
Chapter 2
Tools—Mainly Mathematics

For building models of physical systems we need mathematical tools. In order to
model physical phenomena we have to look at lines, surfaces, and vector fields
in three-dimensional space. The notion of a signal allows us to concentrate on the
information contained in some time-varying physical quantitywithout thinking about
the physical representation. The notion of a system likewise describes the information
processing performed by some apparatus without resorting to the physical properties
of the apparatus. We assume the reader is familiar with the material. Therefore, we
quickly list the definitions and properties we need in the sequel. For a pedagogical
treatment of the material see Lee and Varaiya (2011), Kreyszig (2010), Franklin et al.
(2010).

For learning about inanimate nature we have to probe her and measure her
response. In order to do so we must familiarize ourselves with instrumentation for
generating, capturing, and analyzing real-world signals.

2.1 Complex Numbers

Let i denotes the imaginary unit, i2 = −1. A complex number c ∈ C is the sum
c = a + ib for a, b ∈ R. We denote the real part a of c with �(c) and the imaginary
part b with �(c). The complex number c∗ = a − ib denotes the complex conjugate
of c. Euler’s relation1 (2.1) allows us to represent points on the unit-circle in a simple
way,

eiφ = cosφ + i sin φ, (2.1)

where φ ∈ R. What makes Euler’s relation so remarkable is that it links in a very
useful way a purely algebraic concept—complex numbers—to geometry. Identifying
the complex number c = a + ib = |c|ei∠c with the point �c = (a, b) in the plane |c| is

1 Richard P. Feynman, Nobel laureate in Physics 1965, called Euler’s relation the most remarkable
formula in mathematics. We better remember this formula.
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14 2 Tools—Mainly Mathematics

the distance between the origin and the point �c. The angle∠c is the angle between the
x-axis and the line through the origin and �c. Multiplying c and eiφ amounts to rotating
the point �c counterclockwise by the angle φ around the origin, ceiφ = |c|ei∠ceiφ =
|c|ei(∠c+φ) = (a + ib)(cosφ + i sin φ) = (a cosφ − b sin φ) + i(a sin φ + b cosφ).

Whenever you encounter some identity involving complex numbers, which is not
immediately obvious, you can most probably derive it from Euler’s relation.

2.2 Line and Surface Integrals

We consider a curve C in space with the endpoints �a and �b. Let C have a parametric
representation �r : {t ∈ R : a ≤ t ≤ b} → R

3,

t 	→ �r(t) =
⎛
⎝

x(t)
y(t)
z(t)

⎞
⎠

for a, b ∈ R, such that �r(a) = �a and �r(b) = �b. To each value a ≤ t0 ≤ b corresponds
a point of C whose position vector is �r(t0). The parametric representation imparts
a direction onto C , from the start point �r(a) to the end point �r(b). If the curve C
has a parametric representation �r such that �r(t0) is continuous and has a continuous
derivative �r ′(t0) = d�r

dt (t0), which is not identical to the zero-vector for a ≤ t0 ≤ b,
then the curveC has aunique tangent direction at anypoint,whichvaries continuously
along C ; then we declare the curve to be smooth.

Vector fields are functions that assign a vector to every point in space. Let
�F : R3 → R

3 be a continuous vector field. The line integral of �F along the smooth
curve C having a representation �r with the properties above is

∫

C

�F · d�l =
b∫

a

�F(�r(t)) · d�r(t)

dt
dt.

Apiecewise smooth curveC consists of a finite number of smooth curvesC1, . . . , Cn

such that the end point of Ci and the start point of Ci+1 coincide for 1 ≤ i < n. The
line integral along C is the sum of the line integrals along the curves Ci . A curve is
closed if its start point �a and its endpoint �b coincide. The line integral along a closed
curve is denoted by

∮
C

�F · d�l.
Let us consider now a surface S in three-dimensional space. Let S have a para-

metric representation �r : R → R
3,

(u, v) 	→ �r(u, v) =
⎛
⎝

x(u, v)

y(u, v)

z(u, v)

⎞
⎠ ,
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associating with every point (u0, v0) in some connected point set R of the uv-plane
a point of S whose position vector is �r(u0, v0). The point set R is connected if and
only if any two points �p1, �p2 ∈ R can be connected by finitely many line segments
with each line segment contained entirely in R. The boundary B of the surface S is
the set of all points p such that every neighborhood of p contains points in S as well
as points not in S.

If the parametric representation �r(u, v) is continuous and has continuous partial
derivatives ∂�r

∂u (u0, v0) and ∂�r
∂v

(u0, v0) with

�N (u0, v0) =
(

∂�r
∂u

× ∂�r
∂v

)
(u0, v0) �= �0

for all points (u0, v0) ∈ R then the surface S has at any point �r(u0, v0) a unique
tangent plane and a unique normal whose direction is given by �N (u0, v0), both
varying continuously across S; the surface is smooth. We denote the normal vector
with unit length as �n = �N/| �N |.

A smooth surface S is orientable if and only if the positive normal direction at
an arbitrary point �p of S can be continued in a unique and continuous way to the
whole surface. Let �F : R3 → R

3 be a continuous vector field. Let �r be a parametric
representation with the properties stated above of the smooth orientable surface S.
The integral of �F through the surface S is

∫∫

S

�F · �n dA =
∫∫

R

�F(�r(u, v)) ·
(

∂�r(u, v)

∂u
× ∂�r(u, v)

∂v

)
du dv.

The Möbius strip is an example for a smooth surface that cannot be oriented, see e.g.
(Kreyszig 2010).

Apiecewise smooth surface S consists offinitelymany smooth surfaces S1, . . . , Sn

and their boundaries. A piecewise smooth surface is orientable if and only if each
surface Si is orientable and for each pair of surfaces, which have part of their bound-
aries in common, Si and S j with i �= j , the directions at the common part of the
boundaries run against each other. The direction of the boundary of the surface Si is
set so that the normal and the boundary are right handed.

2.3 Discrete-Time Signals and Systems

A discrete-time signal s is defined at equally spaced times tn = nσ , n ∈ Z, where
σ ∈ R, σ > 0 is the time-step. It maps the tn to the elements of some setA. Therefore,
the discrete-time signal s can be identified with the function s : Z → A, n 	→ sn . We
use subscript notation for discrete time signals throughout this book. Sometimes, it is
convenient to restrict the domain of a discrete-time signal to the nonnegative integers.
The signal s is periodic with period p ∈ N if and only if sn = sn+p for all n in the
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domain of s. Most often the image of the signal s comprises either real or complex
numbers, but more complicated situations arise. A video, for example, maps time to
pictures. A picture in turn may be represented by a tuple of three two-dimensional
arrays of real numbers, one array each for the colors red, green, and blue. In this book
we restrict ourselves to real-valued, A = R, or complex-valued, A = C, signals.

The signal δ : Z → R,

n 	→ δn =
{
1 for n = 0

0 for n �= 0,

is called the discrete impulse. For an arbitrary signal x : Z → C the sifting property
of the discrete impulse,

∞∑
n′=−∞

xn′δn−n′ = xn, (2.2)

holds for all n ∈ Z. This property is easy to argue, but its frequent occurrence earns
it a name.

The unit-step signal, u : Z → R is the sum of the discrete impulse,

n 	→ un =
n∑

n′=−∞
δn′ =

{
0 for n < 0

1 for n ≥ 0.

A discrete-time system2 S uniquely transforms the input signal x : Z → R, n 	→
xn , into the output signal y : Z → R, n 	→ yn . We denote this fact by writing

yn = (S(x))n .

While we have written the definition for real-valued inputs and outputs a definition
with the obvious modifications will do for complex-values input and output signals.

Discrete-time systemsmodel digital feedback-controllers, for example, quitewell.
Such a controller measures the response of the process it is supposed to control
at equally spaced times. From each measurement it computes a control output,
which acts on the process via an actuator shortly after the controller has taken the
measurement.

2.3.1 Linear Time-Invariant Systems

The discrete-time system S is linear if and only if the system allows superposition,
that is

2 We restrict our discussion to single-input single-output systems.
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(S(au + bv))n = a (S(u))n + b (S(v))n

for all signals u : Z → R and v : Z → R and for all a ∈ R and b ∈ R. The system
S is time-invariant if and only if

yn−k = (S(x̃))n

for all signals x : Z → R and y : Z → R and for all k ∈ Z where yn = (S(x))n and
the signal x̃ , x̃m = xm−k is the time-shifted signal x . Obvious modifications cover
the complex-valued case.

