd-order metacellular
organisation termed a cognitive unity. Finally, Maturana and Varela propose
that interaction between cognitive unities - 3rd-order coupling - is manifest in
the form of organised social systems of group behaviour, and the emergence
of cooperation, communication and language are posited as a consequence of
3rd-order coupling.

The enactive perspective thus establishes a simple and yet powerful frame-
work for understanding the complexity of interaction between living systems,
and it holds the promise for the investigation of computational approaches that
seek to mimic these same behaviours. The emphasis on the coupling between a
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cognitive unity and its external environment (including other unities) is central
to the approach, and this provides two clear messages - interactivity must be
viewed as essentially multimodal in nature and that interaction is grounded in
the context in which it takes place. Likewise, enactivism makes it clear that
(spoken) language interaction is founded upon more general-purpose behaviours
for continuous communicative coupling rather than simple turn-by-turn message
passing [11,12].

2.2 Multimodal Interaction and Communication

In principle, the modality in which interaction between a living system and its
environment (including other living systems) takes place should be irrelevant.
However, in practice, the characteristics and affordances [13] of the different
modes greatly influence the modalities employed. For example, it may be easier
to move a heavy object by pushing it bodily rather than by blowing air at it.
Similarly, it may be safer to influence the behaviour of another living system by
making a loud noise from a distance rather than by approaching it and touching
it physically.

Nevertheless, notwithstanding the static advantages and disadvantages of
any particular mode of interaction, in a dynamic and changing world it makes
sense for an organism to be able to actively distribute information across alterna-
tive modes as a function of the situational context. Hence, even a sophisticated
behaviour such as language should be viewed as being essentially a multimodal
activity. Given this perspective, it would be natural to assume that there exists
some significant relationship between physical gestures and vocal sounds. In such
a framework, the power of multimodal behaviour such as speaking and pointing
would be taken for granted, and the emergence of prosody as a fundamental
carrier of unimodal vocal pointing behaviour would be more obvious.

For an up-to-date review of multimodal integration in general, see [14], and
for speech and gesture in particular, see [15]. The argument here is that such
behaviours are not simply ’nice to have’ additional features (as they tend to be
treated currently), but that they represent the basic substrate on which spo-
ken language interaction is founded. Indeed a number of authors have argued
that vocal language evolved from gestural communication (freeing up the hands
for tool use or grooming) [16–18]. Hence, these insights suggest that informa-
tion about multimodal characteristics and affordances should be intrinsic to the
computational modelling paradigms employed in spoken language systems.

2.3 Language Grounding

The notion that an organism is not only coupled with its environment, but also
with other organisms in the environment, introduces another important and
fundamental aspect of interactive behaviour - passive information flow versus
active signalling. In the first case, almost any behaviour could have indirect con-
sequences in the sense that the environment could be disturbed by any physical
activity, and such disturbance may provide a cue to other organisms as to what
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has taken place. As a result, organisms could exploit the availability of such
information for their own benefit; for example, a predator could track a prey by
following its trail of scent. In this situation, the emergent coupled behaviour is
conditioned upon passive (unintentional) information transfer between individ-
ual organisms via the environment. In this case, the information laid down in
the environment has meaning for the receiver, but not for the sender. However,
living systems may also actively manage the information flow, and this would
take the form of active (intentional) signalling - signals that have meaning for
the sender (and hopefully, the receiver).

Meaning and semantics have been rather latecomers to the spoken language
processing party. However, from the perspective being developed here, it is clear
that the significance and implications of a behaviour are fundamental to the
dynamics of the coupling that takes place between one individual and another.
In other words, meaning is everything! The implication of this view is that the
coupling is contingent on the communicative context which, in general terms,
consists of the characteristics of the agents involved, the physical environment
in which they are placed and the temporal context in which the actions occur.
In modern terminology, meaningful communication is said to be grounded in
the real world [19], and that generating and interpreting such behaviour is only
possible with reference to the embodied nature and situated context in which the
interactions take place. The grounding provided by a common physical environ-
ment gives rise to the possibility of shared meanings and representations [20],
and crucial behaviours such joint attention and joint action emerge as a direct
consequence of managing the interaction [21–24].

