
A Mid-Flight Synopsis of the BG Social
Networking Benchmark

Shahram Ghandeharizadeh(B) and Sumita Barahmand

Database Laboratory, Computer Science Department,
USC, Los Angeles, CA 90089-0781, USA

{shahram,barahman}@usc.edu

Abstract. BG is a benchmark that rates the performance of a data
store for processing interactive social networking actions such as view a
member’s profile, invite a member to be friends, accept a friend request,
and others. It is motivated by a proliferation of data stores from a vari-
ety of academic and industrial contributors including social networking
companies, e.g., Voldemort by LinkedIn. BG is designed to provide a
system architect with insights into alternative design principles such as
the use of a weak consistency technique instead of a strong one, different
physical data models such as relational and JSON, factors that impact
vertical and horizontal scalability of a data store, the consistency versus
availability tradeoff in the CAP theorem, among others. While BG is a
recently introduced benchmark (less than a year old as of this writing), it
combines elements of maturer benchmarks and extends them to simplify
its use by the practitioners and experimentalists. This paper provides a
synopsis of the BG benchmark by identifying its strengths and limita-
tions in our daily use cases. The identified limitations shape our research
activities and the obtained solutions shall be incorporated into future
BG releases. Thus, this workshop paper is a mid-flight glimpse into our
current research efforts with BG.

1 Introduction

In an article that appeared in the July 2012 issue of the Communications of
the ACM, David Patterson observes when a discipline has good benchmarks,
debates are settled and the discipline makes rapid progress [16]. Today, we have
an abundance of architectures for data stores and services with only a hand-
ful of benchmarks to substantiate their many claims. Academia, cloud service
providers such as Google and Amazon, social networking sites such as LinkedIn
and Facebook, and computer industry continue to contribute systems and ser-
vices with novel architectures and assumptions. In 2010, Rick Cattell surveyed
23 systems [7] and we are aware of 10 new1 ones since that writing. In his survey,
Cattell identified a “gaping hole” with a scarcity of benchmarks to substantiate
1 Apache Jackrabbit and RavenDB, Titan, Oracle NoSQL, FoundationDB, STSdb,

EJDB, FatDB, SAP HANA, CouchBase.

c© Springer International Publishing Switzerland 2014
T. Rabl et al. (Eds.): WBDB 2013, LNCS 8585, pp. 19–31, 2014.
DOI: 10.1007/978-3-319-10596-3 2



20 S. Ghandeharizadeh and S. Barahmand

the claims made by the different systems. We have designed and implemented
a social networking benchmark named BG [2] (visit http://bgbenchmark.org)
to address certain aspects of the hole that is too large to address with just one
benchmark.

BG’s workload consists of actions that either read or write a small amount
of data from big data, typically termed simple operations [10,21]. Today’s BG
is designed for high throughput data stores that provide interactive response
times. A long term objective is to extend BG with complex analytics that require
processing of a large amount of data using machine learning algorithms. This
would make BG suitable to evaluate Hadoop and other implementation of the
MapReduce [8] framework, see Sect. 7 for details.

We developed BG in 2012 and released a stable version of it in January 2013.
Its conceptual schema and eleven actions are an abstraction of today’s social
networking sites such as Google+, Facebook and others. In [2], we provide a
comprehensive list of the surveyed sites and a matrix that describes compatibility
of BG’s actions with those supported by a site. Figure 1 shows BG’s conceptual
schema. The concept of members with registered profiles befriending one another
is at the core of this schema. Its implementation in a physical data store is
dictated by an experimentalist. BG is data store agnostic and one may tailor
both the physical schema and the implementation of actions to highlight the
strengths of a data store. At the time of this writing, an implementation of BG’s
schema and actions is available for the following data stores:

– MySQL, Oracle, PostgreSQL, and VoltDB as relational data stores.
– MongoDB and CouchBase as document stores.
– Microsoft Azure as a cloud service provider.
– Hibernate as an Object Relational Mapping (ORM) framework.
– Cache augmented data stores with memcached, EhCache, Twemcache, and

KOSAR.

Fig. 1. Conceptual design of BG’s database.

http://bgbenchmark.org


A Mid-Flight Synopsis of the BG Social Networking Benchmark 21

Table 1. Three mixes of social networking actions.

