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1 Introduction

Synthetic dyes are xenobiotic compounds that are being increasingly used in several
industries, with special emphasis in the paper, textile and leather industries. Over
100,000 commercial dyes exist today and more than 7 × 105 tons of dyestuff is
produced annually, of which 1–1.5 × 105 tons is released into the wastewaters (Rai
et al. 2005). Among these, azo dyes, characterized by the presence of one or more
azo groups (–N=N–), and anthraquinonic dyes represent the largest and most
versatile groups. Synthetic dyes are highly visible pollutants and can hardly be
removed from the effluents by conventional wastewater treatments. They are
anthropogenic pollutants causing deterioration of water quality, affecting photo-
synthesis, decreasing dissolved oxygen levels and severely disturbing the aquatic
ecosystems (Rai et al. 2005; van der Zee and Villaverde 2005). Moreover, dyes
have become a health hazard as many of them and/or their breakdown products
have been found to be toxic and potentially carcinogenic (Golka et al. 2004;
Pinheiro et al. 2004; Schneider et al. 2004; van der Zee and Villaverde 2005; Chen
2006). Physico-chemical treatment processes, such as coagulation, precipitation,
filtration, adsorption, photolysis and oxidation with hydrogen peroxide or ozone,
can generate a large volume of sludge and usually require the addition of other
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environmental hazardous chemical additives (Forgacs et al. 2004; Chen 2006).
Biological treatment technologies are attractive alternatives to the traditional
physicochemical methods, as they are low-cost, environmentally friendly and can
selectively provide a complete degradation of organic pollutants without collateral
destruction of either the site’s flora or fauna (Anjaneyulu et al. 2005; Chen 2006;
Husain 2006; Rodriguez Couto 2009a). It has been demonstrated that microor-
ganisms are able to degrade synthetic dyes to non-colored compounds or even
mineralize them completely under certain environmental conditions (dos Santos
et al. 2007; Saratale et al. 2011; Solís et al. 2012; Chengalroyen and Dabbs 2013;
Khan et al. 2013). However, the fact that most of dye pollutants persist for long
periods in the environment indicates the natural inadequacy of microbial activity to
deal with these xenobiotic compounds. Biological systems need to exhibit not only
a high catalytic versatility towards the degradation of a complex mixture of
structurally different dyes, but also a superior robustness against the toxic effects of
the dyes and their products, in addition to the salts, detergents, surfactants, and
metals present in the dye-containing effluents, often at extreme pHs or high tem-
peratures (Anjaneyulu et al. 2005; Chen 2006). Considering these requirements,
there is currently no simple solution for the biological treatment of dye-containing
effluents.

Enzymatic processes are particularly sought for the treatment of dye-containing
effluents, mainly because of their specificity and relatively ease of engineering
towards improved robustness; enzymes only “attack” the dye molecules, while
valuable dyeing additives or fibers are kept intact and can potentially be re-used
(Kandelbauer and Guebitz 2005). Likewise, new recycling technologies will allow
a huge reduction in water consumption in the textile finishing industry. Although
dye molecules display high structural diversity, they are only degraded by a few
enzymes that share common mechanistic features as they all catalyze redox reac-
tions and, exhibit relatively wide substrate specificities. The most important dye
degrading enzymes are: azoreductases, laccases and peroxidases (Kandelbauer and
Guebitz 2005). Azoreductases are oxidoreductases, which are particularly effective
in the degradation of azo dyes through reduction of the azo linkage, the chromo-
phoric group of azo dyes (Kandelbauer and Guebitz 2005; Rodriguez Couto
2009b). The majority of characterized azoreductases are FMN or FAD dependent
enzymes that require the addition of NAD(P)H as electron donors for the reduction
of azo dyes releasing aromatic amines as products (Stolz 2001; Deller et al. 2008).
Laccases are multi-copper oxidases that couple the one-electron oxidation of four
substrate molecules to the four electron reductive cleavage of the O–O bond of
dioxygen to water. These enzymes have a great potential in various biotechno-
logical processes mainly due to their high non-specific oxidation capacity, the lack
of requirement for cofactors, and the use of the readily available molecular oxygen
as an electron acceptor (Stoj and Kosman 2005; Morozova et al. 2007; Haritash and
Kaushik 2009; Mikolasch and Schauer 2009). These include the detoxification of
industrial effluents (Rodriguez Couto and Toca Herrera 2006), mostly from the
paper and pulp, textile and petrochemical industries, and bioremediation to clean up
herbicides, pesticides and certain explosives in soil (Morozova et al. 2007; Haritash
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and Kaushik 2009). The capacity of laccases to produce polymeric products also
makes them a useful tool for organic synthesis (Riva 2006; Madhavi and Lele 2009)
and in addition, are also potential enzymes for biosensors or biofuel cells
(Wheeldon et al. 2008; Willner et al. 2009). Peroxidases are heme-containing
proteins that use hydrogen peroxide (H2O2) or organic hydroperoxides (R-OOH) as
electron accepting co-substrates while oxidizing a variety of compounds. Due to
their catalytic versatility and enzymatic stability, peroxidases are of particular
interest for industrial redox conversion processes (Hofrichter et al. 2010). Among
peroxidases, a new super family has arisen, the so-called dye-decolorizing perox-
idases (DyPs) (Sugano 2009; Hofrichter et al. 2010; Colpa et al. 2013). These
enzymes are known to successfully oxidize a wide range of substrates, but most
importantly, they highly degrade high redox synthetic dyes, such as anthraquinone
and azo dyes. In this paper, we have reviewed the enzymatic properties, mecha-
nisms and toxicity of dye-degradation products of different bacterial enzymes and
also the properties of in vitro and in vivo multi-enzymatic systems for the decol-
orization of synthetic dyes.

