
Chapter 2
Observer Design for Discrete-Time Switching
Nonlinear Models

Zsófia Lendek, Paula Raica, Jimmy Lauber and Thierry Marie Guerra

Abstract Switched systems are often described by continuous and discrete dynam-
ics as well as their interactions. Although results are available for linear switching
systems, for nonlinear switching models few results exist. In this chapter, we con-
sider observer design for discrete-time switching nonlinear systems with a Takagi–
Sugeno representation. For designing the observers, a switching nonquadratic Lya-
punov function is used. Such Lyapunov functions have shown a real improvement of
the design conditions for discrete-time Takagi–Sugeno models. The Lypunov func-
tion can be defined for each subsystem or just for the moments when switching takes
place. In the first case the results are more general, but also more conservative. The
second case represents a significant improvement for periodic models. Thanks to the
Lyapunov function used, it is possible to design observers for some switching systems
with unobservable subsystems. The developed conditions are formulated as linear
or bilinear matrix inequalities. Their advantages and shortcomings are illustrated on
numerical examples.
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2.1 Introduction

2.1.1 Switching Systems

Switching systems are a class of hybrid systems that switch between a family of
modes or subsystems. In the last decades, analysis and synthesis of switching sys-
tems has attracted much attention, mostly in the continuous-time case, with linear
subsystems.

For instance, linear switching systems where the switching laws can be arbitrarily
chosen have been considered in [1] to study the reachable set of such systems.
Stabilization and tracking conditions for continuous-time linear switching systems
have been developed in [3, 4], delay-dependent stabilization in [33], and observability
with unknown input has been investigated in [8]. The results for switching systems
have been applied in [26] for the decentralized stabilization of multiagent systems.
State feedback controller design for nonlinear switching systems has been presented
in [7] and optimal control in [5]. A notable result, although for continuous-time
linear switching systems, is the one in [30], which concerns the design of switching
sequences for stabilization and proves that it is sufficient for stabilization to employ
a periodic switching law.

For the discrete-time case considerably fewer results exist. Most of these concern
linear subsystems, such as [31], where stabilization in the presence of input saturation
and uncertainties is considered, or [14] which considers the computation of the mode-
dependent dwell time. Observability for switching discrete-time linear systems has
been investigated in [13], while a linear controller with integral action has been used
for the stabilization of switching systems in [7]. Other recent approaches have been
reported in [11, 19, 29].

This chapter deals with nonlinear switching models. These models can be found
in various domains [41, 47, 58, 60–62], such as automotive, networked control,
DC converters, mobile robots, etc. In the case of automotive applications, switching
approaches have been used for different parts of the vehicle: engine control, HCCI
combustion [40], air path with turbocharger [42–44], clutch actuator control [38].

A very promising recent field of research for switching control concerns systems
controlled via network [17, 50]. In this context, stability and stabilization are subject
to communication imperfections. Switching methods allow to take into account those
constraints.

In power electronics, applications concern power converter structures. Multicel-
lular converters are components which require the control of several switches. A way
to consider the different possible modes is to use a switching structure [28].

A particular class of switching models represents those models that switch peri-
odically. Such systems can be found in numerous domains such as automotive, aero-
nautic, aerospace, and computer control of industrial process. For example, in [10],
a periodic dynamic model is used to estimate the air/fuel ratio in each cylinder on an
internal combustion engine, Gaiani et al. [25] proposes a periodic model for the rotor
blades of helicopter, [56] deals with the problem of an onboard automatic station
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keeping of a small spacecraft on a specific orbit of reference and proposes a periodic
state feedback control law. Other examples are provided in [6] related to computer
control and communication systems.

The stability of linear periodic systems is characterized by the monodromy transi-
tion matrix and by its eigenvalues, called the characteristic multipliers (often referred
to as the poles of the system). If all the characteristic multipliers are in the open unit
disc of the complex plane, then the system is asymptotically stable [22]. Concerning
the stabilization problem of those models, results are available in [21]. For models
including time-varying delays, Stepan and Insperger [51] proposed methods based
on Floquet’s transformation, which is only applied to autonomous systems, and led
to conditions for exponential stability.

Extensions exist to polytopic linear parameter varying periodic models, where the
stability analysis is based on the use of quadratic [2, 21] or nonquadratic [12] Lya-
punov functions. Results for stabilization has been reported in [32, 34] but observer
design has not been considered.

In what follows, we consider observer design for general and periodic switching
systems. We represent the switching nonlinear models by switching quasi-linear
parameter varying or Takagi–Sugeno (TS) fuzzy systems [52], presented in what
follows.

2.1.2 Discrete-Time TS Models

Dynamic systems are modeled in the state space framework, using a state transition
model, which describes the evolution of the states over time, and a measurement
model, which relates the measurement to the states. Mathematically, we describe
such systems, in discrete time, as:

xk+1 = f (xk, uk)

yk = h(xk)
(2.1)

where f denotes the state transition function, describing the evolution of the states
over time, h is the measurement function, relating the measurements to the states, x
is the vector of the state variables, u is the vector of the input or control variables,
and y denotes the measurement vector.

We represent the system above by Takagi–Sugeno (TS) fuzzy models of the form

xk+1 =
r∑

i=1

hi (zk)(Ai xk + Bi uk)

yk =
r∑

i=1

hi (zk)Ci xk

(2.2)
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where r is the number of local models, Ai , Bi , Ci , are the matrices of the i th local
model, z is the vector of the scheduling variables, which may depend on the states,
inputs, measurements, or other exogenous variables, and hi (zk), i = 1, 2, . . . , r are
normalized membership functions, i.e., hi (zk) ≥ 0 and

∑r
i=1 hi (zk) = 1, ∀k ∈ N.

Such a model presents several advantages. The TS model is a universal approx-
imator [20], and many nonlinear systems can be exactly represented in a compact
set of the state space as TS systems [45]. Moreover, they are convex combination of
local affine models, which facilitates stability analysis and controller and observer
design for such systems. In addition, many stability and design conditions for TS
systems can be formulated as linear matrix inequalities [9, 48, 53, 55], for which
efficient algorithms exist.

Once a TS representation of the nonlinear system (2.1) is available, the analysis
is performed using Lyapunov’s direct method. Most commonly, common quadratic
Lyapunov functions have been used and conditions developed independently of the
membership functions. In the last years, results have been significantly improved by
the use of nonquadratic Lyapunov functions, in particular for the discrete-time case.

Controller and observer design using TS models has gained an increased inter-
est. The most well-known structure used is the so-called PDC (parallel distributed
compensation) controller or observer design, where a constant gain corresponds to
each rule, and the synthesis is done based on a common quadratic Lyapunov func-
tion. With the use of nonquadratic [15, 27, 35] Lyapunov functions, more complex
state feedback controllers and observers were developed, and the design conditions
became less conservative. These conditions are generally derived in the form of linear
matrix inequalities (LMIs).