2.3.2 Impulse Response and Convolution

Let u : Z → C and v : Z → C be complex-valued discrete-time signals. The signal
u ∗ v : Z → C,

n 	→ (u ∗ v)n =
∞∑

n′=−∞
un′vn−n′,

is called the convolution of u with v. The convolution is commutative, u ∗ v = v ∗ u.
The shifting property (2.2) becomes x = x ∗ δ.

The impulse response of the linear time-invariant discrete-time system S is
h : Z → R, n 	→ hn = (S(δ))n . The impulse response describes the system S fully;
the response y : Z → R of S to an arbitrary input x : Z → R is the convolution of h
with x ,

n 	→ yn = (S(x))n = (h ∗ x)n . (2.3)

The obvious modifications cover complex-valued inputs and outputs. When the
impulse response hn′ is nonzero for some n′ < 0, computing yn in (2.3) requires
knowledge of xn′ for n′ > n. Having to know the future in order to produce a valid
answer in the present is beyond a humble engineer’s abilities. We call the system S
causal if and only if hn′ = 0 for all n′ < 0. Noncausal systems are useful only for
processing retrospectively signals that have been recorded in advance.

2.3.3 Circular Convolution

For periodic signals the infinite sum in the definition of the convolution is not only
unnecessary, but it also introduces problems with convergence. The circular con-
volution circumvents these problems by summing over a single period only. Let
x : Z → C and y : Z → C be complex-valued periodic discrete-time signals with
period p. The signal
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(x � y)n =
p−1∑
n′=0

xn′ yn−n′

for n ∈ Z is called the circular convolution of x and y.

2.4 Continuous-Time Signals and Systems

A continuous-time signal s maps real numbers to the elements of some set A. It
usually is a function. The domain of s most often is understood as time but other
interpretations are possible. In Chap.11 we will encounter signals whose domain is
one-dimensional space instead of time. The signal s : R → A, t 	→ s(t) is periodic
with period p ∈ R, p > 0 if and only if s(t + p) = s(t) for all t ∈ R. We
restrict ourselves again to real-valued or complex-valued signals. Although some
continuous-time signals are not functions we will use function-notation throughout
this book.

A signal, which is not a function, is the Dirac delta, δ(t). For all t ∈ R, t �= 0 the
Dirac delta is zero, δ(t) = 0 and for all real ε > 0,

ε∫

−ε

δ(t) dt = 1.

For getting an intuitive understanding3 let us consider a strike to some object.We can
describe such a strike by a function P : R → R, t 	→ b(t). Let us assume the strike
begins at time −d/2 and ends at time d/2 for some duration d ∈ R, d > 0. Before
the impact at time −d/2 the strike does not transfer energy to the object, b(t) = 0
for t < −d/2. After the impact, the power P(t) delivered to the object at time t will
rise sharply. We assume that the strike delivers maximum power at time 0. Between
time 0 and time d/2 the power drops off to zero again. The total energy transferred
by the strike is

∫ ε

−ε
P(t)dt for ε > d/2. When we consider a sequence of strikes all

delivering the energy of 1 J with shorter and shorter duration the Dirac delta will be
the limit of this sequence for d → 0.

The Dirac delta has the sifting property; for a function x : R → C, t 	→ x(t)
being continuous at t ∈ R

x(t) =
∞∫

−∞
x(τ )δ(t − τ) dτ (2.4)

holds.

3 A precise mathematical treatment involves the theory of distributions and measure theory. This is
well beyond the scope of this book.

http://dx.doi.org/10.1007/978-3-319-10680-9_11
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The unit-step signal, u : R → R is the integral of the Dirac delta,

t 	→ u(t) =
t∫

−∞
δ(τ )dτ =

{
0 for t < 0

1 for t ≥ 0.

The instantaneous power P(s(t)) at time t of the complex valued signal s : R →
C, t 	→ s(t) is P(s(t)) = s(t)s(t)∗. The average power P(s) of s is

P(s) = lim
T →∞

1

T

T/2∫

−T/2

s(t)s(t)∗dt. (2.5)

A continuous-time system4 S uniquely transforms the input signal x : R → R,
t 	→ x(t) into an output signal y : R → R, t 	→ y(t). We denote this fact by writing

y(t) = (S(x)) (t).

The definition covers real-valued inputs and real-valued outputs. For complex-valued
inputs and outputs obvious modifications apply.

Continuous-time systems model electrical networks quite well, see Chap.3. Such
a network with one input and one output reacts to a voltage at its input with a voltage
at its output.

2.4.1 Linear Time-Invariant Systems

The continuous-time system S is linear if and only if the system allows superposition,
that is

(S(au + bv)) (t) = a (S(u)) (t) + b (S(v)) (t)

for all signals u : R → R and v : R → R and for all a ∈ R and b ∈ R. The system
S is time-invariant if and only if

y(t − t ′) = (S(x̃)) (t)

for all signals x : R → R and y : R → R and for all t ′ ∈ R where y(t) = (S(x)) (t)
and x̃(t) = x(t − t ′). Again the obvious modifications will cover the complex-valued
case.

4 We again restrict our discussion to single-input single-output systems.

http://dx.doi.org/10.1007/978-3-319-10680-9_3
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2.4.2 Impulse Response and Convolution

Let x : R → C and y : R → C be complex-valued signals. The signal

(x ∗ y)(t) =
∞∫

−∞
x(τ )y(t − τ) dτ

is called the convolution of x with y. Equation (2.4) becomes x = x ∗ δ.
The impulse response of the linear time-invariant continuous-time system S is

h : R → R, t 	→ h(t) = (S(δ)) (t). The impulse response describes the system S
fully; the response y : R → R of S to an arbitrary input x : R → R is the convolution
of h with x ,

t 	→ y(t) = (S(x)) (t) = (h ∗ x)(t). (2.6)

When the impulse response h(t ′) is nonzero for some t ′ < 0 computing y(t) in (2.6)
requires knowledge of x(t ′) for t ′ > t . The future’s not ours to see; therefore we call
the system S causal if and only if h(t ′) = 0 for all t ′ < 0. Noncausal systems serve
as theoretical tools only. The obvious modifications cover systems with complex
valued inputs and outputs.

2.4.3 Circular Convolution

For periodic signals the improper integral in the definition of the convolution is not
only unnecessary but it also introduces problems with convergence. The circular
convolution circumvents these problems by integrating over a single period only. Let
x : R → C and y : R → C be complex-valued periodic signals with period p. The
signal

(x � y)(t) = 1

p

p∫

0

x(τ )y(t − τ) dτ

is called the circular convolution of x and y.

2.5 The Four Fourier Transforms

Under very general conditions we can describe a signal s as the weighted sum of
phase-shifted sinusoids using the Fourier transform appropriate for the type of sig-
nal at hand. This representation is called the spectrum of s. The distribution of the
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amplitude with respect to frequency is the amplitude spectrum of s; the distribution
of the phase with respect to frequency is the phase spectrum of s. Distinguishing
between discrete-time and continuous-time signals, and between periodic and ape-
riodic signals gives rise to four possibilities. Discrete-time signals have periodic
Fourier transforms, continuous-time signals have aperiodic Fourier transforms. Peri-
odic signals have discrete Fourier transforms and aperiodic signals have continuous
Fourier transforms.

2.5.1 Periodic Continuous-Time Signals—The Fourier Series

Let s : R → C, t 	→ s(t) be a continuous complex-valued periodic signal with
period p ∈ R, that is s(t + p) = s(t) for every real number t . The complex Fourier
coefficients of s constitute the sequence S : Z → C,

n 	→ Sn = 1

p

p
2∫

− p
2

s(t)e−inω0t dt. (2.7)

where ω0 = 2π
p . As the integrand is periodic with period p the bounds can be chosen

freely, as long as the integration domain spans exactly one period. The signal s can
be represented by its Fourier series

s(t) ∼
∞∑

n=−∞
Sne

inω0t , (2.8)

regardless of convergence. If the signal s is piecewise continuous in the interval
− p

2 ≤ t ≤ p
2 , i.e. s has only finitely many finite jumps in the interval, and s is of

bounded variation in the interval, then equality holds in (2.8) for all t where s is
continuous. At a point t0, where s is discontinuous, the sum in (2.8) is the average of
the left-hand and the right-hand limit of s at t0. The conditions above are called the
Dirichlet conditions. The variation V b

a (s) of s in the interval [a, b] = {x ∈ R : a ≤
x ≤ b} is defined as

V b
a (s) = sup

m∈N
t1<···<tm∈[a,b]

m−1∑
i=1

|s(ti+1) − s(ti )|.

The variation of f (t) = sin 1
t for t �= 0 and f (0) = 0 for example is not bounded

in the interval [0, 2π ], the variation of g(t) = t2 sin 1
t in the same interval, however,

is bounded (Table2.1).