BG social actions Type Very low Low High

(0.1%) Write (1%) Write (10%) Write

View Profile (VP) Read 40% 40% 35%

List Friends (LF) Read 5% 5% 5%

View Friends Requests (VFR) Read 5% 5% 5%

Invite Friend (IF) Write 0.04% 0.4% 4%

Accept Friend Request (AFR) Write 0.02% 0.2% 2%

Reject Friend Request (RFR) Write 0.02% 0.2% 2%

Thaw Friendship (TF) Write 0.02% 0.2% 2%

View Top-K Resources (VTR) Read 40% 40% 35%

View Comments on Resource (VCR) Read 9.9% 9% 10%

Post Comment on a Resource (PCR) Write 0% 0% 0%

Delete Comment from a Resource (DCR) Write 0% 0% 0%

The first column of Table 1 shows the eleven actions that constitute BG.
The name of the actions is self explanatory. All actions that reference members
are binary consuming two member ids as input. For example, the two member
ids specified with the View Profile action identify the member who is viewing
a profile and the member whose profile is being viewed. Those actions that
consume a resource id either read the resource and its comments or modify a
comment on that unique resource. The different actions may either read or write
data from a data store as highlighted by the second column of Table 1. We refer
the interested reader to [2] for a detailed description of each action.

The last three columns of Table 1 show three different workloads correspond-
ing to a very low, low, and a high percentage of write actions. (According to
Facebook, more than 99 % of its workload consists of read actions [9].) Each col-
umn specifies a fixed percentage of occurrence for each action in a workload. We
use the presented three workloads in our experiments on a daily basis. All three
are symmetric workloads that cause an experiment to complete with approx-
imately the same number of confirmed friendships and pending friendships as
those in the beginning of the experiment. The number of these relationships is
impacted by the frequency of the following actions: Invite Friend, Accept Friend
Request, Reject Friend Request, and Thaw Friendship actions. For this number
to remain unchanged, the rate at which BG generates friendships should equal
the rate at which it thaws friendships. This is realized by satisfying the following
two conditions: (1) percentage of Thaw Friendship and Accept Friend Request
must be identical, and (2) percentage of Invite Friend must equal the sum of
percentage of Reject Friend Request and Accept Friend Request. In Table 1, the
frequency of Post Comment on a Resource (PCR) and Delete Comment from
a Resource (DCR) are intentionally kept at zero to demonstrate that one may
specify workloads consisting of either a single or a few actions. When specifying



22 S. Ghandeharizadeh and S. Barahmand

frequencies of PCR and DCR, a symmetric workload should define the same
frequency of occurrence for each action.

BG is a stateful benchmark that generates valid actions. For example, it
extends a friendship from Member A to Member B only when they are not
friends. It realizes this by maintaining a representation of the social graph in
its memory. BG uses this representation to ensure its emulated simultaneous
members and resources are unique at an instance in time.

A novel feature of BG is its ability to quantify the amount of unpredictable
(stale, inconsistent, erroneous) data produced by a data store. BG evaluates a
data store for a workload that specifies an SLA. An example SLA may require
95 % of actions to be performed faster than 100 milliseconds with no more than
0.01 % unpredictable data for Δ = 10 min. BG includes a heuristic search tech-
nique to quantify the maximum throughput (actions per second) observed with
a data store while satisfying the pre-specified SLA. This is termed the Social
Action Rating, SoAR, of the data store.

We have employed BG to investigate design and implementation of novel
architectures for data intensive applications, e.g., to compare a relational repre-
sentation of a social graph with its JSON representation [5], quantify the trade-
offs associated with alternative consistency techniques for a cache augmented
relational data store [12], and others. In these use cases, we have identified sev-
eral limitations with BG’s design. These shape our research efforts to extend
BG to maintain it as a state of the art benchmark. Most are in the context
of the novel features of BG that make it unique. Below, we describe these in
turn, detailing BG’s scalable request generation in Sect. 2, its closed emulation
of socialites and an alternative open emulator in Sect. 3, its rating mechanism in
Sect. 4, its validation phase in Sect. 5, and additional actions in Sect. 6. Section 7
provides our long term future research.