Switched TS systems have been investigated mainly in the continuous case where
the stability is based on the use of a quadratic Lyapunov function [36, 37, 46, 54] or
a piecewise one [23, 24]. For discrete-time switching TS models, using nonquadratic
Lyapunov functions, few results exist [16, 18].

In this chapter, switching discrete-time TS fuzzy models are considered and
observer design conditions are developed. For the ease of the notation, a graph rep-
resentation of the switching system is employed and to develop the conditions, a
nonquadratic switching Lyapunov function is used.

2.2 Switching TS Models

2.2.1 Preliminaries

To design observers for discrete-time switching TS systems, we consider subsystems
of the form
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xk+1 =
r∑

i=1

hi (zk)(A j,i xk + B j,i uk)

yk =
r∑

i=1

hi (zk)C j,i xk

denoted in what follows as

xk+1 = A j,z xk + B j,zuk

yk = C j,z xk
(2.3)

where j is the number of the current subsystem, j = 1, 2, . . . , ns , ns being the
number of the subsystems, x denotes the state vector, r is the number of rules, z is
the scheduling vector, hi , i = 1, 2, . . . , r are normalized membership functions,
and A j,i , B j,i , and C j,i , i = 1, 2, . . . , r , j = 1, 2, . . . , ns , are the local models.
Once activated, a subsystem may be active for at least pm

i ∈ N
+ and at most pM

i ∈ N
+

samples, that are assumed known.
In this chapter, we will make use of the following results:

Lemma 2.1 [49] Consider a vector x ∈ R
nx and two matrices Q = QT ∈ R

nx ×nx

and R ∈ R
m×nx such that rank(R) < nx . The two following expressions are equiv-

alent:

1. xT Qx < 0, x ∈ {x ∈ R
nx , x �= 0, Rx = 0}

2. ∃M ∈ R
nx ×m such that Q + M R + RT MT < 0

Analysis and design for TS models often lead to double-sum negativity problems
of the form

xT
r∑

i=1

r∑

j=1

hi (zk)h j (zk)Γi j x < 0 (2.4)

where Γi j , i, j = 1, 2, . . . , r are matrices of appropriate dimensions.

Lemma 2.2 [59] The double-sum (2.4) is negative, if

Γi i < 0

Γi j + Γ j i < 0, i, j = 1, 2, . . . , r, i < j

Lemma 2.3 [57] The double-sum (2.4) is negative, if

Γi i < 0
2

r − 1
Γi i + Γi j + Γ j i < 0, i, j = 1, 2, . . . , r, i �= j
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0 and I denote the zero and identity matrices of appropriate dimensions, and a (∗)

denotes the term induced by symmetry. The subscript z + m (as in A1,z+m) stands
for the scheduling vector being evaluated at the current sample plus mth instant, i.e.,
z(k + m).

2.2.2 Graph Representation

For the easier notation, we use a directed graph representation of the switching
system (2.3). The associated graph is G = {V ,E }, with V being the set of vertices
representing the subsystems and E the set of admissible transitions or switches. As
such, (vi , v j ) ∈ E if a switch from subsystem i to subsystem j is possible. Note that
we assume that self-transitions are also possible: these correspond to the subsystem
being active for more than one sample.

A path P(vi , v j ) between two vertices vi and v j in the graph G is a sequence
of vertices P(vi , v j ) = [vp1 , vp2 , . . . , vpn p

] so that vi = vp1 , v j = vpn p
, and

(vpk , vpk+1) ∈ E , k = 1, 2, . . . , n p − 1. A path between two vertices is in general
not unique.

A cycle C = [c1, c2, . . . , cnc , c1] is a path having the same initial and final
vertex. Two cycles are equivalent if the vertices in one are a cyclic permutation of the
vertices in the other. In this chapter, when referring to cycles, we mean elementary
cycles. A graph is strongly connected if there is a path between any two vertices inV .

In a weighted graph G = {V ,E ,W }, the weight (adjacency) matrix is defined as
W (i, j) = wi, j , with wi, j ∈ R\{0}, if there exists an edge (vi , v j ), or W (i, j) = ∞,
if a switch from subsystem i to subsystem j is not possible. The elements on the
diagonal W (i, i) = wi,i are the weights associated to the vertices.

We define the weight of a path W (P(vi , v j )) as the product of all weights of the
vertices and edges that appear in the path, i.e.,

W ([vp1 , vp2 , . . . , vpn p
]) =

n p∏

k=1

wpk ,pk ·
n p−1∏

k=1

wpk ,pk+1

The weight of a cycle is similarly defined. A cycle is subunitary, if its weight is less
than 1.

A path in a graph associated to a switching system induces a switching law. The
length of a path is given by the number of edges it contains. A cycle in a graph
associated to a switching system corresponds to a periodic switching law.

The notations above are illustrated on the following example.

Example 2.4 Consider a switching system composed of four subsystems:

xk+1 = Ai,z xk
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Fig. 2.1 Graph
representation of the
switching system in
Example 2.4

1 3

2 4

for i = 1, 2, 3, 4, and with admissible switches (1, 2), (1, 3), (1, 4), (2, 3), (3, 1),
(4, 2), (4, 3). Next to this, each subsystem can be active for more than one sample.
The corresponding graph representation is illustrated in Fig. 2.1.

• The graph is G = {V ,E }, with the set of vertices V = {1, 2, 3, 4} and the set of
admissible switches:

E = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 3), (4, 2), (4, 3), (4, 4)}

• Possible paths between vertices 1 and 3 areP(1, 3) = [1, 3],P(1, 3) = [1, 4, 3]
and P(1, 3) = [1, 2, 3].

• The sequence [1, 3, 1] is a cycle and is equivalent to [3, 1, 3].
• The cycle C1,3 = [1, 3, 1] can induce the switching law [1, 1, 3, 1, . . .] or

[1, 3, 3, 1, . . .] or any switching law of the form: [1, 1, . . . , 1︸ ︷︷ ︸
p1

, 3, 3, . . . , 3︸ ︷︷ ︸
p2

,

1, 1, . . . , 1︸ ︷︷ ︸
p1

, . . .].

The associated weight matrix will be constructed based on the possible switches
and the number of samples a subsystem is being active. However, to illustrate the
definitions, at this point let the associated weight matrix be given by:

W =

⎛

⎜⎜⎝

2 2 0.5 2
∞ 1 3 ∞
0.5 ∞ 1 ∞
∞ 1 1 2

⎞

⎟⎟⎠

where ∞ corresponds to an inadmissible switch. The graph with the weights given
in W is illustrated in Fig. 2.2.