2 Biotransformation of Dyes Using Laccases

Laccases are a part of the large multi-copper oxidase family of enzymes that cat-
alyze the four-electron reduction of oxygen to water (at the T2–T3 trinuclear Cu
centre) by the sequential one-electron uptake from a suitable reducing substrate (at
the T1 mononuclear copper centre) (Solomon et al. 1996; Stoj and Kosman 2005).
Most of the known laccases have fungal (e.g. white-rot fungi) or plant origins.
However, many laccases have been isolated from bacteria in the last decade (Claus
2003; Giardina et al. 2010). Fungal laccases are the enzymes used in the vast
majority of the studies in the literature, but bacterial laccases show advantages for
biotechnological processes due to the lack of post-translational modifications, their
higher yields of production, easiness of manipulation and improvement by protein
engineering approaches.

2.1 Decolorization Capacity of Bacterial CotA-Laccase

The first study, using bacterial laccases for synthetic dyes decolorization, was
performed with recombinant CotA-laccase from Bacillus subtilis, which is a bac-
terial thermoactive and intrinsically thermostable enzyme (with half-life of 2 h at
80 °C), showing the predictable robustness for biotechnological applications
(Pereira et al. 2009a, b). Twenty two synthetic dyes, both anthraquinonic and
azo dyes, were found to be degraded to different extents, after 24 h of reaction by
CotA-laccase (Fig. 1).
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Two major differences were observed when compared to dye degradation using
fungal laccases: (1) the non requirement of redox mediators and (2) a maximal
activity at the neutral to alkaline range of pH. The lack of a strict requirement for
redox mediators exhibited by bacterial CotA-laccase constitutes a significant
advantage over fungal enzymes from a technological perspective. Low-molecular
weight compounds are expensive and a large quantity in relation to the substrate is
often required. Moreover, some mediators give rise to highly unstable compounds
that can lead to enzyme inactivation and are toxic upon release into natural envi-
ronments. The requirement of redox mediators, acting as electron shuttles, is usu-
ally justified to overcome the steric hindrance of substrates that impairs its proper
approach to the enzyme’s catalytic center or the high redox potential of the sub-
strates in comparison to the enzyme (Bourbonnais and Paice 1990). Interestingly, it
was observed that CotA, a low redox laccase (Eº = 525 mV vs. NHE), is able to
degrade high redox compounds, e.g. the azo dye reactive black 5 (Eº = 742 mV) to
a higher extent in the absence of redox mediators, in contrast to what was observed
with high-redox potential fungal laccases (Eº *780 mV vs. NHE) which requires
the presence of redox mediators (Abadulla et al. 2000; Zille et al. 2004; Camarero
et al. 2005; Tauber et al. 2005). This indicates that redox potential is not the only or
the most important parameter to be considered in what concerns substrate oxidation
by laccases (Durão et al. 2006).
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Fig. 1 Decolorization of several of anthraquinonic (AQ) and azo dyes after 24 h of reaction in the
absence of redox mediators by using CotA-laccase (adapted from Pereira et al. 2009b)
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The optimal pH for dye-decolorization by CotA-laccase around 8–9 is a dis-
tinctive feature shared with other bacterial laccases from Streptomyces ipomoea
(Molina-Guijarro et al. 2009), Bacillus vallismortis (Zhang et al. 2012) or Bacillus
subtilis X1 (Guan et al. 2013) which is in contrast with the optimal pH values in the
acidic range shown by laccases of fungal origin (Abadulla et al. 2000; Almansa
et al. 2004; Maier et al. 2004; Camarero et al. 2005; Rodriguez Couto et al. 2005;
Zille et al. 2005a, b; Pogni et al. 2007). In order to explore the enzymatic mech-
anism of azo dyes degradation, Sudan orange G (SOG) was selected for more
detailed investigations. Two pKa values for SOG were measured using potentio-
metric measurements, 6.90 ± 0.02 and 11.74 ± 0.02, which were attributed to ortho
and para hydroxyl groups of the azo dye (Pereira et al. 2009b). Based on this data,
the oxidation of SOG is mostly dependent on the protonation-deprotonation equi-
librium of the more acidic hydroxyl group of the substrate molecule, since maximal
rates are found at pH 8, above the pKa value of the ortho hydroxyl group of SOG.
This is in contrast with fungal laccases, which, in agreement with their optimal
pH at acidic ranges, oxidise more easily the protonated form of the dye. The
results obtained with CotA for the oxidation of SOG are consistent with data
obtained using syringyl-type phenolic compounds, where maximal enzymatic
rates were also observed at pH values above the pKa value of the compounds
tested which confirmed the preference of CotA for deprotonated phenolic groups
(Rosado et al. 2012). The differences in the optimal pH, as observed in bacterial
and fungal laccases, are most probably related to the presence of a conserved
negatively charged residue close to the substrate binding cavity of fungal laccases
and absent in CotA or in any bacterial laccase identified so far and proposed to
stabilize the formation of the phenoxy radical during the catalytic reaction of
fungal laccases (Bertrand et al. 2002; Piontek et al. 2002; Madzak et al. 2006;
Kallio et al. 2009; Rosado et al. 2012). Therefore, the oxidation of phenolic
groups by bacterial laccases without any carboxylic acid residue in the substrate
binding site is strictly dependent on the chemical nature of the substrates i.e.
maximal rates are found at pH values above the pKa values, when phenolate
anions, which are more prone to oxidation than the phenol form, are present at
higher concentrations.

2.2 Azo Dyes Biotransformation

The transformation of SOG (Pereira et al. 2009a) resulted in a decrease in the
intensity of the dye absorption band, at λmax = 430 nm, with concomitant increase in
absorption bands at 325 and 530 nm, indicating the generation of biotransformation
products (Fig. 2a).