Such a perspective has taken strong hold in the area of developmental robotics
in which autonomous agents acquire communication and language skills (and in
particular, meanings) not through instruction, but through interaction [25–29].
These approaches address the symbol grounding problem [30] by demonstrating
that linguistic structure can be mapped to physical movement and sensory per-
ception. As such, they represent the first steps towards a more general approach
which hypothesises that even the most abstract linguistic expressions may be
understood by the use of metaphor to link high-level representations to low-level
perceptions and actions [31].

2.4 Mirror Neurons and Simulation

One of the drivers behind grounding language in behaviour is the discovery in the
1990s of a neural mechanism - so-called mirror neurons - that links action and
perception [32,33]. The original experiment involved the study of neural activ-
ity in the motor cortex of a monkey grasping a small item (such as a raisin).
The unexpected outcome was that neurons in the monkey’s pre-frontal motor
cortex fired, not only when the monkey performed the action, but also when
the monkey observed a human experimenter performing the same action. As
a control, it turned out that activation did not occur when the human experi-
menter used a tool (such as tweezers) to perform the action. The implication was
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that, far from being independent faculties, action and perception were somehow
intimately linked.

The discovery of mirror neurons triggered an avalanche of research aimed at
uncovering the implications of significant sensorimotor overlap. The basic idea
was that mirror structures appeared to facilitate mental simulations that could
be used for interpreting the actions and intentions of others [34]. Simulation not
only provides a generative forward model that may be used to explain observed
events, but it also facilitates the prediction of future events, the imagination of
novel events and the optimal influence of future events. The mirror mechanism
thus seemed to provide a basis for a number of important behaviours such as
action understanding [35], imitation and learning [36], empathy and theory of
mind [37] and, of most significance here, the evolution of speech and language
[38–41].

Since the simulation principle suggests that generative models of spoken lan-
guage production could be implicated in human speech recognition and under-
standing, the discovery of mirror neurons sparked a revival of interest in the
motor theory of speech perception [42]. The jury is still out as to the precise role
of the speech motor system in speech perception, but see [43–45] for examples
of discussion on this topic.

The mirror neuron hypothesis has also had some impact on robotics research
(see [46], for example), and the notion of mental simulation as a forward model/
predictor mechanism has inspired new theories of language [47–49] and speech
perception [50].

2.5 Perceptual Control Theory

As suggested above, the structural coupling of an agent with its environment
(including other agents) could be instantiated as a one-way causal dependency.
However, it is more likely that coupling would be bi-directional, and this implies
the existence of a dynamical system with feedback. Feedback - in particular,
negative feedback - provides a powerful mechanism for achieving and maintaining
stability (static or dynamic), and feedback control systems have been posited as
a fundamental property of living systems [51,52].

Founded on principles first expounded in the field of cybernetics [53], and
railing against the traditional behaviourist perspective taken by mainstream
psychologists, perceptual control theory (PCT) focuses on the consequence of
a negative-feedback control architecture in which behaviour emerges, not from
an external stimulus, but from an organism’s internal drive to achieve desired
perceptual states [54]. Unlike the traditional stimulus-response approach, PCT
is able to explain how a living organism can compensate for (unpredictable)
disturbances in the environment without the need to invoke complex statistical
models. For example, the orientation of a foot placed on uneven ground is con-
trolled, not by computing the consequences of an unusual joint angle, but by the
need to maintain a stable body posture. Likewise, PCT suggest that the clarity
of speech production is controlled, not by computing the consequences of the
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amount of noise in an environment, but by the need to maintain a suitable level
of perceived intelligibility.

Indeed, the importance of feedback control in speech has been appreciated
for some time, coupled with the realisation that living systems have to balance
the effectiveness of their actions against the (physical and neural) effort that is
required to perform the actions [55]. This principle has been used to good effect
in a novel form of speech synthesis that regulates its pronunciation using a crude
model of the listener [56].

2.6 Intentionality, Emotion and Learning

PCT provides an insight into a model of behaviour that is active/intentional
rather than passive/reactive, and this connects very nicely with the observation
that human beings tend to regard other human beings, animals and even inan-
imate objects as intentional agents [57]. It also links with the view of language
as an intentional behaviour [58], and thus with mirror neurons as a mechanism
for inferring the communicative intentions of others [59].