22 2 Tools—Mainly Mathematics

Table 2.1 Some continuous-time periodic signals and their Fourier series coefficients

s(t) Sn = (F(s))n Comment

x(t)h(t) (X ∗ H)n

(x � h)(t) Xn Hn

x(t) where x is real-valued Xn where Xn = X∗−n

x(t) where x(t) = x(−t)∗ Xn where X is real-valued

s(t) =

⎧⎪⎨
⎪⎩

1 if −p
4 ≤ t <

p
4

−1 if p
4 ≤ t <

3p
4

s(t − p) otherwise

Sn =
{
0 if n even

2 (−1)n/2+1

nπ
if n odd

Square wave

s(t) =

⎧⎪⎨
⎪⎩

t + p
4 if −p

2 ≤ t < 0

−t + p
4 if 0 ≤ t <

p
2

s(t − p) otherwise

Sn =
{
0 if n even

p
π2n2

if n odd
Triangle

s(t) =
{

t if −p
2 ≤ t <

p
2

s(t − p) otherwise
ip

(−1)n

2nπ
Sawtooth

The periodic signals with period p, x : R → C and h : R → C, are arbitrary. Their Fourier
coefficients constitute the sequences X : Z → C and H : Z → C respectively

For a periodic real-valued signal s : R → R the following notation often is
more convenient. Using cosφ = 1

2 (e
iφ + e−iφ) and sin φ = i

2 (e
−iφ − eiφ) we

can rewrite (2.8) as

s(t) ∼ a0 +
∞∑

n=1

(an cos nω0t + bn sin nω0t), (2.9)

where

a0 = 1

p

p
2∫

− p
2

s(t) dt,

an = 2

p

p
2∫

− p
2

s(t) cos nω0t dt,

bn = 2

p

p
2∫

− p
2

s(t) sin nω0t dt.
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The frequency ω0
2π is called the fundamental frequency or the first harmonic, while the

frequency nω0
2π is called the frequency of the (n − 1)st overtone, or the nth harmonic.

We can rewrite (2.9) further into a form containing amplitudes and phases,

s(t) ∼ A0 +
∞∑

n=1

An cos (nω0t − φn) ,

where the offset A0 is A0 = a0, the amplitude An of the nth harmonic is An =√
a2

n + b2n and the phase φn of the nth harmonic is φn = arctan bn
an
.

2.5.2 Periodic Discrete-Time Signals—the Discrete Fourier
Transform

Let s : Z → C, n 	→ sn be a discrete-time complex-valued periodic signal with
period p. The coefficients of the discrete Fourier transform F(s) of s constitute the
periodic sequence S : Z → C,

k 	→ Sk =
p−1∑
n=0

sne
−inω0k, (2.10)

with period p, where ω0 = 2π
p . The signal s can be represented in terms of the

Fourier transform coefficients by

sn = 1

p

p−1∑
k=0

Ske
ikω0n . (2.11)

As the summands in both sums are periodic with period p, the bounds in both sums
can be chosen freely, as long as the summations cover exactly one period. For a
real-valued signal s we can rewrite this equation for odd periods p as

sn = 1

p
S0 + 2

p

(p−1)/2∑
k=1

�(Sk) cos kω0n − �(Sk) sin kω0n, (2.12)

using eiφ = cosφ + i sin φ and S−k = S∗
k .

When measuring a real-valued signal s′ it is often a perturbed version of a true
signal s. The perturbations, called noise, can be added for example by the inevitable
imperfections of the measurement apparatus used for capturing s′. Let s′

n = sn + xn

where the xn are normal distributed independent random variables all with zero
mean and variance σ 2. The real part �(S′

k) and the imaginary part �(S′
k) of each

Fourier transform coefficient S′
k then are random variables with mean �(Sk) and
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Table 2.2 Some discrete-time periodic signals and their discrete Fourier transforms

sn Sk = (F(s))k

xnhn
1

p

p−1∑
k′=0

Xk′ Hk−k′ = 1

p
(X � H)k

(x � h)n Xk Hk

xn where x is real-valued Xk where Xk = X∗−k

xn where xn = x∗−n Xk where X is real-valued

ei2π f n where f = m/p, m ∈ Z, m �= 0 Sk =
{
1 if k ∈ {m + ip : i ∈ Z}
0 otherwise

The discrete-time periodic signals with period p, x : Z → C and h : Z → C, are arbitrary, X : Z →
C and H : Z → C are their discrete Fourier transforms

�(Sk) respectively, and variance p
2 σ 2, (Schoukens and Renneboog 1986). When

reconstructing the signal s′
n according to (2.12) from the Fourier transform coeffi-

cients S′
k the real and imaginary parts of the Fourier transform coefficients are scaled

with 2/p. These scaled values then have variance 2
p σ 2. The ratio p

2 of the variance
of the s′

n and the variance of the real and imaginary parts of the scaled S′
k is called

the processing gain of the discrete Fourier transform (Table2.2).

2.5.3 Discrete-Time Signals—The Discrete-Time Fourier
Transform

Let s : Z → C, n 	→ sn be a discrete complex-valued signal. The discrete-time
Fourier transform F(s) of s is the function S : R → C,

ω 	→ S(ω) =
∞∑

n=−∞
sne

−iωn . (2.13)

If s is absolutely summable, i.e.,
∑∞

n=−∞ |sn| converges to a finite value, then the
discrete-time Fourier transform exists and is finite for all ω. The transform is con-
tinuous and periodic with period 2π . The discrete signal s can be recovered by the
inverse transform F−1(S),

sn = 1

2π

π∫

−π

S(ω)eiωn dω. (2.14)
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Table 2.3 Some discrete-time signals and their discrete-time Fourier transforms

sn S(ω) = (F(s))(ω)

xnhn
1

2π

2π∫

0

X (Ω)H(ω − Ω) dΩ = (X � H)(ω)

(x ∗ h)n X (ω)H(ω)

xn where x is real-valued X (ω) where X (ω) = X (−ω)∗

xn where xn = x∗−n X (ω) where X is real-valued

δn−n′ e−iωn′

eiω0n 2πδ(ω − ω0)

The discrete-time signals x : Z → C and h : Z → C are arbitrary, X : R → C and H : R → C are
their discrete-time Fourier transforms

As the integrand is periodic with period 2π , one can choose the bounds freely, as
long as the integration spans one period.

A finite discrete signal s : {0, . . . , p − 1} → C can be extended to the signal
s′ : Z → C by setting s′

n = sn for n ∈ {0, . . . , p − 1} and s′
n = 0 for n /∈ {0, . . . ,

p − 1}, or to the signal s′′ : Z → C by extending it periodically, i.e. s′′
n = sn mod p.

Then the discrete Fourier transform coefficients S′′
k of s′′ are samples of the discrete-

time Fourier transform S′ of s′,

S′′
k = S′

(
2π

p
k

)
. (2.15)

2.5.3.1 Frequency Response of Discrete-Time Linear
Time-Invariant Systems

When we subject the discrete-time linear time-invariant system S to the input signal
x : Z → C, n 	→ xn = eiωn for ω ∈ R, then according to (2.3) the answer is h ∗ x
where h is the impulse response of S. Expanding the convolution we get

(x ∗ h)n =
∞∑

n′=−∞
hn′eiω(n−n′) = eiωn

∞∑
n′=−∞

hn′e−iωn′
.

Provided the sum exists we can rewrite this as (x ∗ h)n = H(ω)eiωn where H ,
the frequency response of the system S, is the discrete-time Fourier transform of h
(Table2.3).

The response to x ′ : Z → R,

n 	→ cosωn = 1

2

(
eiωn + e−iωn

)
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is y′ : Z → C,

n 	→ y′
n = 1

2

(
H(ω)eiωn + H(−ω)e−iωn

)
.

If the impulse response h is real-valued then H(−ω) = H(ω)∗ and

y′
n = |H(ω)| cos (ωn + ∠H(ω)) ,

where ∠H(ω) is the phase response of the system S at the angular frequency ω. The
response of a discrete-time linear time-invariant system with real-valued impulse
response to a sinusoidal input is a sinusoidal output with the same frequency as the
input but with shifted phase.

Let us consider the discrete-time system S described by the equation

yn = xn + αyn−1 (2.16)

for 0 < α < 1. Let xn = 0 for n < n′ and some n′ ∈ N. Provided the outputs yn

are all zero for n < n′ the system is linear and time invariant. Its impulse response
is h : Z → R,

n 	→ S(δ)n = hn =
{
0 for n < 0

αn for n ≥ 0.