The weight of the path P(1, 3) = [1, 2, 3] is W (P(1, 3)) = w11w12w22w23w33
= 12. The weight of the cycle C = [1, 3, 1] is W (C ) = w11w13w33w31 = 0.5 < 1,
so this cycle is subunitary. Since in the graph above there exists a path between any
two vertices, the graph is strongly connected.
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Fig. 2.2 Graph
representation of the
switching system with
weights in Example 2.4 1 3
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Our goal is to design an observer such that the estimation error dynamics converge
to zero. In order to obtain relaxed conditions, we will take into account the switches
that are admissible in the system. To see why this is important, consider the following
example.

Example 2.5 Consider a TS system with three subsystems, each having two local
models, as follows:

A1,1 =
(

0.20 0.06
0.56 −0.3

)
A1,2 =

(−1.37 0.52
0.96 −0.24

)

h1,1 = 1 − sin(x1)

2
h1,2 = 1 − h1,1

A2,1 =
(

0.23 −0.55
−0.80 −1.66

)
A2,2 =

(
1.12 1.20
0.49 −0.29

)

h2,1 = 1 − cos(x1)

2
h2,2 = 1 − h2,1

A3,1 =
(

3 0.5
0.5 1.5

)
A3,2 =

(
2 0.1

0.5 2

)

h3,1 = 1 − exp(−x2
1 )

2
h3,2 = 1 − h3,1

One can switch from each subsystem to any other one and any subsystem can be
active for any number of samples. However, the local models A1,2, A2,1, and A2,2
are unstable and both local models A3,1 and A3,2 of the third subsystem are unstable.
The associated graph is presented in Fig. 2.3.

Let us see whether this system can be stable based on the switching law that is
applied. Due to the instability of the local models, no existing result in the literature
can prove the stability of the switching system. Moreover, just switching to one
subsystem and keeping it continuously active does not result in a stable system.
However, by switching continuously between the first and second subsystem, the
states converge to zero. This can be proven by using a periodic Lyapunov function,
such as the one proposed in [39]. From the third subsystem, one can switch to the
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Fig. 2.3 Graph
representation of the
switching system in
Example 2.5
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Fig. 2.4 Simulation results for Example 2.5. a A trajectory of the switching system. b The stabi-
lizing switching law

first or second one and then switch between these two and obtain a stable system.
A trajectory that confirms stability of the switching system, starting from x0 =
[−1, 1]T and the corresponding switching law are illustrated in Fig. 2.4a and b,
respectively.

As an extension of the stability analysis shown by Example 2.5, by taking into
account the switching sequence, it is possible to design more relaxed conditions.
Therefore, in what follows, we develop observer design conditions for switching
systems.

2.3 Observer Design

We consider observer design for the switching TS system (2.3) of the form (repeated
here for convenience):

xk+1 = A j,z xk + B j,zuk

yk = C j,z xk
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To develop the conditions, we use the switching observer

x̂k+1 = A j,z x̂k + B j,zuk + H−1
j,z L j,z(yk − ŷk)

ŷk = C j,z x̂k

(2.5)

for the j-th subsystem, the observer switching together with the observed subsystem.
The matrices Hj,i and L j,i , j = 1, 2 . . . , ns, i = 1, 2, . . . , r are to be determined.

The error dynamics ek = xk − x̂k using this observer, under the assumption that
the scheduling variables are available online at sample k, can be written as

ek+1 = A j,zek − H−1
j,z L j,z(yk − ŷk)

= (A j,z − H−1
j,z L j,zC j,z)ek

which in itself is a switching system.
In what follows, we will consider different possibilities of switching systems

and derive observer design conditions that ensure that the estimation error dynamics
converges to zero. The conditions will be relaxed depending on the possible switches
and the possibility of choosing the switches.

2.3.1 Switching TS Systems

Let us first consider a general switching system, with the possible switches given by
the edges in the graph associated to the system. Recall that using the observer (2.5),
the error dynamics are given by

ek+1 = (A j,z − H−1
j,z L j,zC j,z)ek (2.6)

This is in itself a switching system, with the same switching sequence as the
original system and thus with the same graph. Naturally, the simplest way to develop
conditions that ensure that the error dynamics is asymptotically stable is to use the
common—for all the local models and all the subsystems—Lyapunov function

V (ek) = eT
k Pek

The difference in the Lyapunov function for two consecutive samples is

ΔV = eT
k+1 Pek+1 − eT

k Pek

=
(

ek

ek+1

)T (−P 0
0 P

)(
ek

ek+1

)
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During the transition from subsystem j to subsystem l, the dynamics of the error
system are described by

(
A j,z − H−1

j,z L j,zC j,z − I
) (

ek

ek+1

)
= 0

Using Lemma 2.1, the difference in the Lyapunov function is negative, if there
exists M such that

(−P 0
0 P

)
+ M

(
A j,z − H−1

j,z L j,zC j,z I
)

+ (∗) < 0

By choosing

M =
(

0
Hj,z

)

we have the conditions

( −P (∗)

Hj,z A j,z − L j,zC j,z −Hj,z − H T
j,z + P

)
< 0 (2.7)

and we have

Theorem 2.6 The error dynamics (2.6) is asymptotically stable, if there exist P =
PT > 0, Hj,k , j ∈ V , k = 1, 2, . . . , r , such that (2.7) holds for all vertices j ∈ V .

Note that the conditions (2.7) are nonlinear, but sufficient LMI conditions can
easily be formulated using, e.g., Lemma 2.3, as follows:

Corollary 2.7 The error dynamics (2.6) is asymptotically stable, if there exist P =
PT > 0, Hj,k , j ∈ V , k, l = 1, 2, . . . , r , such that

Γ
j

i,k < 0

2

r − 1
Γ

j
i i + Γ

j
ik + Γ

j
ki < 0

i, k = 1, 2, . . . , r

with

Γ
j

ik =
( −P (∗)

Hj,k A j,i − L j,kC j,i −Hj,k + (∗) + P

)

Due to the common Lyapunov function for all the local models and all the sub-
systems, the conditions above are very restrictive. One possibility to reduce the
conservativeness is to use a nonquadratic Lyapunov function common for all the
subsystems. Thus, one can consider the Lyapunov function
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V (ek) = eT
k Pzek (2.8)

The difference for two consecutive samples is

ΔV = eT
k+1 Pz+1ek+1 − eT

k Pzek

=
(

ek

ek+1

)T (−Pz 0
0 Pz+1

) (
ek

ek+1

)

and choosing

M =
(

0
Hj,z

)

we have

( −Pz (∗)

Hj,z A j,z − L j,zC j,z −Hj,z − H T
j,z + Pz+1

)
< 0 (2.9)