Intentionality already plays a major role in the field of agent-based modelling,
in particular using the BDI Beliefs, Desires, Intentions paradigm [60,61]. BDI is
an established methodology for modelling emergent behaviours from swarms of
‘intelligent’ agents, but it doesn’t specify how to recognise/interpret behaviour
under conditions of ambiguity or uncertainty. Nevertheless, BDI does capture
some important features of behaviour, and it is useful to appreciate that beliefs
equate to priors (which equate to memory), desires equate to goals, and inten-
tions drive planning and action.

Viewing the behaviour of living systems as intentional with the consequences
of any actions being monitored using perceptual feedback, leads to a model of
behaviour that is driven by a comparison between desired and actual perceptual
states (that is, by the error signal in a PCT-style feedback control process). This
difference between intention and outcome can be regarded as an appraisal [62]
of emotional valence whereby a match is regarded as positive/happy and a mis-
match is regarded as negative/unhappy [63]. From this perspective, emotion can
be seen as a driver of behaviour (rather than simply a consequence of behaviour)
and provides the force behind adaptation and learning.

3 Bringing the Ideas Inside

The foregoing provides a wealth of insights from outside the technical field of
spoken language processing that could have a direct bearing on future spoken
language systems. In particular, it points to a novel computational architecture
for spoken language processing in which the distinctions between traditionally
independent system components become blurred. It would seem that speech
recognition and understanding should be based on forward models of speech
generation/production, and that those models should be the same as those used
by the system to generate output itself. It turns out that dialogue management
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should be concerned less with turn taking and more with synchronising and
coordinating its behaviours with its users.

The ideas above also suggest that a system’s goals should be to satisfy users’
rather than systems’ needs, and this means that systems need to be able to model
users and determine their needs by empathising with them. A failure to meet
users’ needs should lead to negative affect in the system, an internal variable
which is not only used to drive the system’s behaviour towards satisfying the
user, but which could also be expressed visually or vocally in order to keep a
user informed of the system’s internal states and intentions. The previous section
also points to a view of spoken language processing that is more integrated
with its external environment, and to systems which are constantly adapting to
compensate for the particular contextual circumstances that prevail.

3.1 Existing Approaches

A number of these ideas have already been discussed in the spoken language
processing literature, and some are finding their way into practical systems. For
example, the PRESENCE (PREdictive SENsorimotor Control and Emulation)
architecture [64–66] draws together many of these principles into a unified frame-
work in which the system has in mind the needs and intentions of its users, and
a user has in mind the needs and intentions of the system. As well as the lis-
tening speech synthesiser mentioned earlier [67], PRESENCE has informed a
number of developments in spoken language processing including the use of user
emotion to drive dialogue [68], AnTon - an animatronic model of the human
tongue and vocal tract [69] and the parsimonious management of interruptions
in conversational systems [70,71].

Another area of on-going work that fits well with some of the themes identi-
fied above is the powerful notion of incremental processing whereby recognition,
dialogue management and synthesis all progress in parallel [72–75]. These ideas
fit well with contemporary approaches to dialogue management using POMDPs
Partially-Observable Markov Decision Processes [76,77].

However, despite these important first steps, as yet there is no mathemati-
cally grounded framework that encapsulates all of the key ideas into a practical
computational architecture. Of course, this is not surprising - these are complex
issues that can be difficult to interpret. So, where might one start? The following
is a preliminary taste of what might be required [78].

3.2 Towards a General Conceptual Framework

One of the main messages from the foregoing is that a key driver of behaviour
- including speaking - for a living system seems to be intentionality (based on
needs). Consider, therefore, a world containing just two intentional agents -
agent1 and agent2. The world itself obeys the Laws of Physics, which means
that the evolution of events follows a straightforward course in which actions
lead to consequences (which constitute further actions) in a continuous cycle of
cause and effect.
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Actionst � Consequences �→ Actionst+1. (1)

The behaviour of the world can thus be characterised as...

Consequences = fworld (Actions) , (2)

where f is some function which transforms Actions into Consequences.
The two intentional agents are each capable of (i) effecting changes in the

world and (ii) inferring the causes of changes in the world.
In the first case, the intentions of an agent lead to actions which in turn lead

to consequences...