The time course of SOG biotransformation was additionally monitored by HPLC
(Fig. 2b), where SOG was chromatographically separated from products of the
enzymatic reaction. A major peak with Rt of 5 min, corresponding to the substrate
which decreased over the time course of the reaction and disappeared after 7 h
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(Fig. 2b). Two major products emerged at Rt of 2.2 and 15 min. The CotA effi-
ciency of 8 × 103 M−1 s−1, is in the same order of magnitude to those calculated for
fungal laccases (Pereira et al. 2009b). The assay mixtures became browner in color
over the course of reaction, presumably due to formation of products (Fig. 3). After
centrifugation the final reaction mixture, the supernatant contained the compounds
corresponding to the major peak with Rt of 2.2 min and the pellet contained the
major product with Rt of 15 min. The full identification of this latter fraction was
impaired by its low solubility in several solvents: acetone, ethanol, methanol,
chloroform, dichloromethane, ethyl ether, toluene, hexane and tetrahydrofuran.
A partial solubility (25 %) was found on acetonitrile and thus, the identification of
products was performed only in the soluble part of acetonitrile-dissolved fraction.
The structural identification of twelve SOG biotransformation products (Fig. 4b)
was based on ESI-MS and MALDI-TOF MS data in combination with a putative
degradation pathway (Fig. 4a) based on the accepted model for azo dye degradation
by laccases (Chivukula and Renganathan 1995; Zille et al. 2005a, b).

Our results indicate that the enzymatic electron transfer occurs upon oxidation of
SOG deprotonated hydroxyl group. The one-electron oxidation of SOG molecule
by the enzyme results, therefore, in the formation of unstable radical molecules and
in the concomitant destruction of dye chromophoric structure in accordance with
previous reports (Chivukula and Renganathan 1995; Zille et al. 2005a, b). In
addition, the presence of these products can undergo coupling reactions between
themselves or with unreacted dye molecules, producing a large array of oligomeric
products (Fig. 4b). The presence of these compounds is in accordance with the
darkening of the enzymatic reactions, the high insolubility of products formed, and
also with the reduced toxicity of the final reaction mixture as compared to solutions
of intact SOG which was tested using a yeast-based bioassay (Pereira et al. 2009b).
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Fig. 2 Time course for Sudan orange G (SOG) biotransformation as monitored by absorbance
(a) and by HPLC (b). [(b) black circle SOG and products: black square Rt 2.2 min and, black
triangle Rt 15 min] (Pereira et al. 2009b)
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2.3 Anthraquinonic Dyes Biotransformation

The transformation of the anthraquinonic model dye acid blue 62 (AB62)
was carried out using CotA-laccase (Pereira et al. 2009b, Fig. 5a) or Lac3 from
Trametes sp. C30 following the research initiated in Sophie Vanhulle group
(Trovaslet et al. 2007; Vanhulle et al. 2008a, b). The degradation of AB62 resulted
in a decrease in the intensity of the dye absorption bands, at λmax = 600 and 630 nm,
along with an increase in absorption around 500 nm due to the formation of reddish
biotransformation products (Vanhulle et al. 2008a).

The time course of the biotransformation of AB62 was additionally monitored
by HPLC (Fig. 5b). The AB62 biotransformation resulted in a product with a Rt of
13 min that appeared in the first minutes of reaction, although, as the reaction
proceeded, it decreased concomitantly with the appearance of a new product with Rt

of 50 min (Fig. 5b). The CotA steady-state the catalytic efficiency (kcat/Km) for
AB62 oxidation is 5 × 103 M−1 s−1 around 2–3 fold lower when compared to other
fungal laccases, including Lac3 from Trametes sp. C30 (Klonowska et al. 2002,
2005; Vanhulle et al. 2008a). The biotransformation products were identified after
purification in the enzymatic reaction mixtures by NMR, MS/MSn, LC-MS and
GC-MS analysis. Using 1H NMR and MS/MSn was possible to identify the
intermediate product DAAS (Rt = 13 min) and the final product of the reaction (4)

Fig. 3 Reaction mixtures: control and in the presence of enzyme after 24 h, showing the
darkening of the enzymatic treated solution, most likely due to the high insolubility of the
oligomeric products formed
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(Rt = 50 min) (Fig. 5b). The proposed mechanism of biotransformation of AB62 by
laccases is illustrated in Fig. 6, showing the pathway for formation of an azo bound
in (4) which is responsible for the color observed in the reaction mixtures.
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The toxicity of synthetic dyes as well as of their bioconversion products presents
a great environmental concern (O’Neil et al. 1999; Robinson et al. 2001). AB62
causes a significant inhibitory effect on yeast growth and values of LOEC and IC50

of around 7 and 420 μM (3 and 177 mg L−1) respectively, were estimated. The IC50

is well above the expected dye concentrations in the environment, but is within the
same order of magnitude of the typical dye concentration in spent dye baths
(Robinson et al. 2001). The mixture, containing AB62 biotransformation products
after 2 h of reaction with CotA-laccase, was significantly less toxic to the yeast cell
population. Consistent with the reduced overall toxicity of AB62 solution, com-
pound 4, the reddish azo product that accumulates during the biotransformation
reaction, is significantly less toxic to the yeast (LOEC*45 μM, IC50>750 μM) than
the parent molecule.
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3 Biotransformation by Bacterial Azoreductases