2 Scalability

BG employs a shared-nothing architecture and scales to a large number of nodes,
preventing either the CPU, network, or memory resources of a single node from
limiting its request generation rate. Its software architecture consists of one
coordinator and N clients, termed BGCoord and BGClient, respectively. In our
experiments with an 8 core CPU, a multi-threaded BGClient is able to utilize all
cores fully as long as the client component of a data store does not suffer from
the convoy phenomena [6] and the data store is able to process requests at the
rate generated by BG. When the client component of a data store limits vertical
scalability, as long as there is a sufficient amount of memory, one may execute
multiple instances of BGClients on a single node to utilize all cores. BG scales
horizontally by executing multiple BGClients across different nodes. BGCoord
is responsible for initiating the BGClients, monitoring their progress, gathering
their results at the end of an experiment, and aggregating the obtained results
to compute the SoAR of a data store.

Once the BGClient instances are started, they generate requests independently
with no synchronization. This is made possible using the following two concepts.



A Mid-Flight Synopsis of the BG Social Networking Benchmark 23

First, a BGClient implements a decentralized partitioning strategy that declus-
ters a benchmark social graph into N disjoint sub-graphs where N is the number
of BGClients. A BGClient is assigned a sub-graph to generate requests referencing
members of its assigned sub-graph only. While the data store is not aware of this
partitioning, the data generated and stored in the data store does correspond to
the N disjoint graphs. One may conceptualize each sub-graph as a province whose
citizens may perform BG’s actions with one another only. This means citizens of
different provinces may not view one another’s profile or become friends with one
another.

Second, BG employs a novel decentralized implementation of the Zipfian
distribution, named D-Zipfian [3,24], that ensures the distribution of requests
to the different members is independent of N . Thus, the distribution of access
with one node is the same as that with several nodes. D-Zipfian in combination
with partitioning of the social graph enables BG to utilize N nodes to generate
requests without requiring coordination until the end of the experiment, see [2–4]
for details.

While BG scales to a large numbers of nodes, its two concepts may fail to
evaluate some data stores objectively. As an example, consider the architec-
ture of Fig. 2 where an application is extended with a cache such as KOSAR
or EhCache [12]. This caching framework consists of a KOSAR coordinator
that maintains which application server has cached a copy of a data item in its
KOSAR JDBC wrapper, KOSAR-Client for short. When one application server
updates a copy of the data item, its KOSAR-Client informs the KOSAR coor-
dinator of the impacted data item. In turn, the KOSAR coordinator invalidates
a copy of this data item that resides in the KOSAR-Client of other applica-
tion servers. With a skewed pattern of access to members and a workload that
exhibits a low read to write ratio, a centralized KOSAR coordinator may become
the bottleneck and dictate the overall system performance. The aforementioned

Fig. 2. A data intensive architecture using KOSAR.



24 S. Ghandeharizadeh and S. Barahmand

two concepts employed by BG fail to cause the formation of such a bottleneck.
To elaborate, each application server references data items that are unique to
itself since its assigned sub-graph is unique and independent of the other sub-
graphs. Hence, once an application server updates a cached data item, BG does
not exercise the KOSAR coordinator informing KOSAR-Client of another appli-
cation server.

To address the above limitation, we are extending BG to employ N BGClients
with one social graph. The key concept is to hash partition members and resources
across the N BGClients. Each BGClient is aware of the hash function and employs
the original Zipfian distribution (instead of D-Zipfian) to generate member ids.
When a BGClient BGCi references a data item that does not belong to its assigned
partition, it contacts the BGClient that owns the referenced data (say BGCj) to
lock that data item for exclusive use by BGCi and to determine if its intended
action is possible. BGCj grants the lock request if there is no existing lock on
the referenced data item and the action is possible, enabling BGCi to proceed to
generate a request with the identified data item to the data store. Once the request
is serviced, BGCi contacts BGCj to release the exclusive lock on the referenced
data item to make it available for use by other BGClients. This design raises the
following interesting questions:

– When BGCj fails to grant an exclusive lock2 to the referenced data item
due to an existing lock, how should the framework handle the conflict? Three
possibilities are as follows. First, it may block BGCi until the referenced data
item becomes available. Second, it may return an error to BGCi to generate
a different member/resource id and try again. Third, it may simply abort
this action and generate a new action all together. We intend to quantify the
tradeoff associated with these three possibilities and their impact on both the
distribution of requests and the benchmarking framework.