Intentions � Actions � Consequences. (3)

The behaviour of the agent can thus be characterised as...

Actions = gagent (Intentions) , (4)

where g is some function that transforms Intentions into Actions.
In the second case, an agent attempts to infer the actions that gave rise to

observed consequences.

Actions � Consequences � ̂Actions. (5)

The behaviour of the agent can thus be characterised as...

̂Actions = hagent (Consequences) , (6)

where h is some function that transforms Consequences into estimated
Actions.

This analysis becomes interesting when there is (intentional) interaction
between the two agents. However, before taking that step, it is necessary to
consider the interactions between the agents and the world in a little more detail.

An Agent Manipulating the World. Consider an agent attempting to
manipulate the world, that is intentions are transformed into actions which are
transformed into consequences. In robotics, the process of converting an inten-
tion into an appropriate action is known as action selection, and the relevant
transformation is shown in Eq. 4. Note, however, the emphasis here is not on the
actions that are required, but on the consequences of those actions.

Consequences = fworld (gagent (Intentions)) , (7)

where g is a transform from intentions to actions and, as before, f is the
transform from actions to consequences.

Of course, whether the intended consequences are achieved depends on the
agent having the correct transforms. It is possible to discuss how f and g might
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be calibrated. However, there is an alternative approach that is not dependent
on knowing f or g, and that is to search over possible actions to find those that
create the best match between the intentions and the observed consequences.

̂Actions = arg min
Actions

(Intentions − Consequences) , (8)

where Intentions−Consequences constitutes an error signal that reflects the
agent’s appraisal of its actions. A large value means that the actions are poor; a
small value means that the actions are good. Hence, the error signal can be said
to be equivalent to emotional valence - as discussed in Sect. 2.6. Overall, this
optimisation process is a negative feedback control loop that operates to ensure
that the consequences match the intentions even in the presence of unpredictable
disturbances. This is exactly the type of control structure envisaged in Perceptual
Control Theory - Sect. 2.5.

The approach works will only function if the agent can observe the conse-
quences of its actions. However, when an agent is manipulating another agent,
the consequences are likely to be changes in internal state and thus potentially
unobservable. This situation is addressed below, but first it is necessary to con-
sider an agent interpreting what’s happening in the world.

An Agent Interpreting the World. The challenge facing an agent attempt-
ing to interpret what is happening in the world is to derive the actions/causes
from observing their effects/consequences. If the inverse transform f−1 is known
(from Eq. 2), then it is possible to compute the actions directly from the observed
consequences...

Actions = f−1
world (Consequences) . (9)

However, in reality the inverse transform is not known. If it can be estimated
̂f−1, then it is possible to compute an estimate of the actions...

̂Actions = ̂f−1
world (Consequences) . (10)

Of course the accuracy with which the causes can be estimated depends on
the fidelity of the inverse transform.

An alternative approach, which aligns well with some of the ideas in the
previous section, is not to use an inverse model at all, but to use a forward
model - that is, an estimate of f ( ̂f). Estimation then proceeds by searching
over possible actions to find the best match between the predicted consequences
( ̂Consequences) and the observed consequences - again, a negative-feedback con-
trol loop.

̂Actions = arg min
̂Consequences

(

Consequences − ̂Consequences
)

. (11)

Of course the forward model is itself an estimate...

̂Consequences = ̂fworld (Actions) , (12)
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which leads to...

̂Actions = arg min
Actions

(

Consequences − ̂fworld(Actions)
)

. (13)

As an aside, the same idea can be expressed in a Bayesian framework, but the
principle is the same - interpretation is performed using search over a forward
model...

Pr(Actions|Consequences) =
Pr(Consequences|Actions) Pr(Actions)

Pr(Consequences)
. (14)

Hence the estimated action is that which maximises the following...

̂Actions = arg max
Actions

(Pr(Consequences|Actions)) , (15)

where Pr(Consequences|Actions) is the forward/generative model (equiva-
lent to ̂fworld (Actions)).