However, except for the relaxation brought by the nonquadratic Lyapunov func-
tion, this choice does not bring a significant improvement. The next step is choosing
a different Lyapunov function for each subsystem, i.e., using

V (ek) = eT
k Pj,zek (2.10)

for subsystem j .
With this, we obtain

ΔV = eT
k+1 Pl,z+1ek+1 − eT

k Pj,zek

=
(

ek

ek+1

)T (−Pj,z 0
0 Pl,z+1

)(
ek

ek+1

)

where [v j , vl ] is an admissible path.
During the transition from j to l, the dynamics of the error system are described

by

(
A j,z − H−1

j,z L j,zC j,z −I
) (

ek

ek+1

)
= 0

By choosing in Lemma 2.1

M =
(

0
Hj,z

)
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we have

( −Pj,z (∗)

Hj,z A j,z − L j,zC j,z −Hj,z − H T
j,z + Pl,z+1

)
< 0 (2.11)

and the following conditions can be formulated:

Theorem 2.8 The error dynamics (2.6) is asymptotically stable, if there exist Pj,k =
PT

j,k > 0, Hj,k , (v j , vl) ∈ E , k = 1, 2, . . . , r , such that (2.11) holds for all
admissible edges (v j , vl) ∈ E .

Although the conditions above are less conservative, it should be noted that they
require that the error dynamics of each subsystem is asymptotically stable. However,
as it has been shown on Example 2.5, this is not necessary.

Therefore, let us consider a switching Lyapunov function

V (ek) = eT
k Pm, j,zek (2.12)

defined during the switches, i.e., on the edges of the associated graph G = {V ,E },
with (vm, v j ) ∈ E , instead of the subsystems. If a subsystem j may be active for
several number of samples, the edge (v j , v j ) is also considered.

Then, eT
k Pm, j,zek is active during the transition from vertex m to vertex j . The

difference in the Lyapunov function for two consecutive samples is

ΔV = eT
k+1 Pj,l,z+1ek+1 − eT

k Pm, j,zek

=
(

ek

ek+1

)T (−Pm, j,z 0
0 Pj,l,z+1

)(
ek

ek+1

)

where [vm, v j , vl ] is an admissible path.
During the transition for j to l, the dynamics of the error system are described by

(
A j,z − H−1

j,z L j,zC j,z −I
) (

ek

ek+1

)
= 0

Using Lemma 2.1, the difference in the Lyapunov function is negative, if there
exists M such that

(−Pm, j,z 0
0 Pj,l,z+1

)
+ M

(
A j,z − H−1

j,z L j,zC j,z −I
)

+ (∗) < 0

By choosing

M =
(

0
Hj,z

)
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we have

( −Pm, j,z (∗)

Hj,z A j,z − L j,zC j,z −Hj,z − H T
j,z + Pj,l,z+1

)
< 0 (2.13)

With this, the following conditions can be formulated:

Theorem 2.9 The error dynamics (2.6) is asymptotically stable, if there exist
Pm, j,k = PT

m, j,k > 0, Hj,k , (vm, v j ) ∈ E , (v j , vl) ∈ E , k = 1, 2, . . . , r , such
that (2.13) holds for all admissible paths P(vm, vl) = [vm, v j , vl ], vm ∈ V .

Similarly to the previous cases, the condition (2.13) is nonlinear. However, LMI
conditions can be easily formulated using e.g., Lemma 2.3, as follows:

Corollary 2.10 The error dynamics (2.6) is asymptotically stable, if there exist
Pm, j,k = PT

m, j,k > 0, Hj,k , (vm, v j ) ∈ E , k, l = 1, 2, . . . , r , such that

Γ
m, j,l,γ

kk < 0

2

r − 1
Γ

m, j,l,γ
kk + Γ

i, j,l,γ
kβ + Γ

i, j,l,γ
βk < 0

k, β, γ = 1, 2, . . . , r

with

Γ
m, j,l,γ

kβ =
( −Pm, j,k (∗)

Hj,k A j,β − L j,kC j,β −Hj,k + (∗) + Pj,l,γ

)

for all admissible paths P(vm, vl) = [vm, v j , vl ], v j ∈ V .

In what follows, let us illustrate on an example the conditions when using the
different Lyapunov functions.

Example 2.11 Consider a TS system with three subsystems, each having two local
models, as follows:

A1,1 =
(

0.73 0.52
0.66 0.74

)
A1,2 =

(
0.28 0.27
1.50 1.38

)

C1,1 = (
1 0

)
C1,2 = (

1 0
)

A2,1 =
(

1.05 0
0.5 0.1

)
A2,2 = A2,1

C2,1 = (
0 0

)
C2,2 = C2,1

A3,1 =
(

0.86 0.72
0.23 0.76

)
A3,2 =

(
0.25 1.51
1.94 1.83

)

C3,1 = (
1 0

)
C3,2 = (

0 0
)
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Fig. 2.5 Graph
representation of the
switching system in
Example 2.11

1 2

3

Subsystem 1 may be active for at most five samples, while subsystems 2 and 3 are
active only for one sample, i.e., pm

1 = 1, pM
1 = 5, pm

2 = pM
2 = pm

3 = pM
3 = 1. The

possible switches are presented in Fig. 2.5. All the local models are unstable. Next
to this, the second subsystem and the second local model of the third subsystem are
unobservable.

Due to the unobservable and unstable local models, neither the conditions devel-
oped using a common quadratic Lyapunov function, nor those based on a common
nonquadratic Lyapunov functions are feasible.

Using the conditions of Theorem 2.9, we obtain the gains1

H1,1 =
(

0.70 −0.30
−0.08 0.29

)
H1,2 =

(
0.90 −0.16

−0.33 0.19

)

H2,1 =
(

0.58 −0.35
−0.10 0.51

)
H2,2 = H2,1

H3,1 =
(

0.58 −0.39
0.05 0.37

)
H3,2 =

(
0.61 −0.37

−0.37 0.24

)

L1,1 =
(

0.52
0.37

)
L1,2 =

(
0.01
0.47

)

L3,1 =
(

0.28
0.37

)
L3,2 =

(
0.25
0.85

)

Since the second subsystem is not observable, there are no gains L2,1 and L2,2.
Trajectories of the states and the error are presented in Fig. 2.6a and b, respectively.
The true initial states were x0 = [−1, 1]T and the estimated initial states were
x̂0 = 0. The corresponding switching law is given in Fig. 2.6c. For testing, the
membership functions are assumed to depend on an exogenous measured signal,
with h1 being presented in Fig. 2.6d.