– What is the scalability characteristic of the proposed technique? The pro-
posed request generation technique requires different BGClients to exchange
messages to lock and unlock data items and to determine the feasibility of
actions. We plan to quantify this overhead and its impact on the scalability of
this request generation technique. This intuition should enable us to propose
refinements to enhance scalability.

– How different are the obtained results with N disjoint social graphs (current
version of BG) and one social graph (the proposed change)? This question
applies to those systems that may use the current version of BG. We intend
to repeat our published experiments such as those reported in [5] to quantify
differences if any.

An investigation of these questions shapes our short term research direction.
2 BGCj may return an error code when the action is not possible. For example, Thaw

Friendship using Member A may not be feasible because A has no friends. In these
cases, BGCi may either abort the action or may reference a new member for the
same action.



A Mid-Flight Synopsis of the BG Social Networking Benchmark 25

3 Closed Versus Open

BGClients generate requests using a fixed number of threads T . Each thread
emulates a random member of a social networking site performing one of the
eleven actions. The randomly selected member is conditioned using the D-Zipfian
distribution. This is termed a closed emulation model because a thread does not
emulate a new member generating a new action until its emulation of a current
member completes. This model may include a think time between emulation of
different members issuing actions. Historically, this is a model3 of a financial
institution with a fixed number of tellers (ATM machines) with T concurrent
customers (threads) performing financial transactions simultaneously [13].

An open emulator is a more realistic model of a social networking site [17]
(and web sites in general). With this model, the emulator generates requests
based on a pre-specified arrival rate, λ. This model is depicted in Fig. 3 where a
factory generates members who issue a social networking action independently.
(A member who is performing an action is termed a socialite.) The factory does
not wait for the data store to service a request issued by a socialite. Instead,
it generates λ socialites issuing requests per unit of time using a distribution
such as random, uniform, or Poisson. A Poisson distribution results in a pat-
tern of requests that is bursty. This means λ is an average and the number of
simultaneous socialites at an instance in time might be higher than λ.

While the open emulator is more realistic, its design and implementation
requires a careful study. This is because today’s data stores service requests at
such a high rate that the emulator must support λ values in the order of a million
without exhausting its CPU resources. In addition to the scalability discussions
of Sect. 2, the emulator must generate requests in a burst consistent with the
Poisson distribution. At the time of this writing, we are evaluating the feasibility
of such an open emulator and its implementation in BG.

4 Rating Mechanism

BG rates a data store to compute its Social Action Rating (SoAR) and Socialites
rating for processing a workload. A workload consists of a mix of the eleven
actions (see Table 1 and its discussion in Sect. 1), an exponent for the D-Zipfian
distribution to control its degree of skew when referencing members, and a pre-
specified SLA, see Sect. 1 for an example SLA. The SoAR of a data store is the
highest throughput provided by that data store for the specified workload. The
Socialite rating of a data store is the maximum number of simultaneous socialites
(threads) that may generate requests corresponding to the specified workload.
The pre-specified SLA imposes constraints on the acceptable response times and
the amount of unpredictable data to constrain the SoAR and Socialite ratings
of a data store. Given several data stores, the data store with the highest SoAR
and Socialite rating is the superior one.
3 This model is a representative of a web server configured with a maximum number

of threads.



26 S. Ghandeharizadeh and S. Barahmand

Fig. 3. Closed and open emulation of socialites issuing actions to a data store.

BG’s rating process and its assumptions are detailed in [2]. Briefly, the rating
process consists of a heuristic search that conducts multiple experiments. Each
experiment uses the same workload specified by an experimentalist. With those
workloads that impact the state of the database, the rating process might be
required to re-load the database prior to each experiment. The repeat loading of
a benchmark database may constitute a significant portion of the rating process.
For example, the time to generate a one million member database with a data
store requires 11 days [4]. If the rating process conducts ten experiments each
30 min in duration, the time to generate the database each time would require
almost 4 months.

Three alternatives that re-generate the database expeditiously are detailed
in [4]. One is the Database Image Loading (DBIL) technique that maintains the
original image of a database and copies it as the current database in advance
of each experiment to reduce the load time. The time to copy the one million
member database is 30 min [4], reducing the time to conduct ten experiments to



A Mid-Flight Synopsis of the BG Social Networking Benchmark 27

11 days and 10 h. The 11 days incurred to create the database for the first time
is a one time overhead. By maintaining the image and re-using it, the duration
of rating of the data store with different workloads is reduced dramatically. For
example, the time to conduct ten experiments is now 10 h. We refer the interested
reader to [4] for a detailed description of DBIL and two other techniques.