Therefore, the response to an arbitrary signal x : Z → R, n 	→ xn is y : Z → R

n 	→ yn =
∞∑

k=0

xn−kα
k .

The frequency response is H : C → C,

ω 	→ H(ω) = eiω

eiω − α
.

For plotting the frequency response for one period, Fig. 2.1, we compute gain and
phase of the frequency response, H(ω) = |H(ω)|ei∠H(ω) and plot the gain |H(ω)|
and the phase∠H(ω) separately.We plot the gain on a logarithmic scale. In electrical
engineering the decibel, [dB], denotes a ratio of powers. A ratio of 100 corresponds
to 10dB, a ratio of 2 to about 3dB. More precisely, the ratio of two powers P1 and
P2 is

10 log10
P1

P2
dB.
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Fig. 2.1 Gain and phase of the discrete-time system described by Eq. (2.16)

Given two sinusoidal signals with voltage-amplitudes a1 and a2 we consider the ratio
of the powers P1 and P2. The power P1 is the power the first signal makes a resistor
dissipate, while P2 is the power the second signal makes the same resistor dissipate.
A resistor is an electrical component with two terminals dissipating power P , which
is proportional to V 2 when the voltage V is applied across it, see Sect. 3.3. Therefore,
the power-ratio of the two sinusoidal signals is

10 log10
P1

P2
dB = 10 log10

a2
1

a2
2

dB = 20 log10
a1
a2

dB.

2.5.4 Continuous-Time Signals—The Continuous-Time
Fourier Transform

Let s : R → C, t 	→ s(t) be a continuous aperiodic complex-valued signal. The
Fourier transform F(s) of s is the function S : R → C,

ω 	→ S(ω) = lim
T →∞

T/2∫

−T/2

s(t)e−iωt dt. (2.17)

The transform is continuous and aperiodic. The signal s can be recovered by the
reverse transform F−1(S)

http://dx.doi.org/10.1007/978-3-319-10680-9_3
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s(t) ∼ 1

2π
lim

Ω→∞

Ω/2∫

−Ω/2

S(ω)eiωt dω. (2.18)

If the signal s is absolutely integrable, i. e., the integral
∫ ∞
−∞ |s(t)| dt converges to a

finite value, and s is piecewise continuous in every finite interval, and s is of bounded
variation in every finite interval, then the equality in (2.18) holds for all t where s
is continuous. At a point t0, where s is discontinuous, the integral in (2.18) is the
average of the left-hand and the right-hand limit of s at t0.

If the signal s is periodic with period p having Fourier series coefficients Sn , then
the continuous-time Fourier transform S(ω) of s is

S(ω) = 2π
∞∑

n=−∞
Snδ

(
ω − 2π

p
n

)
. (2.19)

Let s′ : Z → C be a sampled version of the signal s, n 	→ s′
n = s(τn), where τ

is the sample period. The discrete-time Fourier transform S′ of s′ is related to the
Fourier transform S of s by

S′(ω) = 1

τ

∞∑
k=−∞

S

(
ω − 2πk

τ

)
. (2.20)

If the signal s is band-limited such that S(ω) = 0 for ω ≤ −π
τ

or ω ≥ π
τ
the sum

reduces to

S′(ω) = 1

τ
S

(ω

τ

)
.

2.5.4.1 Frequency Response of Continuous-Time Linear
Time-Invariant Systems

When we subject the continuous-time linear time-invariant system S to the input
signal x : R → C, t 	→ x(t) = eiωt for ω ∈ R, then according to (2.6) the answer
is h ∗ x where h is the impulse response of S. Expanding the convolution we get
(x ∗ h)(t) = ∫ ∞

−∞ h(τ )eiω(t−τ)dτ = eiωt
∫ ∞
−∞ h(τ )e−iωτdτ . Provided the integrals

exist we can rewrite this as (x ∗ h)n = H(ω)eiωt where H , the frequency response
of the system S, is the continuous-time Fourier transform of h (Table2.4).

The response to x ′ : R → R, t 	→ cosωt = 1
2

(
eiωt + e−iωt

)
is y′ : R → C,

t 	→ y′(t) = 1
2

(
H(ω)eiωt + H(−ω)e−iωt

)
. If the impulse response h is real-valued

then H(−ω) = H(ω)∗ and
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Table 2.4 Some continuous-time signals and their continuous-time Fourier transforms

s(t) S(ω) = (F(s))(ω) Comment

x(t)h(t)
1

2π

∞∫

−∞
X (Ω)H(ω − Ω) dΩ

= 1

2π
(X ∗ H)(ω)

(x ∗ h)(t) X (ω)H(ω)

dx(t)

dt
iωX (ω)

x(t) where x is real-valued X (ω) where X (ω) = X (−ω)∗

x(t) where x(t) = x(−t)∗ X (ω) where X is real-valued

δ(t − T ) e−iωT

eiΩt 2πδ(ω − Ω)

x(t − T ) e−iωT X (ω)

eiΩt x(t) X (ω − Ω)

s(t) =
{
1 if −p ≤ t ≤ p

0 otherwise

2 sinωp

ω
Boxcar

s(t) =

⎧⎪⎨
⎪⎩

t + p if −p ≤ t < 0

−t + p if 0 ≤ t < p

0 otherwise

2 − 2 cosωp

ω2 Triangle

The signals x : R → C and h : R → C are arbitrary, X : R → C and H : R → C are their Fourier
transforms. The numbers T ∈ R and Ω ∈ R are arbitrary, the number p ∈ R, p > 0 is arbitrary

y′(t) = |H(ω)| cos (ωt + ∠H(ω)) ,

where ∠H(ω) is the phase response of the system S at the angular frequency ω. The
response of a continuous-time linear time-invariant system with real-valued impulse
response to a sinusoidal input is a sinusoidal output with the same frequency as the
input but with shifted phase.

2.6 Noise

Any common signal processing apparatus introduces errors to the signals they
process. A portion of these errors may be attributable to inadequacies of the appa-
ratus; the aleatory behavior of nature at the microscopic level, however, introduces
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the rest. We call these errors noise. Any practical signal s will be degraded by noise.
Most often the observed signal s will be the sum of the noiseless signal s′ and some
added noise n, s(t) = s′(t) + n(t). The signal to noise ratio SNR(s) then is the ratio
of the average power of s′ to the average power of n,

SNR(s) = P(s′)
P(n)

.

The signal to noise ratio is usually stated in decibel.
The spectral power density describes the frequency content of noise.5 For each

frequency f the spectral power density of a signal is the power the signal contains
in a small frequency band around f . Band-limited white noise has a power spectral
density being constant up to some band limit above which it drops to zero. Many
electronic devices introduce noise with a spectral power density proportional to 1/ f
into the signals they process. These devices negatively affect low-frequency signals
most, forcing us to make precision measurements at frequencies well away from
0Hz.

2.7 The Z-Transform

Let x : Z → C, n 	→ xn be a discrete-time signal. The Z-transform of x ,
X̂ : roc(x) → C is defined as

z 	→ X̂(z) = (Z(x)) (z) =
∞∑

n=−∞
z−n xn . (2.21)

The set roc(x) ⊆ C is the region of convergence of the Z-transform of x . When
we substitute z = reiω in (2.21) we recognize that the Z-transform is actually the
discrete-time Fourier transform of the signal x ′ : Z → C, n 	→ x ′

n = r−n xn . The
sum in (2.21) converges exactly for those r ∈ R for which the sum

∑∞
n=−∞

∣∣r−n xn
∣∣

converges to a finite value.
If x is right-sided, that is xn = 0 for all n < N and some N ∈ Z, the region

of convergence is the whole complex plane with the exception of a disc around the
origin, roc(x) = {

z ∈ C : |z| > r ′} for some real r ′; furthermore, if N is nonnegative
the Z-transform of x converges also in the limit for z → ∞. If x is left-sided,
that is xn = 0 for all n > N and some N ∈ Z, the region of convergence is a
disc around the origin; for N ≤ 0 the region of convergence includes the origin,
roc(x) = {

z ∈ C : |z| < r ′} for some real r ′; for N > 0 the origin is excluded,
roc(x) = {

z ∈ C : z �= 0, |z| < r ′}. For any other signal x the region of convergence
of x has annular shape, roc(x) = {z ∈ C : r1 < |z| < r2} for some real r1, r2; the

5 A precise definition of the spectral power density of a noise signal requires the machinery of
stochastic processes.
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Table 2.5 Some discrete-time signals and their Z-transforms

wn Ŵ (z) = (Z(w))(z) roc(w)

axn + byn a X̂(z) + bŶ (z) roc(w) ⊇ roc(x) ∩ roc(y)

xn−M z−M X̂(z) roc(x)

(x ∗ y)n X̂(z)Ŷ (z) roc(w) ⊇ roc(x) ∩ roc(y)

x∗
n X̂(z∗)∗ roc(x)

x−n X̂(z−1)
{
z : z−1 ∈ roc(x)

}

nxn −z
dX̂(z)

dz
roc(x)

a−n xn X̂(az) {z : az ∈ roc(x)}
δn−M z−M

C

un =
{
0 if n < 0

1 if n ≥ 0

z

z − 1
{z ∈ C : |z| > 1}

anun
z

z − a
{z ∈ C : |z| > |a|}

anu−n
a

a − z
{z ∈ C : |z| < |a|}

The signals x : Z → C and y : Z → C are arbitrary; X̂ : roc(x) → C and Ŷ : roc(y) → C are their
Z-transforms. The numbers M ∈ Z and a, b ∈ C are arbitrary

region of convergence may also be empty in this case. The region of convergence is
an integral part of the Z-transform; the Z-transform of some entirely different signals
differ in the respective regions of convergence only (Table2.5).