Azoreductases is a generic name given to enzymes involved in the reduction of azo
bonds (–N=N–) and azoreductase activity was identified in several organisms
including algae, yeast and bacteria (Saratale et al. 2011; Solís et al. 2012;
Chengalroyen and Dabbs 2013; Khan et al. 2013). These enzymes are flavin-
independent or flavin-dependent oxidoreductases which utilize NADH and/or
NADPH as an electron donor and catalyze the reductive cleavage of the azo bonds
to produce colorless aromatic amine products under anaerobic or aerobic condi-
tions. Flavin-dependent azoreductases share strong similarities with regard to
sequence, structure, and reaction mechanism with the larger family of flavin-
dependent quinone reductases that include Lot6p from Saccharomyces cerevisiae
and the mammalian NQO1 (Deller et al. 2008). These enzymes are involved in the
reduction of quinones, quinoneimines, azo dyes, and nitro groups to protect the
cells against the toxic effects of free radicals and reactive oxygen species arising
from electron reductions. They are assumed to take part in the organism’s enzy-
matic detoxification systems; e.g., the azoreductases from E. coli and B. subtilis
were recently implicated in the cellular response to thiol-specific stress (Towe et al.
2007; Leelakriangsak et al. 2008; Liu et al. 2009) and Lot6p, the azoreductase
homologue in S. cerevisiae has been implicated in the response to oxidative stress
(Sollner et al. 2007, 2009). Furthermore, as additional members of this family of
enzymes are discovered, the list of transformed substrates continues to grow.
Evolutionarily, these enzymes may provide a selective advantage to bacteria under
various conditions of environmental stress (Khersonsky and Tawfik 2010).

3.1 Decolorization of Azo Dyes by PpAzoR
from Pseudomona putida MET94

In an effort to find bacterial strains with a superior ability to degrade synthetic dyes,
a collection of 48 bacterial strains was screened to select the strain P. putida
MET94 for its superior ability to decolorize a diverse array of azo dyes to higher
extent (Mendes et al. 2011b) (Fig. 7).

A BLAST search of the P. putida genome was performed and a 612-bp ORF
encoding a 203 amino acid residue was identified containing all the conserved motif
patterns of flavin-dependent azoreductases (Wang et al. 2007) and was, therefore,
named PpAzoR (Pseudomonas putida azoreductase). The ppAzoR gene was cloned
and expressed in E. coli. Subsequently, the recombinant FMN-dependent PpAzoR
protein was purified and thoroughly characterized following kinetic, spectroscopic
and biochemical and structural approaches (Correia et al. 2011; Mendes et al. 2011b;
Gonçalves et al. 2013). It was observed that PpAzoR reduced several quinones
(anthraquinone-2-sulfonic acid (AQS), 1,4-benzoquinone, catechol, 2-hydroxy-1,
4-naphtoquinone (Lawsone), 1,2-naphthoquinone) at rates 10–100 times higher than
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azo dyes (Mendes et al. 2011b; Brissos et al. 2014). The steady-state kinetic analysis,
using 1,4-benzoquinone or reactive black 5 and NADPH, resulted in a family of
parallel lines in a double reciprocal plot (Mendes et al. 2011b; Gonçalves et al. 2013)
which is indicative of a ping-pong bi-bi kinetics as described for other flavin-
dependent azoreductases. The efficiency for 1,4-benzoquinone is one and two orders
of magnitude higher than azo dyes (Vmax = 50 U mg−1, Km app = 0.005 mM, kcat
app = 49 min−1, kcat/Km = 98 × 105), showing that quinones represent most probably
the physiological substrates of this enzyme in P. putida cells.

PpAzoR (PDB code 4C0 W) is a homodimer and its tertiary structure adopts a
flavodoxin-like fold characterized by a central twisted five parallel β-sheet con-
nected by α-helices, which flank the sheet from the front and the back (Correia et al.
2011; Gonçalves et al. 2013). The arrangement of the α-helices and β-stands is
identical to structures of azoreductases from E. coli (PDB code 2Z98), Pseudo-
monas aeruginosa (PDB code 2V9C), Enterococcus feacalis (PDB code 2HPV)
and Salmonella typhimurium (PDB code 1T5B). Moreover, it contains the con-
served motif patterns of flavin-dependent azoreductases, i.e. the sequence involved
in the binding of FAD/FMN co-factors, the sequence involved in the dimerisation
of the two monomers of the enzyme and the possible putative NAD(P)H binding
motif. The crystal structures of native PpAzoR (1.6 Å) and PpAzoR complexed
with anthraquinone-2-sulphonate (1.5 Å) or reactive black 5 (1.9 Å), were solved
revealing the residues and subtle changes that accompany substrate binding and
release. Such changes highlight the fine control of access to the catalytic site and
tune the specificity offered by the enzyme towards different substrates. In particular,
it helps to explain how PpAzoR allows for the accommodation of bulky substrates
explaining its enlarged substrate utilization with similar catalytic efficiencies
(Gonçalves et al. 2013).

The enzymatic activity of PpAzoR was tested using 18 structurally different
synthetic dyes by measuring the decolorization levels after 24 h of incubation under
anaerobic conditions. The results show that PpAzoR exhibits a broad substrate
specificity with decolorization levels above 80 % for most of the dyes tested
(Fig. 8).

Fig. 7 Screening for decolorization of reactive red 4 (RR4), acid red 299 (NY1), reactive black 5
(RB5), direct blue 1 (CSB) and direct black 38 (CB) at increasing concentrations using growing
cells of P. putida MET94
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The specificity of PpAzoR was investigated by measuring the initial rates of
reduction of a set of structurally different azo dyes under anaerobic conditions
(Mendes et al. 2011b). PpAzoR uses either NADPH or NADH as electron donor, but
the efficiency forNADPH is twice that of NADH (Gonçalves et al. 2013). The enzyme
is particularly unspecific with regard to the azo dyes used, showing only smooth
trends with methyl red and reactive black 5 representing the substrates reduced with
higher specificity (around 1–2.5 × 103 M−1 s−1) and mordant black 9 and acid orange
7 reduced at the lowest efficiency (around 0.3–0.4 × 103 M−1 s−1). The affinity for
dyes is reduced with Km values between 0.1 and 4 mM indicating the need of adding
1–40 mM of dyes (10 × the Km value) to the reaction mixtures in order to accurately
measure the maximal rates of dye degradation (Mendes et al. 2011b). The high
concentration of dyes leads to initial absorbance values out of the Lambert-Beer law’s
applicability range. Therefore, the reaction assays to determine the kinetic parameters
for dye consumption need to be performed using a photometric discontinuous
method, where samples are withdrawn from reactions at time intervals, diluted and the
absorbance measured at the maximum wavelength for each substrate.