A key research question is the duration of each conducted experiment.
A possible answer is to employ the duration specified by the SLA, Δ. How-
ever, if an experimentalist select a high value for this input parameter, then
the rating process may consume more time than necessary. It is desirable to
run experiments for shorter durations than Δ to identify a region in the search
space that establishes the true SoAR of a data store. Ideally, the duration of an
experiment should be the smallest possible value, δ, that reflects the behavior
of a data store as if the experiment was running for Δ time units. The ideal δ is
both data store and workload dependent and can be analyzed in a pre-processing
step, prior to the rating process. This step involves multiple experiments issuing
the given workload against the data store to select the smallest duration that
results in a steady system behavior defined as one whose resource utilization
and observed throughput do not change in time. For such a system the recently
observed behavior will continue to hold into the future.

5 Validation

A novel feature of BG is its ability to quantify the amount of unpredictable
data (stale, inconsistent, erroneous) produced by a data store. A data store may
produce unpredictable data for a variety of reasons. Examples include use of a
weak consistency technique such as eventual [20,23] and use of a cache [12] in a
manner that results in dirty reads [15] and inconsistent cache states [11].

BG is able to measure the amount of unpredictable data because it is a
stateful benchmark that is aware of the initial state of a data item in the database
and its updates to the database. It maintains the start and end of each action
to enumerate the finite number of ways a read may overlap multiple concurrent
write actions that reference the same data item. BG enumerates these to compute
a range of possible values that should be observed by the read operation. If a
data store produces a different value then it has produced unpredictable data.
This process is named validation.

BG decouples generation of requests to quantify the performance of a data
store from the validation phase, performing validation in an off-line manner.
When generating requests, each BG thread generates a log record for each of its
actions: read log records for read actions and write log records for write actions.
These log records are written to separate files. One file for the read log records
and a second file for the write log records.

The validation phase assumes in-memory data structures to compute the
amount of unpredictable data as follows. First, it maintains an interval tree for
(1) each member and write actions that impact her friendships, (2) each mem-
ber and write actions that impact her pending friend invitations, and (3) each



28 S. Ghandeharizadeh and S. Barahmand

resource that is annotated with a write action. It constructs interval trees for a
member/resource on demand as it reads the write log records in memory. The
start and end time stamp of the write log records are indexed by an interval tree.
Once the write log records are staged in memory, the validation phase retrieves
the read log records. It employs the member id (resource id) and the action to
identify the interval tree with the relevant write log records. Next, it uses the
start and end time stamp of each read log record to enumerate the number of
ways it overlaps with the different write actions, computing a range of valid
values that should be observed by the read action. If the value observed by the
read action (recorded in the log record) does not match one of the valid values
then this read action has observed an unpredictable value.

The current implementation of the validation phase is fast when there is a
sufficient amount of memory to stage the write log records in interval trees. This
enables the validation phase to read the log files once to process both read and
write log records in one pass. This multi-threaded process may utilizes multiple
cores fully because (1) write log records are inserted into different interval trees
based on their referenced member/resource id, and (2) different read log records
may share and read the same interval tree simultaneously.

By performing validation in an off-line manner, BG reduces the number of
nodes required to generate request to evaluate a data store. A key limitation
of the current validation technique is that it may exhaust the available physi-
cal memory, causing the operating system to exhibit a thrashing behavior that
results in an unacceptably long validation process. This is specially true with
high throughput multi-node data stores and cache augmented data stores such
as KOSAR that process requests in the order of millions of actions per second.
We intend to extend the validation phase to analyze the size of files produced
during an experiment to estimate the amount of required memory to ensure it
does not exhaust the physical memory. In passing, it is interesting to note that
the log records pertaining to each unique member can be processed indepen-
dently to identify unpredictable data. Hence, a MapReduce [8] framework such
as Hadoop is effective in implementing the validation phase.

6 Additional Actions

The eleven actions of BG are a good start to evaluate a data store. However, there
are other actions that are common to many social networking sites that we intend
to abstract. An implementation of these would extend BG with new actions.
Here, we focus on two new actions to be released soon, namely, Share Resource
(SR) and Retrieve Feed (RF). Both are in support of feed following [1,18,19].
This action is supported by sites such as Google+, Twitter, Facebook, My Yahoo
and others. It enables users to create personalized feed by selecting one or more
event streams they wish to follow.