Provided the unit circle is part of the region of convergence of X̂ the Z-transform
evaluated on the unit circle yields the discrete-time Fourier transform of x ,

X (ω) = (F(x))(ω) = X̂(eiω).

2.7.1 Stability of Linear Time-Invariant Discrete-Time Systems

A linear time-invariant discrete-time system S is bounded-input bounded-output
stable if and only if for all bounded inputs x : Z → R the output y : Z → R,
n 	→ yn = (S(x))n is also bounded. A signal x : Z → C is bounded if and only if
|xn| < A for all n ∈ Z and for some A ∈ R. A necessary and sufficient condition
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for stability is that the impulse response h of S is absolutely summable, that is∑∞
n=−∞ |hn| converges to a finite value. Moreover, the system S is stable if and only

if the unit circle is part of the region of convergence of the transfer function Ĥ of S,
which is the Z-transform of the impulse response h of S.

The transfer function of many linear time-invariant discrete-time systems is the
quotient of two polynomials, Ĥ(z) = A(z)

B(z) . The zeros of the numerator A are called

the zeros of Ĥ ; the zeros of the denominator B are the poles of Ĥ . A causal linear
time-invariant discrete-time system S is stable if and only if all poles of the transfer
function Ĥ of S lie within the unit circle.

Using the Z-transformwe can argue about the stability and the frequency response
of a composition of discrete-time systems in which some of the constituents are
instable.

2.8 The Two-Sided Laplace Transform

Let x : R → C, t 	→ x(t) be a continuous-time signal. The two-sided Laplace
transform6 of x , X̂ : roc(x) → C is defined as

s 	→ X̂(s) = (L(x)) (s) =
∞∫

−∞
x(t)e−stdt. (2.22)

The set roc(x) is the region of convergence of the Laplace transform of x . When
we substitute s = σ + iω with σ, ω ∈ R in (2.22) we recognize that the Laplace
transform is actually the continuous Fourier transform of the signal x ′ : R → C,
t 	→ x ′(t) = x(t)e−σ t . If the signal x ′ satisfies the Dirichlet conditions the integral
in (2.22) converges. Assuming the signal x is piecewise continuous and of bounded
variation in every finite interval—assumptions satisfied by the signals appearing in
practice—then the integral in (2.22) converges provided

∫ ∞
−∞ |x(t)e−σ t |dt converges

to a finite value.
If x is right-sided, that is x(t) = 0 for all t < T and some T ∈ R, the region

of convergence is roc(x) = {
s ∈ C : �(s) > σ ′} for some real σ ′. If x is left-sided,

that is x(t) = 0 for all t > T and some T ∈ R, the region of convergence is
roc(x) = {

s ∈ C : �(s) < σ ′} for some real σ ′. For any other signal x the region
of convergence of x is roc(x) = {s ∈ C : σ1 < �(s) < σ2} for some real σ1, σ2; the
region of convergence may also be empty in this case. The region of convergence
is an integral part of the Laplace transform; the Laplace transform of some entirely
different signals differ in the respective regions of convergence only (Table2.6).

Let x : R → C, t 	→ x(t) be a signal with x(t) = 0 for t < 0; let the signal
X : C → C be the Laplace transform of x . Let the imaginary axis be part of roc(x).

6 In the one-sided Laplace transform integration ranges from 0 to ∞. The one-sided transform is
useful for solving initial value problems involving linear differential equations. See alsoAppendixC.
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Table 2.6 Some continuous-time signals and their Laplace transforms

w(t) Ŵ (s) = (L(w))(s) roc(w)

ax(t) + by(t) a X̂(s) + bŶ (s) roc(w) ⊇ roc(x) ∩ roc(y)

x(t − τ) e−sτ X̂(S) roc(x)

(x ∗ y)(t) X̂(s)Ŷ (s) roc(w) ⊇ roc(x) ∩ roc(y)

x∗(t) X̂(s∗)∗ roc(x)

x(ct)
X̂(s/c)

|c| {s ∈ C : s/c ∈ roc(x)}

t x(t) −dX̂(s)

ds
roc(x)

eat x(t) X̂(s − a) {s ∈ C : s − a ∈ roc(x)}
t∫

−∞
x(τ )dτ

X̂(s)

s
roc(w) ⊇ {s ∈ roc(x) : �(s) > 0}

dx(t)

dt
s X̂(s) roc(w) ⊇ roc(x)

δ(t − τ) e−sτ
C

u(t) =
{
0 if t < 0

1 if t ≥ 0

1

s
{s ∈ C : �(s) > 0}

e−at u(t)
1

s + a
{s ∈ C : �(s) > −�(a)}

−e−at u(−t)
1

s + a
{s ∈ C : �(s) < −�(a)}

The signals x : R → C and y : R → C are arbitrary; X̂ : roc(x) → C and Ŷ : roc(y) → C are their
Laplace transforms. The numbers a, b ∈ C and c, τ ∈ R are arbitrary

The final value theorem then allows us to compute the limit of f (t) for t → ∞ from
the Laplace transform X ,

lim
t→∞ x(t) = lim

s→0
s X (s). (2.23)

Provided the imaginary axis is part of the region of convergence of x evaluating
the Laplace transform along the imaginary axis yields the continuous-time Fourier
transform of x ,

X (ω) = (F(x))(ω) = X̂(iω).
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2.8.1 Stability of Linear Time-Invariant
Continuous-Time Systems

A linear time-invariant continuous-time system S is bounded-input bounded-output
stable if and only if for all bounded inputs x : R → R the output y : R → R,
n 	→ y(t) = (S(x))(t) is also bounded. A signal x : R → R is bounded if and
only if |x(t)| < A for all t ∈ R and for some A ∈ R. A necessary and sufficient
condition for stability is that the impulse response h of S is absolutely integrable,
that

∫ ∞
−∞ |h(t)|dt converges to a finite value.

The transfer function Ĥ of the system S is the Laplace transform of the impulse
response of S, Ĥ : C → C,

s 	→ Ĥ(s) = Ŷ (s)

X̂(s)
= L(h)(s),

where X̂ is the Laplace transform of an input x and Ŷ is the Laplace transform of the
corresponding output y. The system S is stable provided the imaginary axis is part
of the region of convergence of the transfer function Ĥ of S.

The transfer function of many linear time-invariant continuous-time systems is
the quotient of two polynomials, Ĥ(z) = A(z)

B(z) . The zeros of the numerator A are

called the zeros of Ĥ ; the zeros of the denominator B are the poles of Ĥ . A causal
linear time-invariant continuous-time system S is stable provided all poles of the
transfer function Ĥ of S have a negative real part.

Using the Laplace transform, we can argue about the stability and the frequency
response of a composition of continuous-time systems in which some of the con-
stituents are instable.

Let us consider the continuous-time system S described by the equation

y(t) = x(t) − 1

β

t∫

−∞
y(τ )dτ, (2.24)

for β > 0. Applying the Laplace transform to both sides and rearranging we get

Ŷ (s)

X̂(s)
= Ĥ(s) = sβ

1 + sβ
.

There are two possibilities for the region of convergence of the impulse response h
of S, roc(h) = {s ∈ C : �(s) < −1/β} describing a noncausal system and roc(h) =
{s ∈ C : �(s) > −1/β} describing a stable causal system. The frequency response
of S for the second choice is



2.8 The Two-Sided Laplace Transform 35

-60

-50

-40

-30

-20

-10

0

| H
(ω

)|
[d

B
]

β = 0.1
β = 0.01

β = 0.001

0

π
4

π
2

1 10 100 1000 10000

∠
H

(ω
)

ω

Fig. 2.2 Bode plot of the continuous-time system described by Eq. (2.24)

H(ω) = Ĥ(iω) = ωβ

ωβ − i
.