Using the conditions developed with a nonquadratic Lyapunov function for the
subsystems, but taking into account the possible switches (notably that subsystems
2 and 3 are active only for one sample), we obtain the gains

1 Throughout this chapter, computed values are truncated to two decimal places.
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Fig. 2.6 Simulation results for Example 2.11. a A trajectory of the switching system. b Trajectory
of the error. c The switching law used. d Membership function

H1,1 =
(

0.66 −0.30
−0.09 0.31

)
H1,2 =

(
0.95 −0.16

−0.36 0.20

)

H2,1 =
(

0.58 −0.36
−0.01 0.36

)
H2,2 = H2,1

H3,1 =
(

0.59 −0.41
0.06 0.35

)
H3,2 =

(
0.65 −0.39

−0.38 0.25

)

L1,1 =
(

0.47
0.42

)
L1,2 =

(
0.08
0.5

)

L3,1 =
(

0.28
0.37

)
L3,2 =

(
0.23
0.83

)

which are quite close to those obtained by Theorem 2.9. It should be noted that
without taking into account that subsystems 2 and 3 are active only for one sam-
ple, the conditions using a nonquadratic Lyapunov function for each subsystem are
unfeasible.
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In order to reduce the conservativeness by exploiting the knowledge available of
the switching sequence, one can also use the observer

x̂k+1 = A j,z x̂k + B j,zuk + H−1
m, j,z Lm, j,z(yk − ŷk)

ŷk = C j,z x̂k

(2.14)

for the j-th subsystem, if the last switch has been from vertex m to vertex j .
The error dynamics ek = xk − x̂k using this observer, can be written as

ek+1 = A j,zek − H−1
m, j,z Lm, j,z(yk − ŷk)

= (A j,z − H−1
m, j,z Lm, j,zC j,z)ek

(2.15)

Following the same steps as above, and in Lemma 2.1 choosing

M =
(

0
Hm, j,z

)

we have

Corollary 2.12 The error dynamics (2.15) is asymptotically stable, if there exist
Pm, j,k = PT

m, j,k > 0, Hm, j,k , (vm, v j ) ∈ E , (v j , vl) ∈ E , k = 1, 2, . . . , r , such
that

( −Pm, j,z (∗)

Hm, j,z A j,z − Lm, j,zC j,z −Hm, j,z + (∗) + Pj,l,z+1

)
< 0 (2.16)

for all admissible paths P(vm, vl) = [vm, v j , vl ], vm ∈ V .

This result can actually be used if the switching sequence is known at least one
switch in advance and represents the case when the observer gains are specified for
each switch instead of each subsystem.

The conditions of Theorem 2.9 can be further extended to take into account longer
sequences of switches. However, this comes with added computational cost and will
eventually lead to considering all possible switching trajectories. To avoid this, but
still reduce the conservativeness of the approach, consider the α-sample variation
of the Lyapunov function. As proven by Kruszewski and Guerra [34], a system is
asymptotically stable, if the associated Lyapunov function decreases every α sam-
ples, α ≥ 1, instead of every sample. Thus, for observer design, let us consider the
error dynamics (2.6) and the Lyapunov function (2.12), defined on the edges of the
associated graph, with Pvi ,v j ,z being active during the transition from vertex i to
vertex j . The difference in the Lyapunov function for α consecutive samples is

ΔV = eT
k+α Pvα,vα+1,z+αek+α − eT

k Pv0,v1,zek

=
(

ek

ek+α

)T (−Pv0,v1,z 0
0 Pvα,vα+1,z+α

) (
ek

ek+α

)



44 Zs. Lendek et al.

where [v0, v1, . . . , vα+1] is an admissible path.
Along the switching sequence [v0, v1, . . . , vα+1], the error dynamics are described

by
⎛

⎜⎜⎜⎝

G1 −I 0 . . . 0
0 G2 −I . . . 0
...

...
...

...

0 0 0 . . . −I

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

ek

ek+1
...

ek+α

⎞

⎟⎟⎟⎠ = 0

with Gi = Avi ,z+i−1 − H−1
vi ,z+i−1Lvi ,z+i−1Cvi ,z+i−1.

Following the same steps as in the proof of Theorem 2.9, using Lemma 2.1, the
difference in the Lyapunov function is negative, if there exists M such that

⎛

⎜⎜⎜⎝

−Pv0,v1,z 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . Pvα,vα+1,z+α

⎞

⎟⎟⎟⎠ + M

⎛

⎜⎜⎜⎝

G1 −I 0 . . . 0
0 G2 −I . . . 0
...

...
...

...

0 0 0 . . . −I

⎞

⎟⎟⎟⎠ + (∗) < 0

with Gi defined as above.
By choosing

M =

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0
Hv1,z 0 . . . 0

0 Hv2,z+1 . . . 0
...

... . . .
...

0 0 . . . Hvα,z+α−1

⎞

⎟⎟⎟⎟⎟⎠

we have
⎛

⎜⎜⎜⎜⎝

−Pv0,v1,z (∗) . . . (∗)

Ω1 −Hv1,z + (∗) . . . (∗)

0 Ω2 . . . (∗)
...

... . . .

(−Hvα,z+α−1 + (∗)

+Pvα,vα+1,z+α

)

⎞

⎟⎟⎟⎟⎠
< 0 (2.17)

with Ωi = Hvi ,z+i−1 Avi ,z+i−1 − Lvi ,z+i−1Cvi ,z+i−1, leading to the following
theorem:

Theorem 2.13 The error dynamics (2.6) is asymptotically stable, if there exist α ∈
N

+, Pi, j,k = PT
i, j,k > 0, Hj,k , (vi , v j ) ∈ E , k = 1, 2, . . . , r , such that (2.17) holds

for all admissible paths P(v0, vα+1) = [v0, v1, . . . , vα+1].
The conditions above are illustrated on the following example.