Figure 4 shows the high level (incomplete) ER diagram for feed following.
While the conceptual model looks complex, it is based on the concept of aggre-
gation that establishes the many-to-many relationship between producers and



A Mid-Flight Synopsis of the BG Social Networking Benchmark 29

Fig. 4. Conceptual design of BG’s feed following (Color figure online).

consumers of news feeds. The producers are a specialization of the Accounts
entity set, identifying Pages and Members as two different categories because
pages may have a significantly larger number of followers4 and do not perform
some of the actions performed by members. Examples of pages are celebrity fan
pages and company and brand pages among the others. Resources such as images
and tweets posted by a page are shared with their followers. This is represented
by the red rectangle that aggregates the follow relationship between members
and pages as an entity that participates in the “Share” relationship (red line)
with the Resources entity set. Similarly, resources posted by the members are
shared with their circle of friends which are also members. This is denoted by
the green aggregation that participates in the “Share” relationship with the
Resources entity set. Each member owns a “News feed” that contains resources
shared by those whom they are following.

In the near future, we intend to investigate alternative techniques to imple-
ment feed following; see [19] for a pull, push, and a hybrid of these two techniques.
We are also exploring techniques that compute an approximate feed. We intend
to use BG to quantify both the scalability of these techniques and the perfor-
mance gain of the approximate technique relative to its amount of unpredictable
data.

7 Conclusions and Future Research

Social networks are emerging in diverse applications that strive to provide a
sense of community for their users. These diverse applications range from finan-
cial web sites such as online trading system to academic institutions. BG is a
benchmark to evaluate the performance of a data store for processing interactive
social networking actions such as viewing a member’s profile, extending a friend-
ship request to a member, accepting a friendship request, and others as shown
4 As of November 12, 2013, Katy Perry had more than forty million Twitter followers.



30 S. Ghandeharizadeh and S. Barahmand

in Table 1. We use BG on a daily basis to evaluate the performance of novel
architectures that enable high throughput, low latency data stores. Obtained
insights enable us to introduce novel designs and implementations. We identified
key features of BG and how we are refining these to ensure BG remains a state
of the art benchmark. Each section focuses on one feature of BG. However, a
change in one aspect of BG impacts the other features of BG. For example, the
two design principles that enable BG to generate requests in a scalable manner
(see Sect. 2) also enables multiple BGClients to perform the validation phase
(see Sect. 5) independently and in parallel with one another. The proposed mod-
ifications of Sect. 2 on how BG generates requests requires a revisit of how BG
performs its validation phase.

We intend to extend today’s BG beyond simple analytics to include addi-
tional Web 2.0 workloads including complex analytics that require the use of
machine learning algorithms. An example is a recommender system that ana-
lyzes the social graph and attribute values to suggest friends for a member.
A challenge here is to generate the social graph in a manner where the output of
the recommendation system is known, extending BG with metrics such as preci-
sion and recall. The graph database may include annotations on the edges of the
graph with attribute values. For example, the friendship relationship between
two members A and B might be tagged with a family relationships (such as
daughter), number of likes given by Member A to postings by B’s friends, num-
ber of comments posted by B’s friends on A’s resources, and others. We may
change how the value of textual attributes for a comment are generated in a man-
ner that is more realistic using techniques such as those utilized by the TREC
benchmark. This may evaluate alternative (1) natural language processing and
(2) information retrieval techniques in the context a recommender system for a
social graph.

Finally, we are investigating the viability of a Benchmark Generator, BG+,
that inputs an abstraction of an application, its actions and their dependencies,
metrics of interest to be quantified, and a control parameter. Its output is a
benchmark specific to that application. This is appropriate for those applica-
tions with diverse use cases such as data sciences [14,22]. In essence BG+ is an
extensible toolkit that is configured with its input to enable a data scientist to
develop a benchmark for their activities rapidly. Similar to BG and YCSB, it
would expose the implementation of the database schema and the abstracted
actions to be implemented by the data scientists. This enables BG+ to sup-
port diverse types of data models such as structured (relational), un-structured,
JSON, extensible, images, audio and video as input. The control parameter may
manipulate factors such as noise in the data (similar to today’s system load
controlled by parameter T ) to analyze the behavior of an algorithm. This would
enable BG+ to output a rating mechanism that computes a single value (a max-
ima such as SoAR) by manipulating the value of the control parameter.