We plot the magnitude and the phase of the frequency response separately, Fig. 2.2.
For the magnitude we use the decibel scale. For the angular frequency ω we choose
a logarithmic scale. Inspecting this so-called Bode plot we recognize the system S
as a highpass filter.

2.9 Differential Equations, State-Space Models

The system of n linear differential equations with constant coefficients

dv1(t)

dt
= a1,1v1(t) + a1,2v2(t) + · · · + a1,nvn(t) + b1x(t)

dv2(t)

dt
= a2,1v1(t) + a2,2v2(t) + · · · + a2,nvn(t) + b2x(t)

...
dvn(t)

dt
= an,1v1(t) + an,2v2(t) + · · · + an,nvn(t) + bn x(t)

y(t) = c1v1(t) + c2v2(t) + · · · + cnvn(t) + dx(t),

where ai, j ∈ R, bi ∈ R, ci ∈ R and d ∈ R for 1 ≤ i, j ≤ n, constitute the state-
space model of a linear time-invariant continuous-time system S with one input x(t)
and one output y(t). The signals v1(t), . . . , vn(t) are the states. For simulating the
system S with tools like the Simulink® system we may either use the state space
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model directly or translate it into a block diagram. In order to construct such a block
diagram we introduce for each state vi (t) in the state-space model an integrator into
the block diagram. The output of the integrator produces the state vi (t), while the
input of the integrator is wired to a block diagram computing the right-hand side of
the equation for dvi (t)

dt in the state-space model. The outputs of the integrators are fed
back into the right-hand sides. Another block diagram computes the output from the
input and the states. For an example see Fig. 2.6.

The state space representation is not limited to linear systems. As long as we
manage to transform the system of differential equations into equations defining the
n states of the form

dvi (t)

dt
= fi (v1(t), v2(t), . . . , vn(t), x(t))

and an equation defining the output of the form

y(t) = g(v1(t), v2(t), . . . , vn(t), x(t))

we have a state space model suitable for simulation.

2.9.1 The Harmonic Oscillator

The apparatus of differential equations was invented for modeling physical systems.
These systems can bemechanical, electrical, optical or any other domain imaginable.
Let us, for example, consider a body with mass m suspended from the ceiling via a
spring, Fig. 2.3.We assume the spring has nomass and that the spring followsHook’s
law. More precisely, we assume that the force FS(t) the spring exerts on the body is
proportional to the displacement y(t) of the body from rest, FS(t) = −ky(t)where k
is the stiffness of the spring.Measurements show that Hook’s law describes the action
of a spring made from steel reasonably well. The body is attached to a damper, which
is fixed to the floor. We assume the damper exerts a force on the body proportional
to the body’s velocity, FD(t) = −c dy(t)

dt . The constant of proportionality c is called

Fig. 2.3 A body is suspended
from the ceiling with a spring.
The body is connected to a
damper, which is fixed to the
floor

c

m

k
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Fig. 2.4 Behavior of a mass-spring-damper system for different damping coefficients. The body
has a mass of 1 kg, the spring a stiffness of 100 Nm−1. The damping coefficient c = 20 Nsm−1

results in the system being critically damped

the damping constant. No external forces shall act on our contraption. According
to Newton’s second law of motion, the sum of these two forces have to balance the
force Fm required for accelerating the body, Fm(t) = m d2y(t)

dt2
. Equating Fm(t) =

FS(t) + FD(t) and rearranging gives us the second order differential equation

m
d2y(t)

dt2
+ c

dy(t)

dt
+ ky(t) = 0, (2.25)

the equation of a harmonic oscillation.
Depending on the magnitude of the damping constant c, we can identify four

different types of solutions for (2.25), Fig. 2.4. Let α = c
2m . If c = 0 the general

solution has the form

y(t) = A cosω0t + B sinω0t,

whereω0 =
√

k
m , which describes an undamped harmonic oscillation. For c2 < 4mk

the general solution is

y(t) = e−αt (
A cosω′t + B sinω′t

)
,

where ω′ =
√

k
m − c2

4m2 , which describes a damped harmonic oscillation. For c2 =
4mk the general solution is

y(t) = (A + Bt)e−αt ,

which describes a critically damped system. A critically damped system will return
to rest without oscillation as fast as possible. At last, for c2 > 4mk the general
solution is
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Fig. 2.5 Frequency response of the driven harmonic oscillator for different damping coefficients.
The damping coefficient c = 1 Nsm−1 results in a peak in the amplitude response indicating
resonance at that frequency

y(t) = Ae−(α−β)t + Be−(α+β)t ,

where β =
√

c2

4m2 − k
m , which describes an overdamped system.

In order to handle an external driving force x(t) acting on the body we have to
change (2.25) into

m
d2y(t)

dt2
+ c

dy(t)

dt
+ ky(t) = x(t), (2.26)

the equationof a drivenharmonic oscillator. For analyzing the behavior of this system,
we compute the system’s transfer function Ĥ(s) by applying the Laplace transform
to both sides of (2.26) and rearranging,

Ĥ(s) = Ŷ (s)

X̂(s)
= 1

ms2 + cs + k
.

The frequency response H(ω) = Ĥ(iω), Fig. 2.5, shows a peak of the amplitude at

ωr =
√

k

m
− c2

2m2

for c2 < 2mk. When the external force excites the system close to that frequency,
the amplitude of the response will be much larger than for external forces at other
frequencies. This behavior is called resonance; fr = ωr

2π is the resonant frequency
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Fig. 2.6 Block diagram for Eq. (2.26)
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Fig. 2.7 Numerical simulation of themass-spring-damper system. The underdamped system shows
resonance at the third harmonic of the driving force, while the critically damped and the overdamped
system show no such reaction

of the driven mass-spring-damper system. Unexpected resonance can be disastrous;
the large excursions associated with it can overload structures.

Alternatively, we can bring (2.26) into state-space form,

dv1(t)

dt
= v2(t)

dv2(t)

dt
= − c

m
v2(t) − k

m
v1(t) + 1

m
x(t)

y(t) = v1(t),

and transform it into a block diagram for numerical simulation, Fig. 2.6. When we
drive the systemwith a periodic, triangular forcewith about one third of the frequency
fr, then the content of the driving force at the third harmonic drives the underdamped
system into resonance, Fig. 2.7. The driving force sets in at time 0, while it was
zero before. The critically damped system and the overdamped system show no
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recognizable reaction to the excitation at the third harmonic. The simulations in
Fig. 2.7 start out with the systems at rest. Each of the three systems takes some time
for reaching a steady response. The output of a linear time-invariant system S to a
sinusoidal input x(t), which sets at time 0, x(t) = u(t)a cos(ωt + φ), is the sum of
the so-called transient response, which for a stable system S tapers off after some
time, and the steady state response. The steady state response has the same frequency
as the input. A frequency response-based analysis of the system S provides us with
the steady state information only.

2.9.2 The Pendulum

An ideal pendulum, Fig. 2.8, consists of a massless stiff rod of length L and a point-
shaped body with mass m. One end of the rod attaches to the mass, while the other
connects to a joint. The joint allows the rod together with the body to rotate freely
on a horizontal axis. Gravity pulls with a force of mg at the mass. When the rod
is at an angle φ(t) toward the vertical the force Fg = −mg sin φ(t) tries to restore
the pendulum to the vertical position. The constant g = 9.81ms−2 is the Earth’s

gravitational pull. The force Fg has to balance the force Fm = mL d2φ(t)
dt2

for the
tangential acceleration of the pendulum, Fm = Fg . Rearranging yields

mL
d2φ(t)

dt2
+ mg sin (φ(t)) = 0.

This differential equation is nonlinear. We introduce a damping force FD , which is
proportional to the velocity of the mass, FD = −Lc dφ(t)

dt , then Fm = FD + Fg and

d2φ(t)

dt2
+ c

m

dφ(t)

dt
+ g

L
sin (φ(t)) = 0.

Fig. 2.8 A body with mass m
connected to a rod, a
pendulum, is allowed to pivot
on a horizontal axle.
Whenever the pendulum
deviates from the vertical the
Earth’s gravitation provides a
restoring force

m

L

mg

φ

φ

−mg sin φ
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Fig. 2.9 Behavior of a pendulum starting with an initial angular velocity. The length of the rod is
L = 10m, the mass is 1 kg and the damping constant is c = 0.2 Nsm−1

We can convert this equation into state-space form and simulate the pendulum’s
behavior numerically, Fig. 2.9. Note that the time for one oscillation depends on the
amplitude of the oscillation. The nonlinear nature of the driven pendulum puts its
analysis beyond the means of the mathematical tools we discuss.