To further characterize the properties of PpAzoR, in particular the oxygen-
sensitivity of PpAzoR to oxygen, the initial rate of reactive black 5 degradation was
measured as a function of oxygen concentration (Fig. 9a). The results show that the
rates of dye decolorization decreased with increased O2 concentration. This is in
conformity with the low levels of dye decolorization by growing or resting cells of
P. putida MET94 cells under aerobic conditions. In order to test if oxygen is a non-
competitive, competitive inhibitor or instead is substrate for the PpAzoR enzyme,
oxygen consumption was measured in a reaction containing only enzyme, buffer
and NADPH (Fig. 9b). The addition of catalase resulted in a 2-fold increase in the
concentration of dioxygen in the mixture, showing that peroxide is in the solution
most likely as a result of PpAzoR activity (Fig. 9b). When catalase was added at the
beginning of the reaction, only half of the possible concentration of oxygen pro-
duced was attained (Fig. 9b). These results clearly show that oxygen is reduced to
peroxide by PpAzoR.
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The steady state kinetics of PpAzoR for oxygen reduction (Vmax = 5 U mg−1, Km

app = 0.1 mM, kcat app = 238 min−1, kcat/Km = 7 × 104 M−1.s−1) showing higher
affinity and one order of magnitude higher specifity as compared to dyes reduction
which explains the competitive catalytic behaviour of oxygen and thus, the “oxygen
sensitive” character of PpAzoR and the need to perform the decolorization of dyes
under anaerobic conditions.

3.2 The Catalytic Mechanism of PpAzoR and the Toxicity
of Dye Products

The ping-pong bi–bi mechanism is indicative that PpAzoR reduces the substrates in
2 distinct steps: first, a complete reduction of the FMN co-factor; and second,
transfer of these electrons from the flavin to the substrate, resulting in the formation
of the corresponding putative hydrazo derivatives. This reaction cycle proceeds a
second time and delivers the necessary 4 electrons in order to obtain a complete
reduction of the substrates into the final products. The mechanism of azo reduction
by PpAzoR was supported by the detection of aromatic amines by HPLC (Fig. 10).

The reported high toxicity of the azoreductase products relates to the toxic nature
of the aromatic amines formed (Pinheiro et al. 2004). Therefore, the toxicity of the
azo dyes and PpAzoR enzymatic products was tested based on the inhibitory effects
on the growth of Saccharomyces cerevisiae and on the reproduction inhibition of
Caenorhabditis elegans (Mendes et al. 2011a). In general, the toxicity of intact dyes
correlates well between the 2 model eukaryotic organisms tested (Fig. 11). Nev-
ertheless, C. elegans seems more susceptible to the presence of intact dyes, since
some dyes show more than 2-fold higher inhibition for the nematodes reproduction
than for S. cerevisiae growth.
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Fig. 9 a Inhibition of dye decolorization by increasing concentrations of dioxygen. b Consump-
tion of oxygen with an “Oxygraph” equipped with a Clark oxygen electrode. The chamber volume
(1 mL) contained 0.25 mM of NADPH in 20 mM Tris-HCl, pH 7.6 buffer. Reaction was initiated
by the addition of 3.5 µM PpAzoR and 1,500 Units of catalase (Sigma) was added at different time
periods, as indicated by the arrows
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However, for the majority of the other dyes tested, the enzymatic products
present a higher toxicity than intact dyes themselves, as assessed by the S. cere-
visiae system, exhibiting 2 to 4-fold higher toxicity than intact dyes (Fig. 12)
(Mendes et al. 2011a).

3.3 Engineering of PpAzoR for Improved Thermal Stability

PpAzoR broad substrate specificity makes it attractive for bioremediation processes,
but its low thermal stability (half life of 13 min at 50 °C) impairs its full potential
for environmental related applications. Thermal stability is a critical property, as it
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correlates with longer life-times of enzymes and frequently relates also to higher
tolerance to the presence of organic co-solvents, extreme pH values and high salt
concentration or pressures, harsh conditions frequently found in industrial pro-
cesses. Therefore, thermostable PpAzoR variants were generated by directed evo-
lution (Brissos et al. 2014). Directed evolution is considered to be the most
powerful approach for improving the thermostability of proteins. Different prop-
erties in various target enzymes have been successfully improved using directed
evolution approaches (Kaur and Sharma 2006; Böttcher and Bornscheuer 2010;
Wang et al. 2012). After five rounds of random mutagenesis, recombination and
high-throughput screening, a thermostable 1B6 variant was identified. Noteworthy
purified 1B6 variant enzyme maintains its full activity after incubation for 1 h at
temperatures between 40 and 85 °C in clear contrast with the wild type enzyme that
totally looses activity after 1 h at 50–55 °C (Fig. 13a). The kinetic or, the so called,
long term stability was measured, showing that 1B6 is remarkably more stable than
wild type with nearly a 300-fold higher half-life, i.e. retaining 50 % of activity after
58 h at 50 °C, while wild type enzyme takes 13 min to lose half of its initial activity
(Fig. 13b). Therefore, a hit variant of PpAzoR was identified with increased
resistance to inactivation, showing full reversibility of the unfolded state upon
thermal inactivation i.e. it could be maintained at high temperatures for prolonged
periods of time without losing its ability to be active at lower temperatures with an
encouraging potential for biotechnological applications.