An Agent Communicating Its Intentions to Another Agent. Now it is
possible to turn to the situation where one agent - agent1 - seeks to manipulate
another agent - agent2. As mentioned above, in this case the consequences of
agent1’s actions may not be observable (because agent1’s intention is to change
the mental state of agent2). However, if agent1 can observe its own actions, then
it can use a model to emulate the consequences of its actions. That is, agent1
uses an estimate of the forward transform ̂hagent2.

̂Actions = arg min
Actions

(

Intentions − ̂hagent2(Actions)
)

. (16)

This solution is equivalent to agent1 actively trying out actions in order to
arrive at the correct ones. However, an even better solution is for agent1 not to
search in the real world, but to search in a simulated world - that is, to imagine
the consequences of its actions in advance of performing the chosen ones. This is
emulation as described in Sect. 2.4 which introduced the action of mirror neurons.

̂Actions = arg min
˜Actions

(

Intentions − ̂hagent2( ˜Actions)
)

. (17)

As before, a negative-feedback control loop manages the search and, inter-
estingly, it can also be viewed as synthesis-by-analysis.

An Agent Interpreting the Actions of Another Agent. For an agent to
interpret the actions of another agent, they are effectively inferring the intentions
of that agent. In this case, agent2 needs to infer the intentions of agent1 by
comparing the observed actions with the output of a forward model for agent1...

̂Intentions = arg min
Intentions

(

Actions − ĝagent1(Intentions)
)

. (18)

As before, a negative-feedback control loop manages the search to find the
best match and, in this case the process can be viewed as analysis-by-synthesis.
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3.3 Using Self to Model Other

Most of the derivation thus far is relatively straightforward in that it reflects
known approaches, albeit caste in an unusual framework. This is especially obvi-
ous if one maps the arrangements into a Bayesian formulation. The overlap with
some of the ideas outlined in Sect. 2 should be apparent.

However, there is one more step that serves to set this whole approach apart
from more standard analyses, and that step arises from the question “where do
ĝ and ̂h come from”? From the perspective of agent1, ̂h is a property of agent2
(and vice-versa). Likewise, From the perspective of agent2, ĝ is a property of
agent1 (and vice-versa). The answer, drawing again on concepts emerging from
Sect. 2, is that for a particular agent - self - the information required to model
another agent - other - could be derived, not from modelling the behaviour of
other, but from the capabilities of self ! In other words, the simulation of other
recruits information from the existing abilities of self - just as observed in mirror
neuron behaviour (Sect. 2.4).

If spoken language is the behaviour of interest, then such an arrangement
would constitute synthesis-by-analysis-by-synthesis for the speaker and analysis-
by-synthesis-by-analysis for the listener.

4 Conclusion

This paper has reviewed a number of different ideas from outside the main-
stream field of spoken language processing (starting from the coupling between
living cells), and given an insight into how they might be integrated into a novel
framework that could have some bearing on the architecture for future intel-
ligent interactive empathic communicative systems [79]. The approach - which
might be termed MBDIAC Mutual Beliefs Desires Intentions Actions and Con-
sequences - is different from the current paradigm in that, rather than estimate
model parameters off-line using vast quantities of static annotated spoken lan-
guage material, it highlights an alternative developmental paradigm based on
on-line interactive skill acquisition in dynamic real-world situations and environ-
ments. It also places a focus on generative models of communicative behaviour
(grounded in movement and action, and generalised using metaphor) which are
subsequently recruited for interpreting the communicative behaviour of others.

What is also different about the approach suggested here is that, in principle,
it subsumes everything from high-level semantic and pragmatic representations
down to the lowest-level sensorimotor behaviours. The approach is also neutral
with respect to the sensorimotor modalities involved; hence gesture and prosody
have an equal place alongside the more conventional vocal behaviours. The over-
all message is that it may be time to step back from worrying about the detail of
contemporary spoken language systems in order to rediscover the crucial com-
municative context in which communicative behaviour takes place. That way we
might be able to design and implement truly Autonomous Social Agents that
are capable of conversing effectively with their human counterparts.
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Finally, some readers may be tempted to think that this approach is promot-
ing a debate between statistical and non-statistical modelling paradigms. On
the contrary, the entire edifice should be capable of being caste in a probabilistic
framework. The concern here is not about probability but about priors!
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