2.10 Feedback Control

Often we want the output y(t) of a causal system S1 to track a reference signal r(t).
More precisely, we want to find an input u(t) for the system S1 such that (S1(u))(t)
is as close to r(t) as possible. Control engineers study this problem extensively. The
system S1, called the plant, consists of an actuator for converting the input u(t) into
some physical quantity—such as the position of a valve or the speed of a motor—and
the process producing the output.

Provided we know the plant S1 exactly we may try to find a causal system S2, a
controller, such that the series composition of the controller S2 with the plant S1 tracks
the reference r(t) reasonably well, in other words that (S1(S2(r)))(t) is reasonably
close to r(t). The transfer function of this series composition is Ĝ2(s)Ĝ1(s), where
Ĝ1 is the transfer function of the plant S1 and Ĝ2 is the transfer function of the
controller S2. In this open-loop operation the controller cannot react to disturbances
in the plant as it lacks information about the output y(t). More severely, open-loop
operation does not work when the plant S1 is unstable. While we may think that
we can cancel unwanted poles p with �(p) ≥ 0 in the transfer function Ĝ1(s) of
the plant S1 with corresponding zeros of Ĝ2(s), deteriorating conditions over the
lifetime of the plant and the controller will move poles and zeros rendering such an
attempt futile.

The physics of the plant S1 determines whether the plant is stable or not. For
controlling a possibly instable plant, which is subjected to disturbances, we have
to feed back information about the output y(t) to the controller S2. In the unity
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feedback composition, Fig. 2.10 left, the output y(t) is subtracted from the reference
r(t) producing the error signal e(t). The controller S2 tries to minimize the error
signal by producing the input u(t) for the plant S1 according to an appropriate
control law. Feeding back the output to the controller creates a closed control loop;
subtracting the output from the reference makes the feedback negative. The unity
feedback composition has the transfer function

Ĥ(s) = Ĝ1(s)Ĝ2(s)

1 + Ĝ1(s)Ĝ2(s)
,

where Ĝ1(s) is the transfer function of the plant and Ĝ2(s) is the transfer function
of the controller, while the feedback composition in Fig. 2.10 right, has the transfer
function

Ĥ ′(s) = Ĝ1(s)

1 + Ĝ1(s)Ĝ2(s)
.

The latter composition appears in the analysis of circuits involving operational ampli-
fiers. An operational amplifier is an electronic amplifier, which amplifies the differ-
ence between its two inputs, ideally with infinite gain. The operational amplifier then
acts as plant, while the so-called feedback network acts as controller.

In both feedback compositions the poles of the plant’s transfer function Ĝ1(s)
cancel. By designing an appropriate controller S2 we can place the poles and zeros
of the chosen feedback composition structure as we like.

Sometimes we do not know the transfer function of the plant, but we still can
measure the frequency response H(ω) of the plant S1, provided the plant is stable.
We consider a proportional controller with the transfer function Ĝ2(s) = KP for
some gain KP ∈ R, KP > 0 and assume that the unity feedback system built from
S1 and S2 is stable for small gains KP and becomes unstable for large gains. The
phase margin then is ∠H(ω′) + π where |KPH(ω′)| = 1 for ω′ ∈ R, ω′ > 0. If
this phase margin is positive then the unity feedback composition of S1 and S2 is
stable. A controller introducing delay, due to a software implementation for exam-
ple, eats up some of the phase margin designed into the control system, in that way

r(t) Σ
-

+ e(t)
Ĝ2(s) u(t)

Ĝ1(s) y(t)

r(t) Σ
-

+ u(t)
Ĝ1(s) y(t)

Ĝ2(s)

Fig. 2.10 Two possible feedback compositions of one system, the plant, with transfer function
Ĝ1(s) and one, the controller, with transfer function Ĝ2(s). The unity feedback composition to the
left is used for building control systems, while the composition to the right appears in the analysis
of circuits involving operational amplifiers
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diminishing the quality of the control. Therefore, unnecessary delays in a controller’s
implementation shall be avoided.

A proportional controller employed in the unity feedback configuration feeds a
scaled version of the error signal to the plant, u(t) = KPe(t). We look at the response
of the control loop to a unit-step input. The closed-loop transfer function is

Ĥ(s) = KPĜ1(s)

1 + KPĜ1(s)
.

The Laplace transform of the step response is Ĥ(s)/s. Assuming stability of the
closed-loop system and using the final value theorem (2.23) we compute the steady
state,

lim
t→∞ y(t) = lim

s→0
s

Ĥ(s)

s
= Ĥ(0) = lim

s→0

KPĜ1(s)

1 + KPĜ1(s)
.

The steady state response is unequal to one whenever lims→0 Ĝ1(s) is finite. For
making the steady state error |1 − Ĥ(0)| disappear the transfer function Ĝ1(s) of
the plant must have a pole at 0. Increasing the controller’s gain KP will reduce the
steady state error at the cost of increasing the overshoot of the output y(t) whenever
the reference r(t) changes.

In order to make the steady state error vanish for plants having no pole at 0 we
augment the proportional controller by an integrator resulting in a proportional plus
integral controller, its control equation is

u(t) = KP

⎛
⎝e(t) + 1

TI

t∫

t0

e(τ )dτ

⎞
⎠ , (2.27)

where t0 is the time the control loop starts to operate. All signals associated with
the control loop are assumed to be zero before t0. The controller’s transfer function
Ĝ2(s) is

Ĝ2(s) = KP

(
1 + 1

TIs

)
.

As rule of thumb, increasing the proportional gain KP makes the control loop react
faster to changes of the reference at the cost of increased overshoot. It also reduces
the steady state error. Decreasing the integral time TI speeds up the control loop too,
again at the cost of increased overshoot.

Real plants have physical limits beyond which they cannot operate. A valve for
example cannot operate beyond fully opened or fully closed. When such operational
limits prevent the plant’s output to reach the reference, the integrator’s output will
either grow or shrink without bounds. When the reference later returns to a reachable
value it will take the integrator considerable time forwinding down to sensible values.
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Fig. 2.11 Basic structure of
the software realization of a
proportional and integral
controller

1: procedure piController(yk,rk)
2: ek ← rk − yk

3: uk ← uk−1 + KP

(
ek + T

TI
ek − ek−1

)

4: uk

5: ek−1 ← ek

6: uk−1 ← uk

7: end procedure

output

During this time the input to the plant will still exceed the plant’s limits. A crude anti-
windup strategy limits the value of the integrator’s output by temporarily switching
off the integrator.

The procedure piController in Fig. 2.11 is the implementation of a proportional
and integral controller in software. It must be called periodically with period T . We
arrive at this discrete-time realization by approximating the integral in (2.27) with
a sum. The procedure accepts the plant’s output measured for the kth invocation yk

and the reference rk as parameters. The error ek−1 and the output uk−1, both from
the previous invocation, constitute the state of the controller. It is good practice to
pass the plant’s new input before updating the controller’s state, in order to avoid
unnecessary delays.

For reducing the overshoot wemay add a differential term to the proportional plus
integral controller resulting in a proportional integral differential controller,

u(t) = KP

⎛
⎝e(t) + 1

TI

t∫

t0

e(τ )dτ + TD
de(t)

dt

⎞
⎠ .

As a rule of thumb increasing the derivative time TD reduces the overshoot. The
differential term, however, is sensitive to noise added when measuring the plant’s
output y(t).

In many control systems several control loops are nested into each other. The
outermost control loop in such a cascaded control scheme processes the reference
r(t). The output of the controller in the outer loop is the reference for the next inner
control loop. When controlling an electric motor, for example, the innermost loop
controls the torque the motor produces. The next outer loop controls the velocity
by passing the torque required for achieving the desired velocity as reference to
the innermost loop. In drives used for positioning, the outermost loop controls the
position by passing the velocity required for arriving and holding the desired position
to the middle control loop.
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Fig. 2.12 A function generator produces periodic signals within a frequency range from 1µHz
up to several megahertz

2.11 Instrumentation for Producing and Measuring Signals

When we engineer an embedded system our ideas eventually must prove themselves
in the physical reality. In order to quantify the performance of our system we must
stimulate it with well-defined inputs, and measure and analyze its responses. We
limit our discussion to basic instrumentation for general purpose use.