4 Biotransformation of Dyes Using Bacterial
Dye-Decolorizing Peroxidases

Heme peroxidases catalyse the H2O2-dependent oxidation of a variety of substrates,
most commonly small organic substrates, playing multiple physiological roles in a
wide range of living organisms. Considering their broad specificity, these enzymes
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have a considerable potential for application in many different areas. In particular,
the interest in ligninolytic peroxidases, harbouring the highest redox potential
among peroxidases, for biotechnological applications has increased rapidly in
industrial areas related with the biorefineries, in particular for the selective delig-
nification of lignocellulosic materials for production of biofuels (Martinez et al.
2009; Ruiz-Duenas and Martinez 2009). These enzymes are also suitable for
environmental applications, including the treatment of toxic effluents, containing
synthetic dyes, generated in various industrial processes (Wesenberg et al. 2003;
Kandelbauer and Guebitz 2005; Husain 2006; Rodriguez Couto 2009b; Chacko and
Subramaniam 2011; Khan et al. 2013). However, these enzymes are still not
commercially available, in part due to constraints related to the genetic manipula-
tion and relatively low levels of protein expression in both native and fungal host
strains.

A new family of microbial peroxidases, known as dye decolorizing peroxidases
(DyPs), was demonstrated to successfully degrade not only high redox anthraqui-
none-based, but also azo dyes, β-carotene (Scheibner et al. 2008), aromatic sulfides
(van Bloois et al. 2010), phenolic or non-phenolic lignin compound units (Liers
et al. 2010; van Bloois et al. 2010; Brown et al. 2012) and manganese (Roberts
et al. 2011; Brown et al. 2012). The physiological function of these enzymes is at
present unclear, but there are increasing evidences of their involvement in the
degradation of lignin (Ahmad et al. 2011; Salvachua et al. 2013; Singh et al. 2013),
and therefore, DyPs seem to have the potential to replace the high-redox fungal
ligninolytic peroxidases in biotechnological applications. DyPs have primary
sequence, structural and apparently, mechanistic features, unrelated to those of
other known “classic” plant and animal peroxidases (Sugano et al. 2007; Liu et al.
2011; Yoshida et al. 2011; Singh et al. 2012; Strittmatter et al. 2012). The
uniqueness of these enzymes is, therefore, interesting both at the fundamental and

Fig. 13 a PpAzoR activity measured at 30 °C after incubation at different temperature (55–70 °C)
for 1 h: wild type PpAzoR (circles) and 1B6 variant (squares). b Thermal inactivation of wild type
PpAzoR (circles) and 1B6 variant (squares). Enzyme samples were incubated at 50 °C and
catalytic activity was measured at known time intervals at 30 °C (adapted from Brissos et al. 2014)
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applied perspectives. Importantly, DyPs, first discovered in fungi, were later
identified in a wide range of bacterial strains. In fact, the increasing number of
putative DyP-type peroxidases, identified in genomes and proteomes of bacteria,
leads to the suggestion that this super family should be renamed into the super
family of bacterial peroxidases (Colpa et al. 2013). DyPs have been classified into
four phylogenetically distinct sub-families, with bacterial enzymes constituting A-C
sub-families and fungal enzymes belonging to D sub-family (Ogola et al. 2009).

DyPs show characteristic conserved residues in the heme-binding site, in par-
ticular the characteristic GXXDG motif and an aspartate residue replacing the distal
histidine, which acts as the acid-base catalyst in classical peroxidases (Sugano
2009; Hofrichter et al. 2010; Colpa et al. 2013). Structurally, these DyPs comprise
two domains that contain α-helices and anti-parallel β-sheets, unlike plant and
mammalian peroxidases, that are primarily α-helical proteins (Colpa et al. 2013).
Both domains adopt a unique ferredoxin-like fold and form an active site crevice
with the heme co-factor sandwiched in between (Colpa et al. 2013).

The cloning and characterization of two new DyPs, one from Pseudomonas
putida MET94 designated as PpDyP (P. putida DyP) and another from Bacillus
subtilis, called BsDyp (B. subtilis DyP) were recently described (Santos et al.
2014). The biochemical characterization of these bacterial enzymes allowed
assessing their versatility and catalytic efficiency towards structurally different type
of substrates as well as their stability properties. The constructed phylogenetic tree
shows that BsDyP belongs to subfamily A and PpDyP belongs to subfamily B
(Santos et al. 2014).

4.1 PpDyP and BsDyP Performance Towards
Dye Decolorization

In order to characterize the catalytic specificity of PpDyP and BsDyP for synthetic
dyes, an array of both anthraquinonic and azo dyes were tested as substrates
(Table 1). All the dyes were degraded by both enzymes after 24 h of reaction to
different extents (Fig. 14). However, no major differences were observed in the
levels of decolorization of anthraquinonic as compared to azo dyes, in contrast to
other DyPs that show typically lower activities for the azo dyes (Kim and Shoda
1999; Sugano et al. 2000; Ogola et al. 2009; Li et al. 2011).

The potential of these enzymes was well demonstrated by comparing the
decolorization rates (Vmax) of the studied DyPs with the azoreductase PpAzoR
and the CotA laccase. Two to 40-fold higher activities were measured in DyPs
(Table 1).