Example 2.14 Consider the switching system—actually a periodic switching
system—illustrated in Fig. 2.7.
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Fig. 2.7 Periodic switching
system for Example 2.14

3

1 2

Assuming that each subsystem is active for only one sample, i.e., pm = pM = 1,
the graph is G = {V ,E }, with V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1)}.
Consider the following local models of the TS system above:

A1,1 =
(

1.26 0.64
1.92 0.61

)
A1,2 =

(
0.40 0.64
0.09 0.10

)

C1,1 = (
1 0

)
C1,2 = (

1 0
)

A2,1 =
(

1.05 0
0.50 0.80

)
A2,2 = A2,1

C2,1 = (
0 0

)
C2,2 = (

0 0
)

A3,1 =
(

0.40 0.45
0.30 0.84

)
A3,2 =

(
1.67 0.43
1.42 0.33

)

C3,1 = (
0 1

)
C3,2 = (

0 0
)

The second subsystem is linear, but it is unstable and unobservable. The second
local model of the third subsystem is again unstable and unobservable. Due to this,
methods available in the literature yield unfeasible LMIs. However, using Lemma 2.2
to formulate LMI conditions for Theorem 2.9, we obtain

H1,1 =
(

0.66 −0.06
0.03 0.56

)
H1,2 =

(
0.70 −0.08
0.06 0.55

)

H2,1 =
(

0.46 −0.09
−0.03 0.34

)
H2,2 = H2,1

H3,1 =
(

0.41 −0.29
−0.33 0.58

)
H3,2 =

(
0.35 −0.32

−0.38 0.54

)

L1,1 =
(

0.98
1.39

)
L1,2 =

(
0.57
0.14

)

L3,1 =
(−0.03

0.35

)
L3,2 =

(
0.02
0.39

)

Consequently, this observer is able to estimate the states of the switching system
above. Since the second subsystem on its own is not observable, there are no observer
gains L2,1 and L2,2. Trajectories of the states and of the error dynamics, together
with the membership function h1, are presented in Fig. 2.5. The true initial states
were x0 = [−1; 1]T , while the estimated initial states were x̂0 = [0, 0]T .

Let us now discuss the conditions developed for the α-sample variation of the
Lyapunov function. The previous conditions required that the Lyapunov function
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Fig. 2.8 Simulation results for Example 2.14. a A trajectory of the switching system. b The
trajectory of the error. c Membership function

decreases with every switch/every sample, i.e., for all (vi , v j ) ∈ E . That is, we had
the conditions:

( −P1,2,z (∗)

H2,z A2,z − L2,zC2,z −H2,z + (∗) + P2,3,z+1

)
< 0

( −P2,3,z (∗)

H3,z A3,z − L3,zC3,z −H3,z + (∗) + P3,1,z+1

)
< 0

( −P3,1,z (∗)

H1,z A1,z − L1,zC1,z −H1,z + (∗) + P1,2,z+1

)
< 0

A 2-sample variation means that the Lyapunov function has to decrease along paths
of length 2, i.e., we have the conditions:

⎛

⎜⎜⎜⎜⎝

−P1,2,z (∗) (∗)(
H2,z A2,z

−L2,zC2,z

)
−H2,z + (∗) (∗)

0

(
H3,z+1 A3,z+1

−L3,z+1C3,z+1

) (−H3,z+1 + (∗)

+P3,1,z+2

)

⎞

⎟⎟⎟⎟⎠
< 0
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⎛

⎜⎜⎜⎜⎝

−P2,3,z (∗) (∗)(
H3,z A3,z

−L3,zC3,z

)
−H3,z + (∗) (∗)

0

(
H1,z+1 A1,z+1

−L1,z+1C1,z+1

) (−H1,z+1 + (∗)

+P1,2,z+2

)

⎞

⎟⎟⎟⎟⎠
< 0

⎛

⎜⎜⎜⎜⎝

−P3,1,z (∗) (∗)(
H1,z A1,z

−L1,zC1,z

)
−H1,z + (∗) (∗)

0

(
H2,z+1 A2,z+1

−L2,z+1C2,z+1

) (−H2,z+1 + (∗)

+P2,3,z+2

)

⎞

⎟⎟⎟⎟⎠
< 0

Furthermore, 3-sample variation means that the Lyapunov function has to decrease
along paths of length 3, which, in this case, is equivalent to the whole period of
switching.

2.3.2 Periodic TS Systems

As shown above, in case of periodic systems, a lesser number of edges have to
be considered and the conditions become circular. Therefore, in what follows, we
consider periodic systems:

xk+1 = A j,z xk + B j,zuk

yk = C j,z xk

Since the system is periodic, it is assumed that the subsystems are activated in a
sequence 1, 1, . . . , 1︸ ︷︷ ︸

p1

, 2, 2, . . . , 2︸ ︷︷ ︸
p2

, . . ., ns, ns, . . . , ns︸ ︷︷ ︸
pns

, 1, 1, . . . , 1︸ ︷︷ ︸
p1

, etc., where pi

denotes the number of samples for which the i th subsystem is active. In what follows,
we will refer to pi as the period of the i th subsystem.

Recall that using the same switching observer as above, i.e.,

x̂k+1 = A j,z x̂k + B j,zuk + H−1
j,z L j,z(yk − ŷk)

ŷk = C j,z x̂k

the error dynamics ek = xk − x̂k can be written as

ek+1 = (A j,z − H−1
j,z L j,zC j,z)ek (2.18)

which, due to the periodicity of the switches, in this case will also be periodic.
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Fig. 2.9 Switches in the system and in the Lyapunov function

Although all the results presented in Sect. 2.3.1 apply for this case, to further
reduce the conservativeness of the conditions, we will use a periodic Lyapunov
function defined only when a switching takes place. As long as the periodicity of
each subsystem is known and constant, the active subsystems’ dynamic can easily
be written for more than one sample.

To illustrate the periodicity of the system and the definition of the Lyapunov
function, consider the following example.

Example 2.15 Consider a periodic TS model consisting of two subsystems, each
with period 2, i.e., we have:

xk+1 =
{∑r

i=1 hi (zk)A1i xk if k = 4m, 4m + 1∑r
i=1 hi (zk)A2i xk if k = 4m + 2, 4m + 3

(2.19)

The switching in the system and in the Lyapunov function are depicted in Fig. 2.9.
As can be seen, the Lyapunov function (with matrices P1 and P2) is defined only in
the moments when there is a switching in the system: from A1,z to A2,z or from A2,z

to A1,z , respectively. A 1-sample variation of the Lyapunov function corresponds to
the difference between two consecutive values of the Lyapunov function. A 2-sample
variation corresponds to the difference after 2 samples of the Lyapunov function, etc.

Therefore, to develop observer design conditions, consider the periodic Lyapunov
function defined only in the instants when a switching takes place in the system:

V (ek) = eT
k Pj,zek

if the active subsystem was j , j = 1, 2 . . . , ns.
The difference in the Lyapunov function is

V (ek+p j+1) − V (ek) =
(

ek

ek+p j+1

)T (−Pj,z 0
0 Pj+1,z+p j+1

)(
ek

ek+p j+1

)

where j = j mod ns.
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The error dynamics during the p j+1 samples are

⎛

⎜⎜⎜⎝

ϒ j+1,1 −I . . . 0 0
0 ϒ j+1,2 −I . . . 0
...

...
...

...
...

0 0 . . . ϒ j+1,p j+1−1 −I

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

ek

ek+1
...

ek+p j+1

⎞

⎟⎟⎟⎠ = 0

with

ϒ j+1,i = A j+1,z+i − H−1
j+1,z+i L j+1,z+i C j+1,z+i

for i = 1, 2 . . . , p j+1 − 1.