2.11.1 The Function Generator

A function generator7 produces periodic signals with frequencies ranging from zero
to several megahertz, Fig. 2.12. It offers the choice between several predefined wave-
forms; sine, rectangle, ramp, triangle, pulse, and noise are typical. A freely program-
mable waveform may also be available. Frequency, amplitude, and a constant offset
from zero can be set for the selected waveform. For the rectangle waveform we can
select the so-called duty cycle, that is the ratio between the time the signal is on and
the time the signal is off. For the pulse waveform we can set the width of the pulses.
The noise waveform typically is band-limited white noise.

In addition, a function generator offers basic modulation features. Modulation
means that the output signal results from the modification of a higher frequency
carrier signal with a lower frequency signal. Amplitude modulation multiplies the

7 The ancestor of today’s function generators is the HP-200A, an audio oscillator, which grew out
of Bill Hewlett’s master’s thesis at Stanford. The HP-200A is famous for the ingenious use of a light
bulb for providing negative feedback. Bill Hewlett and Dave Packard assembled these oscillators
starting 1939 in the garage behind Packard’s house at 367 Addison Avenue in Palo Alto. One of the
first customers, buying eight HP-200B, were the Walt Disney Studios.
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Fig. 2.13 Still life with oscilloscope. An oscilloscope simultaneously records and displays several
signals. The length of a record can vary between less than a nanosecond and several hundred seconds.
The range of possible amplitudes can span more than three decades

carrier with the lower frequency signal for producing the output. Frequency modu-
lation shifts the frequency of the carrier according to the lower frequency signal.

A frequency sweepmodulates the frequency of the output signal with a slow ramp.
By analyzing the answer of some device to such a frequency sweep we can derive the
device’s frequency response. A linear sweep uses a sawtooth-shaped ramp. A loga-
rithmic sweep uses an exponential ramp asmodulation. Formeasurement instruments
analyzing signals derived from the function generator’s output the function generator
provides a synchronization signal indicating, for example, the beginning of a sweep.

2.11.2 The Oscilloscope

The oscilloscope, scope for short, is the most important instrument for capturing
and displaying signals, Fig. 2.13. A scope consists of a horizontal section, a vertical
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section, a trigger section8 and a display for the waveforms. Each section has its own
set of controls on the front panel. Modern scopes usually have several channels, two
or four are common, for simultaneously capturing and displaying several signals.

The vertical section consists of the amplifiers for the channels. The controls for
each channel are the gain, the channel’s vertical position on the scope’s screen, the
coupling, and a switch for disabling the channel. A channel’s gain is usually shown
in a line above the screen’s graticule. The unit the gain is stated in is the unit of
the measured physical quantity per vertical division of the graticule. The control
for the vertical position allows us to arrange the channels on the screen. A small
triangle to the left of the graticule indicates zero for the channel. The coupling can
be alternating current (AC) or direct current (DC). With the coupling set to AC a
highpass filter, which blocks constant signal content, is introduced right after the
channel’s input connector. With DC coupling constant signal content is passed to the
channel’s amplifier.

When the trigger section recognizes a trigger event it commands the scope to start
a new recording. The most basic type of trigger event is when the signal fed into one
of the scope’s channels crosses an adjustable trigger level, either from above or from
below. A small triangle marked with the letter T to the left of the graticule indicates
the trigger level. The operator can select between AC and DC coupling for the trigger
source. Sophisticated trigger sections support triggers, for example, on pulse width,
or on the appearance of some pattern on optional digital inputs. Practically, all scopes
support an external trigger source.

The horizontal section provides the timing for the recordings. In analog scopes the
horizontal section provided a ramp to the horizontal deflection coils of a cathode ray
tube whenever a trigger section commanded a new recording. The horizontal coils
deflected the electron beam inside the tube from left to right. Where the electron
beam hit the phosphorus covering the tube’s screen the phosphorus produced a spot
of light. The output of the vertical amplifier drove the vertical coils, which deflected
the beam in the vertical direction. The afterglow of the beam’s trace provided a visual
image of the signal’s waveform. In modern digital scopes memory replaces the short-
term storage action of the cathode ray tube. The outputs of the vertical amplifiers are
digitized at a rate controlled by the horizontal section and written into the scope’s
acquisition memory. The size of the acquisition memory determines how long the
scope can record after a trigger event. After the scope has displayed the content of the
acquisition memory on its screen it is ready to make a new recording. The scope can
operate either in single trigger mode or in continuous trigger mode. In single trigger
mode, the first trigger event commands a recording and all subsequent trigger events
are ignored. Single trigger mode helps analyzing nonrecurring events. In continuous
trigger mode, the scope takes a record whenever the trigger section commands it, and
the scope is ready. The scope displays subsequent recordings on top of each other.
In the process it lets old recordings fade away.

8 The basic concept of a scope has changed very little since Howard Vollum and Melvin Murdock,
the founders of Tektronix, introduced the first practical oscilloscope, the Tektronix type 511, in
1948.
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Digital scopes allow us to apply mathematical operations to the recordings in real
time. The absolute value of the recording’s Fourier transform is particularly useful
for estimating the frequency content of a measured signal.

Scopes are not perfect either. High frequency signals are not reproduced faith-
fully. A scope’s bandwidth specifies the frequency at which the displayed amplitude
is downby 3dB from the true value. For observing digitalwaveformswith some accu-
racy the scope’s bandwidth should be at least five times higher than the frequency of
the fastest digital clock signal. For observing analog waveforms the scope’s band-
width shall be three times higher than the highest harmonic in the observed signals.

2.12 Bibliographical Notes

Thebook (Lee andVaraiya 2011) stands out for treatingdiscrete-time and continuous-
time equally. The book by Kreyszig (2010) provides a broad reference to many
mathematical topics of use when doing engineering work. The book (Oppenheim
and Schafer 1975) is still a very useful reference for discrete-time signals. Jänich’s
book (2001) covers advanced material such as partial differential equations in a very
readable manner. The book by Gershenfeld (1999) contains an ample selection of
mathematical methods for modeling physical systems.

The book (Middleton 1996) contains an in-depth treatise on signals influenced
by noise. For the effects of noise on the discrete Fourier transform of a signal see
(Schoukens and Renneboog 1986; Kester and Analog Devices 2003). The represen-
tation of a periodic signal by its Fourier series is proven for example in the book
by Zygmund (2002a, Chap. 2, Theorem 8.1). The representation of a signal by its
Fourier integral is proven for example in (Zygmund 2002b, Chap. 16, Theorem 1.3
and the text following it). For both continuous-time and discrete-time control systems
see for example (Franklin et al. 2010, 1997). Both books contain many exemplary
models of physical systems.

2.13 Exercises

Exercise 2.1 Several functions are used to suppress artifacts in the Fourier transform
of functions which we have observed for a finite amount of time only. In this context
these functions are called windows. The idea is to observe the signal s : R → C,
t 	→ s(t) only between times −p and p for some positive real p and pad the obser-
vation o(t) with zeros before and after. Let us consider the signal s(t) = 1, whose
transform is the Dirac delta δ(ω). The observation o(t) is the appropriate boxcar
function. The transform of the boxcar function shows us the errors we introduce into
the Fourier transform by replacing the signal s(t) by the observation o(t). Plot the
Fourier transform of a boxcar window.
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Exercise 2.2 We can modify the error in the Fourier transform by transforming the
signal w(t)o(t) instead of the signal o(t) for a window function w(t). The triangle
function is another popular window. Plot its Fourier transform. Compare it to the
transform of the boxcar.

Exercise 2.3 The Welch window has the definition

w(t) = 1 − t2

p2
,

for −p ≤ t ≤ p, zero otherwise. Compute and plot its Fourier transform.

Exercise 2.4 The von-Hann window has the definition

w(t) = 1

2

(
1 + cos

π t

p

)
,

for −p ≤ t ≤ p, zero otherwise. Compute and plot its Fourier transform.

Exercise 2.5 The Blackman–Nuttall window has the definition

w(t) = 0.3635819 + 0.4891775 cos
π t

p
+ 0.1365995 cos

2π t

p
+ 0.0106411 cos

3π t

p
,

for −p ≤ t ≤ p, zero otherwise. Compute and plot its Fourier transform.

Exercise 2.6 Consider the spring-mass-damper system in Fig. 2.3. Play with the
damping constant c and observe the height and shape of the resonant peak.

Exercise 2.7 Derive the range of damping constants for which the spring-mass-
damper system in Fig. 2.3 will exhibit resonance.

2.14 Lab Exercise

Exercise 2.8 Use a function generator to generate signals with different waveforms
and an oscilloscope to visualize these signals. Familiarize yourself with the operation
of these instruments.While exploring themodulation options of your signal generator
observe both the resulting waveforms and the amplitudes spectrum of the waveform
on your scope.
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