The Bacillus enzyme BsDyP is in general a less versatile and a weaker bio-
catalyst than PpDyP (Santos et al. 2014). Except for the oxidation of ABTS,
Pseudomonas enzyme shows one to two orders of magnitude higher efficiency
(kcat/Km) for the different synthetic dyes (Table 2 and data not shown), manganese
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or phenolic substrates tested, than the Bacillus enzyme. Moreover, PpDyP is able to
oxidise the high redox non-phenolic veratryl alcohol compound (1.4 V) in the
absence of redox mediators as DyPB from R. jostii and DyPs from C-D subfamilies

Table 1 Activities of PpDyP and BsDyP as compared to PpAzoR and CotA, using 2 mM of
anthraquinonic (disperse blue 1, reactive blue 5, acid blue 62 and reactive blue 19) or azo (mordant
black 9, acid black 194 and acid yellow 49) dyes as substrate (Santos et al. 2014)

Substrates Vmax (U mg−1)

PpDyP BsDyP PpAzoR CotA

AQ dyes

Disperse blue 1 10 ± 3 3 ± 0.1 nd 0.6 ± 0.04

Reactive blue 5 11 ± 1 9 ± 1 nd 0.3 ± 0.01

Acid blue 62 9 ± 1 10 ± 0.1 nd 1.3 ± 0.9

Reactive blue 19 9 ± 2 5 ± 0.2 nd nd

Azo dyes

Mordant black 9 26 ± 2 4 ± 0.1 2 ± 0.1 1 ± 0.3

Acid black 194 12 ± 2 2 ± 0.1 3 ± 0.4 0.9 ± 0.2

Acid yellow 49 10 ± 1 3 ± 0.2 2 ± 0.3 2 ± 0.2

nd not detected
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of DyPs (Liers et al. 2010, 2011; Ahmad et al. 2011; Brown et al. 2012) and shows
a reasonable metalloxidase activity towards ferrous ions, not detected in the
Bacillus enzyme.

The different catalytic characteristics between members of the DyPs sub-families
point to distinct heme micro-environments. The UV-visible absorption spectra of
the Bs and Pp enzymes obtained upon addition of hydrogen peroxide reveal the
accumulation of different catalytic intermediates. The accumulation of compound I
in PpDyP is in accordance with results obtained for all other DyPs and the majority
of classical peroxidases, while the accumulation of compound II intermediate in
BsDyP was previously observed in A-type DypA from R. jostii RHA1 (Roberts
et al. 2011). The reasons behind the distinct spectral behaviour of BsDyP and
PpDyP are possibly related to the higher redox potential of BsDyP which con-
tributes to a relatively lower stability of Fe3+ and thus to a lower stability of
compound I upon addition of hydrogen peroxide (Fig. 15). The poorer catalytic
activity of BsDyP, as compared to the Pp enzyme, must rely to a highly abundant

Table 2 Steady-state apparent catalytic constants of purified recombinant PpDyP and BsDyP
(Santos et al. 2014)

Substrates PpDyP BsDyP

Vmax

(U mg−1)
Km app

(μM)
kcat/Km

(M−1 s−1)
Vmax

(U mg−1)
Km app

(μM)
kcat/Km

(M−1 s−1)

AQ dyes

Reactive
blue 5

15 ± 0.2 40 ± 3 2 × 105 11 ± 0.6 157 ± 46 5 × 104

Acid blue
62

14 ± 0.3 30 ± 4 2.4 × 105 12 ± 0.2 444 ± 45 2 × 104

Azo dyes

Mordant
black 9

32 ± 0.2 320 ± 47 5 × 104 5 ± 0.1 385 ± 46 1 × 104

Pox + H2O2 Compound I + H2O (1)

Compound I + AH Compound II + A (2)

Compound II + AH Pox + A + H2O (3)

Fig. 15 The three-step catalytic cycle in the classical peroxidation reaction catalyzed by
peroxidases, where Pox is the resting enzyme containing a ferric heme iron, Compound I is the first
enzyme intermediate, which contains an oxyferryl iron center and a second oxidizing equivalent
stored as a radical (Fe(IV)=OR+⦁) to give a formal oxidation state of +5, and Compound II is the
second enzyme intermediate in which the radical is discharged leaving only the oxyferryl iron
(formal oxidation state +4). AH represents the reducing substrate and A⦁ the radical product
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catalytic incompetent 6-coordinated low spin state in the Bs enzyme, while the
major population in PpDyP is the 5-co-ordinated quantum mechanically mixed spin
state, as observed by resonance Raman (Sezer et al. 2013).

4.2 The Catalytic Pathway for Biotransformation
of Anthraquinonic Dyes by DyPs

The transformation of the anthraquinonic dye reactive blue 5 was carried out using
DyP from Thanatephorus cucumeris Dec 1 (Sugano et al. 2009). Changes in the
visible spectrum of RB5 treated with DyP resulted in a decrease in the intensity of
the dye absorption band, at λmax = 600 nm, along with an increase in absorption at
400–500 nm as the color of the solution became red-brown.

Analysis of the final enzymatic reaction mixtures by NMR and MS techniques
showed that the anthraquinone dye reactive blue 5 was transformed by DyP from T.
cucumeris Dec 1 to three reaction products detected by their distinct molecular ion
signals. The first product (1) was identified as phthalic acid by comparison with an
authentic sample. The second one (2), with a molecular mass of 472 g mol−1, can be
attributed to a reactive blue 5 molecule without the anthraquinone frame (see
Fig. 16). Finally, the third product (3) can be obtained from compound (2) which
loss a 2,5-diaminobenzene sulfonic acid (ABS) molecule.

Based on these results, a reasonable degradation pathway of reactive blue 5 by
DyP was proposed as shown in Fig. 16. The final red-brown color of the reaction
mixture of reactive blue 5 biotransformation and the absence of o-ABS and m- or
p-ABS as final products, suggest the presence of other products resulting from the
dimerisation and polymerization reactions of ABS type substrates by DyP action. In
fact, this was confirmed with the o-ABS reaction with DyP, leading to the formation
of high weight colored products, from which compound 4, containing an azo group,
was identified.