Choosing M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
Hj+1,z+1 0 . . . 0 0

0 Hj+1,z+2 . . . 0 0
...

...
...

...
...

0 0 . . . Hj+1,z+p j+1−1 0
0 0 . . . 0 Hj+1,z+p j+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

applying Lemma 2.1 leads to

⎛

⎜⎜⎜⎜⎝

−Pj,z (∗) . . . (∗) (∗)

Ω j+1,1 −H j+1,z+1 − (∗) . . . (∗) (∗)

...
...

...
...

...

0 0 . . . Ω j+1,p j+1 −H j+1,z+p j+1 − (∗) + Pj+1,z+p j+1

⎞

⎟⎟⎟⎟⎠
< 0

with Ω j+1,i = Hj+1,z+i A j+1,z+i−1 − L j+1,z+i−1C j+1,z+i−1 for i = 1, 2,

. . . , p j+1 − 1.
Then, the following result can be formulated:

Theorem 2.16 The error dynamics (2.18) is locally asymptotically stable if there
exist Pj,i , H j,i , j = 1, 2 . . . ns, i = 1, 2, . . . r such that:

⎛

⎜⎜⎜⎜⎝

−Pj,z (∗) . . . (∗) (∗)

Ω j+1,1 −H j+1,z+1 − (∗) . . . (∗) (∗)

...
...

...
...

...

0 0 . . . Ω j+1,p j+1 −H j+1,z+p j+1 − (∗) + Pj+1,z+p j+1

⎞

⎟⎟⎟⎟⎠
< 0

The result above can easily be extended using α-sample variation [35]. Recall that
the Lypunov function is only defined in the switching instants, and the α-difference
in the Lyapunov function corresponds to α consecutive switches in the system.
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Since the Lyapunov function is only defined in the switching instants, the
α-difference in the Lyapunov function is

V (xk+t ) − V (xk) =
(

ek

ek+t

)T (−Pj,z 0
0 Pj+α,z+t

) (
ek

xk+t

)

where t = ∑α
i=1 p j+1.

The error dynamics during the t samples corresponding to the α switches in the
system are

Γ j+1: j+α

⎛

⎜⎜⎜⎝

ek

ek+1
...

ek+t

⎞

⎟⎟⎟⎠ = 0

with

Γ j+1: j+α =

⎛

⎜⎜⎜⎝

G1,0 −I . . . 0 0
0 G1,1 . . . 0 0
...

...
...

...
...

0 0 . . . Gα,t−1 −I

⎞

⎟⎟⎟⎠

where Gi, j = A j+i,z+ j − H−1
j+i,z+ j L j+i,z+ j C j+i,z+ j , i = 1, 2, . . . , α, j =

1, 2 . . . , t − 1.
Using Lemma 2.1, the difference in the Lyapunov function is negative definite, if

there exists M such that

⎛

⎜⎜⎜⎝

−Pj,z 0 . . . 0
0 0 . . . 0
...

...
...

...

0 0 . . . Pj+1,z+t

⎞

⎟⎟⎟⎠ + MΓ j+1: j+α + (∗) < 0

Choosing M =

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0
Hj+1,z 0 . . . 0

0 Hj+1,z+1 . . . 0
...

...
...

...

0 0 . . . Hj+α,z+t−1

⎞

⎟⎟⎟⎟⎟⎠
leads directly to
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⎛

⎜⎜⎜⎝

−Pj,z (∗) . . . (∗) (∗)

Ω j+1,z −Hj+1,z + (∗) . . . (∗) (∗)

...
...

...
...

...

0 0 . . . Ω j+α,z+t−1 Ω j+α, j+α

⎞

⎟⎟⎟⎠ < 0 (2.20)

where t = ∑α
i=1 p j+1, and Ω j+i, j+k = Hj+i,z+k A j+i,z+k − L j+i,z+kC j+i,z+k and

Ω j+α, j+α = −H T
j+α,z+t−1 − H T

j+α,z+t−1 + Pj+α,z+t−1.

Theorem 2.17 The periodic error dynamics (2.18) with periods p1, p2, . . . , pns

is asymptotically stable, if there exist Pji = PT
ji > 0, Hji , j = 1, 2, . . . , ns,

i = 1, 2, . . . , r j , l = 1, 2, . . . , α, such that (2.20) is satisfied.

Let us illustrate the results for periodic TS systems on the following example.

Example 2.18 Consider the periodic fuzzy system with two subsystems as follows:

xk+1 =
2∑

i=1

hi (zk)A1i xk

yk =
2∑

i=1

hi (zk)C1i xk

with

A11 =
(−0.44 −0.26

−0.65 0.62

)
A12 =

(
1.1 −0.2

0.53 −0.27

)

C11 = (
0 0

)
C12 = C11

xk+1 =
2∑

i=1

hi (zk)A2i xk

yk =
2∑

i=1

hi (zk)C2i xk

with

A21 =
(

0.02 0.6
−0.22 −0.44

)
A22 =

(
0.32 −0.15
−1 0.8

)

C21 = (
1 0

)
C22 = (

0 1
)

The local models A12 and A22 are unstable, and unobservable. The periods of the
subsystems are p1 = 1 for the first subsystem and p2 = 2 for the second subsystem.
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Fig. 2.10 Simulation results for Example 2.18. a A trajectory of the switching system. b The
trajectory of the error. c Membership function

Using the conditions of Theorem 2.16 we obtain the observer gains

H1,1 =
(

0.14 −0.28
−0.23 0.54

)
H1,2 =

(
0.15 −0.26

−0.29 0.55

)

H2,1 =
(

0.28 −0.24
−0.36 0.42

)
H2,2 =

(
0.19 −0.23

−0.28 0.40

)

L2,1 =
(−0.50

0.67

)
L2,2 =

(−0.19
0.40

)

Consequently, this observer is able to estimate the states of the switching system
above. Since the first subsystem on its own is not observable, there are no observer
gains L1,1 and L1,2. Trajectories of the states and of the error dynamics, together
with the membership function h1, are presented in Fig. 2.10. The true initial states
were x0 = [−1; 1]T , while the estimated initial states were x̂0 = [0, 0]T .