A Mid-Flight Synopsis of the BG Social Networking Benchmark 31

References

1. Bai, X., Junqueira, F.P., Silberstein, A.: Cache refreshing for online social news
feeds. In: CIKM, pp. 787–792 (2013)

2. Barahmand, S., Ghandeharizadeh, S.: BG: a benchmark to evaluate interactive
social networking actions. In: CIDR, Jan 2013

3. Barahmand, S., Ghandeharizadeh, S.: D-Zipfian: a decentralized implementation
of Zipfian. In: ACM SIGMOD DBTest Workshop (2013)

4. Barahmand, S., Ghandeharizadeh, S.: Expedited benchmarking of social network-
ing actions with agile data load techniques. In: CIKM (2013)

5. Barahmand, S., Ghandeharizadeh, S., Yap, J.: A comparison of two physical data
designs for interactive social networking actions. In: CIKM (2013)

6. Blasgen, M.W., Gray, J., Mitoma, M.F., Price, T.G.: The convoy phenomenon.
Oper. Syst. Rev. 13(2), 20–25 (1979)

7. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. 39, 12–27 (2011)
8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

In: Symposium on Operating Systems Design and Implementation, vol. 6 (2004)
9. Nishtala, R., et al.: Scaling memcache at Facebook. In: NSDI (2013)

10. Floratou, A., Teletria, N., DeWitt, D.J., Patel, J.M., Zhang, D.: Can the elephants
handle the NoSQL onslaught? In: VLDB (2012)

11. Ghandeharizadeh, S., Yap, J.: Gumball: a race condition prevention technique for
cache augmented SQL database management systems. In: ACM SIGMOD DBSo-
cial Workshop (2012)

12. Ghandeharizadeh, S., Yap, J.: Cache augmented database management systems.
In: ACM SIGMOD DBSocial Workshop, June 2013

13. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques, pp. 677–
680. Morgan Kaufmann, San Francisco (1993)

14. Greenberg, C.: Overview of the NIST data science evaluation and metrology plans.
In: Data Science Symposium, NIST, 4–5 Mar 2014

15. Gupta, P., Zeldovich, N., Madden, S.: A trigger-based middleware cache for ORMs.
In: Middleware (2011)

16. Patterson, D.: For better or worse, benchmarks shape a field. Commun. ACM 55,
104 (2012)

17. Schroeder, B., Wierman, A., Harchol-Balter, M.: Open versus closed: a cautionary
tale. In: NSDI (2006)

18. Silberstein, A., Machanavajjhala, A., Ramakrishnan, R.: Feed following: the big
data challenge in social applications. In: DBSocial, pp. 1–6 (2011)

19. Silberstein, A., Terrace, J., Cooper, B.F., Ramakrishnan, R.: Feeding frenzy: selec-
tively materializing users event feeds. In: SIGMOD Conference, pp. 831–842 (2010)

20. Stonebraker, M.: Errors in database systems, eventual consistency, and the CAP
theorem. Commun. ACM. BLOG@ACM, Apr 2010

21. Stonebraker, M., Cattell, R.: 10 rules for scalable performance in simple operation
datastores. Commun. ACM 54, 72–80 (2011)

22. Talukder, A.: Overview of the NIST data science program. In: Data Science Sym-
posium, NIST, 4–5 Mar 2014

23. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–45 (2009)
24. Yap, J., Ghandeharizadeh, S., Barahmand, S.: An analysis of BGs implementation

of the Zipfian distribution. USC DBLAB technical report 2013-02 (2013). http://
dblab.usc.edu/Users/papers/zipf.pdf

http://dblab.usc.edu/Users/papers/zipf.pdf
http://dblab.usc.edu/Users/papers/zipf.pdf


http://www.springer.com/978-3-319-10595-6


	A Mid-Flight Synopsis of the BG Social Networking Benchmark
	1 Introduction
	2 Scalability
	3 Closed Versus Open
	4 Rating Mechanism
	5 Validation
	6 Additional Actions
	7 Conclusions and Future Research
	References