4.3 Combined Sequential Enzymatic Treatment for Dye
Degradation and Detoxification

In order to set-up enzymatic processes for maximal decolorization as well as
detoxification, a sequential enzymatic procedure was performed combining the
PpAzoR reduction of azo dyes to the oxidation of aromatic amines by CotA-
laccase. It is know that laccases catalyze the oxidation of ortho- or para-substituted
phenolic or aromatic amine substrates by one electron abstraction to form free
radicals that undergo further coupling, polymerization, demethylation, or quinone
formation (Abadulla et al. 2000; Kandelbauer and Guebitz 2005). In particular, we
have shown recently that CotA-laccase catalyzed the homocoupling of primary
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aromatic amines that represent good oxidative substrates (Sousa et al. 2013).
Therefore, azo dyes were reduced by PpAzoR under anaerobic conditions and after
24 h of reaction, CotA-laccase was added with agitation. Interestingly, this
sequential enzymatic procedure resulted not only in 100 % decolorization of all azo
dyes tested, but also in 50–95 % detoxification of dye-products that exhibited the
highest initial toxicity (Fig. 17) (Mendes et al. 2011a).
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Fig. 16 Proposed pathway for the biotransformation of reactive blue 5 by DyPs. The presence of
products (1) and (2) was consistent with an oxidative ring-opening of the anthraquinone frame
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supported by ESI-MS analysis of the final reaction mixtures (adapted from Sugano et al. 2009)
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4.4 Construction of an E. coli Strain Producing Both
Azoreductase and Laccase

The use of whole cell catalysis is considered one of the most appropriate systems
for biodegradative processes. It allows the lowering of the costs associated with
enzyme purification and co-factors supply and also providing protection to the
biocatalysts from harsh process environment. Therefore, a host strain co-expressing
the genes coding for both enzymes of interest, PpAzoR and CotA, was constructed
and a whole cell system was tested for the decolorization of dyes (Mendes et al.
2011a).

Three model dye-containing wastewaters were designed to mimic textile efflu-
ents produced during cotton or wool textile dyeing processes containing other
additives and salts (30–90 % of the total weight) in addition to dyes (Prigione et al.
2008; Mendes et al. 2011b). These dyes are representative of different structural dye
types and are widely applied in the textile industry. A step-wise sequential process
was set-up, where the sequential action of PpAzoR and CotA enzymes could be
tuned by aeration conditions. Whole cells remained in anaerobic conditions for
24 h, appropriate for PpAzoR degradation of azo dyes to aromatic amines, followed
by a second 24 h period where with appropriate shaking, CotA aerobically oxidized
the aromatic amines, and also the anthraquinonic dyes present in the model dyes
(Mendes et al. 2011a). This procedure resulted in almost 100 % decolorization
levels for the acid dye bath and around 80 % for both the reactive and direct dye
baths (Fig. 18a). After this sequential treatment the toxicity levels of the final
products was reduced for both S. cerevisiae model growth or for C. elegans
reproduction (Fig. 18b).

Taken together, the results showed that the genetically engineered E. coli strain
expressing the gene coding for azoreductase and laccase is able to decolorize and
detoxify to a significant level the 3 model wastewaters tested, highlighting its
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Fig. 17 Inhibitory effects of intact dyes over Saccharomyces cerevisiae (black bars) and upon the
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potential as a degradative and detoxifying bio-system for the treatment of real dye-
containing effluents, without the costs associated with enzyme purification and
cofactors addition.

5 Conclusions and Future Perspectives

Synthetic dyes impart an intense color to wastewater effluents from the textile,
leather or other dye manipulating industries leading to environmental, medical and
aesthetic problems. The diversity and complexity of dyes present in these effluents
are designed to resist fading on exposure to light or chemical attack, pose serious
problems on the design of technically feasible and cost-effective treatment meth-
ods. There are a relatively low number of known enzymes that are efficiently
involved in the degradation of synthetic dyes in natural systems. Therefore, the
characterization of enzymes, that make a discernible contribution to the degradation
of synthetic dyes, paves the way for the improvement of multi-enzymatic systems,
through protein engineering strategies, to maximize their biodegradation, bio-
transformation and valorization potential. In this review, we have described the
properties, enzymatic mechanisms and products toxicity of three different types of
bacterial enzymatic systems. The CotA-laccase from B. subtilis is a promising
enzyme for the oxidative degradation of both antraquinonic and azo dyes in
addition to their efficiency in the biotransformation of toxic aromatic amines (the
degradation products of azoreductases). The azoreductase PpAzoR from P. putida
MET94 is an enzyme that uses a broad range of azo dyes as substrates leading to
high levels of decolorization. The major drawback associated with the use of
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Fig. 18 a Residual color after the stepwise sequential process using whole cells co-producing
PpAzoR and CotA (white bars). b Toxicity over Caenorhabditis elegans reproduction of intact
model wastewater (black bars) and after the stepwise sequential process using whole cells co-
producing PpAzoR and CotA (white bars) (Mendes et al. 2011a)
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azoreductases is their requirement for expensive co-factors and the toxicity of the
aromatic compounds produced. This can be overcome using whole cells systems of
recombinant cells overproducing azoreductases and laccases as described for the
decolorization and detoxification of model wastewater baths. The bacterial dye
decolorizing peroxidases are new biocatalysts with a high potential for the set-up of
bioprocesses considering the enlarged substrate spectrum exhibited, in particular
their high efficiency for the biotransformation of anthraquinonic dyes. Both
enzymes from P. putida and B. subtilis are interesting biocatalysts showing higher
rates of decolorization as compared to azoreductases and the laccases tested.
Moreover, we have shown the benefits of genetic engineering and evolutionary
approaches to modify enzymes and microorganisms with enhanced stability and
catalytic performance towards an efficient enzymatic treatment of dye-containing
wastewaters.
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