For this periodic system, it is not possible to find either a quadratic or a non-
quadratic Lyapunov function, common for both subsystems, as the corresponding
LMIs are unfeasible.
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2.3.3 Controlled Switches

Finally, let us consider the case when an observer has to be designed while the
switches may be chosen. Therefore, our goal is to “stabilize” the error dynamics by
switching among the subsystems. The switching observer considered,

x̂k+1 = A j,z x̂k + B j,zuk + H−1
j,z L j,z(yk − ŷk)

ŷk = C j,z x̂k

(2.21)

is the same as before, but next to the matrices H−1
j,i , L j,i , j = 1, 2 . . . , ns, i =

1, 2, . . . , r , the switching sequence also has to be determined.
The error dynamics is again

ek+1 = A j,zek − H−1
j,z L j,z(yk − ŷk) = (A j,z − H−1

j,z L j,zC j,z)ek (2.22)

Since the switching sequence can be chosen, if there exists a subsystem with
an asymptotically stable error dynamics that can be active for an infinite number
of samples, the problem can be reformulated as finding a path—a classical graph
theoretical problem—from each subsystem to this stable subsystem. If such a path
exists, then the switching law is given by this path, and the problem is solved.
Therefore, we consider the case when none of the subsystems may be infinitely
active. Next to this, for the easier development of the conditions, we assume that
the associated graph is strongly connected, i.e., there exists a path between any two
vertices.

Recall that we consider the associated directed graph G = {V ,E }, where the
vertices V = {v1, v2, . . . , vns} correspond to the subsystems, and each edge ei, j =
(vi , v j ) ∈ E corresponds to an admissible transition.

In what follows, we build a weight-adjacency matrix, that assigns to each admissi-
ble transition, including self-transitions, a weight. By convention, if (vi , v j ) /∈ E , for
i �= j , i, j = 1, 2, . . . , ns the corresponding weight wi, j = ∞, and if (vi , vi ) /∈ E ,
i = 1, 2, . . . , ns, then the corresponding weight wi,i = 1. For all other edges, the
corresponding weight will be given by an upper bound on the increase of a Lyapunov
function associated to the error dynamics.

Consider the Lyapunov function

V (ek) = eT
k Pi,zek

with Pi,z = PT
i,z > 0, for the i th subsystem, i = 1, 2, . . . , ns.

Before constructing the weighting matrix, let us find constants δi, j > 0 so that
V (ek+1) ≤ δi, j V (ek), if the transition is (vi , v j ), i.e., upper bounds on the increase
of the Lyapunov function in one sample.

For any (vi , v j ) ∈ E we have
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V (ek+1) − δi, j V (ek) < 0

eT
k+1 Pj,z+1ek+1 − δi, j eT

k Pi,zek < 0
(

ek

ek+1

)T (−δi, j Pi,z 0
0 Pj,z+1

) (
ek

ek+1

)
< 0

At the same time, the system’s dynamics can be written as

(
Ai,z − H−1

i,z Li,zCi,z −I
) (

ek

ek+1

)
= 0

Using Lemma 2.1, we have V (ek+1) − δi, j V (ek) < 0 if there exists Mi, j,z so that

(−δi, j Pi,z 0
0 Pj,z+1

)
+ Mi, j,z

(
Ai,z − H−1

i,z Li,zCi,z −I
)

+ (∗) < 0

Choosing Mi, j,z =
(

0
Hi, j,z

)
we obtain the sufficient conditions

( −δi, j Pi,z (∗)

Hi, j,z Ai,z − Li,zCi,z −Hi, j,z − H T
i, j,z + Pj,z+1

)
< 0 (2.23)

To find all δi, j , one has to solve (2.23) for all (vi , v j ) ∈ E .
Now, define the weight matrix as W = [wi, j ] with

wi, j =

⎧
⎪⎨

⎪⎩

δ
pm

i −1
i,i if δi,i > 1

δ
pM

i −1
i,i if δi,i < 1

δi, j if i �= j

Assume that in the weight matrix constructed above, there exists a subunitary
cycle, i.e., there exists Cn = {vc1, vc2, . . . ,vcp, vc1} such that the product of the
edges and nodes in this cycle is subunitary, and let this product be denoted by δn . For
any subsystem i such that vi ∈ Cn , we have V (xk+nc ) < δn V (xk), i.e., after a full
cycle, the corresponding Lyapunov function increases at most δn times, with δn < 1.
Consequently, the periodic switching law C = [c1, c2, . . . , cp, c1] stabilizes the
periodic error dynamics given by this cycle.

Let us now see the subsystems (if any) that are not inCn . Since we assumed that G
is strongly connected, for all vi /∈ C , there exists a path P(vi , v j ) from the i th sub-
system to a subsystem j on the cycle. Consider the switching law P(vi , v j )Cn , i.e.,
first a switching law that leads to the cycle and then the periodic switching law corre-
sponding to the cycle. Although during the switches corresponding to P(vi , v j ) the
Lyapunov function might increase, during the periodic switching, it will eventually
decrease and converge to zero.
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Based on the explanation above, the following result can be stated:

Theorem 2.19 The error dynamics (2.22) is asymptotically stable along a switching
law, if its associated graph G = {V ,E ,W } contains a subunitary cycle Cn. Fur-
thermore, for the i th initial subsystem, i = 1, 2, . . . , ns, the switching law that
stabilizes the error dynamics is given by P(vi , v j )Cn, where vi denotes the vertex
corresponding to the initial subsystems, and P(vi , v j ) is a path to vertex v j , with
v j ∈ Cn.

It should be noted that we assumed that the associated graph is strongly con-
nected, because in this case the existence of a periodic switching law—which is not
necessarily stabilizing—is guaranteed. If the graph is not strongly connected, the
possibility of developing an observer depends on the starting subsystem. Therefore,
in order to design an observer, each strongly connected subgraph has to be analyzed.

2.4 Summary

In this chapter, we considered observer design for switching nonlinear systems rep-
resented by TS fuzzy models. We have developed conditions that, when satisfied,
guarantee that the estimation error converges to zero. The conditions were derived
by taking into account the number of samples a subsystem may be active and the
possible switches in the system. We have considered three cases.

The first case is general switching systems, where the switching sequence is not
known in advance and it cannot be directly influenced. Due to this assumption, the
conditions require that the estimation error dynamics decreases along the trajectory of
the subsystems and the switches. This is the worst-case assumption, i.e., all possible
combinations of switches between the estimation error subsystems have to be taken
into account. The second case, for which the conditions can be relaxed, is when
the switching is periodic. Although the conditions developed for the general case
apply, due to the reduced number of switches, a smaller number of conditions are
necessary. Finally, we considered the case that next to designing the observer gains,
the switching sequence can be chosen.

The developed conditions have been extended to the α-sample variation of the
Lyapunov function, in order to reduce their conservativeness. Other possibilities to
relax the conditions represents the usage of double sums in the Lyapunov function,
or using delayed Lyapunov functions or observers.

A shortcoming of the conditions is the computational complexity required to
generate the possible combinations of switches and subsystems. In particular for
large-scale switching systems, when considering α-sample variation, the number of
conditions may be exponential in the number of subsystems, and in consequence, a
large number of LMIs that has to be solved.
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