
Distributed MILS Architectural Approach
for Secure Smart Grids

Denis Bytschkow(B), Jean Quilbeuf, Georgeta Igna, and Harald Ruess

fortiss GmbH, An-Institut Technische Universität München,
Guerickestr. 25, 80805 München, Germany

{bytschkow,quilbeuf,igna,ruess}@fortiss.org
http://www.fortiss.org

Abstract. Successful decentralized and prosumer-based smart grids
need to be at least as dependable and secure as the prevailing one-
way, generation-transmission-distribution-consumer power grids. With
this motivation in mind, we propose a two-phase model-based design
methodology for secure architectural design and secure deployment of
such a security architecture on a distributed separation kernel. In par-
ticular, we are modeling essential parts of a smart micro grid with sev-
eral interacting prosumers, and demonstrate exemplary security/privacy
requirements of this smart grid. The security policy architecture of this
smart grid is deployed on a secure distributed platform, relying on a com-
bination of separation kernels and deterministic network, as developed
in the Distributed MILS project.

Keywords: Smart grid security · Distributed MILS · Separation ker-
nel · Formal verification · Security policy architecture · Configuration
compiler

1 Introduction

The electricity industry is in the middle of a paradigmatic shift towards smart
power grids in order to meet the emerging needs of a highly reliable, efficient
and sustainable society. In particular, the management of renewable, decentral-
ized energy sources, higher volatility of power production, the consumer’s active
behavior coupled with sustainability objectives, and efforts towards new market
designs drive the on-going transformation of the traditional power grid.

The control of smart grids requires significant change towards decentralized
energy management systems (EMS) with a tight coupling of energy control with

This work has been carried out as part of the D-MILS project (www.d-mils.org)
which is funded by the European Commission under the 7th Framework Programme
for Information and Communications Technology. The smart grid case study has
been supported by Siemens, the EIT ICT Labs, and the Bavarian Ministry of
Economics.

c© Springer International Publishing Switzerland 2014
J. Cuellar (Ed.): SmartGridSec 2014, LNCS 8448, pp. 16–29, 2014.
DOI: 10.1007/978-3-319-10329-7 2

www.d-mils.org

Distributed MILS Architectural Approach for Secure Smart Grids 17

new monitoring, processing, optimizing, and controlling devices based on real-
time information and communication technology (ICT). Moreover, electricity
consumers are evolving into economically motivated prosumers that not only
consume, but can also produce and store electricity. Prosumers can become smart
energy ecosystems if they are equipped with market access and suitable ICT that
allow them to achieve their own objectives.

Prosumer-based smart grid systems, however, are subject to a multitude of
new types of attacks and threats [5]. Smart meter data may be manipulated to
consume electricity without or with reduced payment. Manipulation of actuator
components may damage the physical prosumer system, or even allow a burglar
to break in. Finally, attacks to the communication infrastructure may lead to
leaks of private and financial data.

A number of security guidelines and requirement specifications for smart grid
infrastructure have recently been developed, including the ENISA Smart Grid
Security report [13], the ENISA guidelines for security measures [12], and the
NIST report NIST-IR-7628 [17]. The ISO/IEC TR 27019 report provides security
guidelines based on ISO/IEC 27002 for process control systems specific to the
energy industry. It has been pointed out, however, that engineering dependable
and secure energy systems based on these guidelines is rather costly and time-
consuming due to the need for extensive reviewing and testing of critical smart
grid protocols, their low-level implementations, and the inherent dynamics of
the environment of smart grid components [22].

In this paper we are proposing a novel approach for engineering secure smart
grids based on model-based design methodology for embedded systems. In par-
ticular, we are proposing the model-based MILS approach for designing and
implementing dependable and secure smart grids. MILS [1,21] was originally an
acronym for Multiple Independent Levels of Security and is popularly charac-
terized as the use of a separation kernels and information flow mechanisms to
support both untrusted and trusted applications from diverse security domains
on one computational system. Key concepts of the MILS architectural app-
roach include separation, component integration, policy architecture, and physi-
cal resource sharing [3]. Separation concepts are consistent with approaches like
intransitive noninterference [19] and partitioning in integrated-modular avion-
ics [20]. Nowadays MILS is a standard platform in the US for deploying ultra-
dependable mixed-criticality systems, but it is still virtually unknown in Europe.
The Distributed MILS (D-MILS) project [9] extends the classical work of MILS
to distributed embedded systems by realizing a distributed separation kernel by
means of deterministic and predictable network communication (e.g. via time-
triggered Ethernet). In this way D-MILS provides the capability to use one pol-
icy architecture that seamlessly spans across multiple MILS nodes—as required
for smart grids. Moreover time and space separation of the D-MILS platform
might be used to minimize the effect of faults or attacks to certain regions
only, thereby avoiding rolling blackouts. Given a high-level model of the system,
security properties in D-MILS are established in two phases

18 D. Bytschkow et al.

1. The policy architecture defined by the high-level model is established and
enforced by the configured D-MILS platform.

2. Security properties are checked on a high-level model assuming that the policy
architecture is enforced.

The policy architecture indicates how information is allowed to flow amongst the
different components of the system. Consequently the construction of security
assurance cases is separated into (1) establishing security of the high-level model
and (2) enforcing the policy architecture defined by the high-level model through
configuration of the distributed platform. The D-MILS platform1 is specified to
have provable domain isolation and information flow controls, thereby increasing
assurance of the absence of hidden channels and unwanted information flow. We
are using the D-MILS architectural approach for demonstrating various privacy
requirements for a prosumer-based smart grid.

In this paper we are applying and demonstrating key concepts of the D-MILS
methodology for establishing representative security properties of a smart micro
grid. This case study is based on the smart grid demonstrator at fortiss [15],
which has been built-up in the context of the European network of smart grid
living labs of the EIT ICT Labs. This micro grid is mainly used for experimenting
with distributed controls for (self-) stabilization of prosumer-based smart grids.

This paper is organised as follows. In Sect. 2, we introduce the smart grid
example that we will use to illustrate the D-MILS approach. In Sect. 3, we present
the D-MILS platform. In Sect. 4 we show how our case study is formalized using
AF3. Finally, in Sect. 5 we show how (1) the policy architecture is enforced
by configuring the platform and (2) how a simple security property is verified
assuming that the underlying policy architecture is enforced by the platform.

2 Case Study

The smart micro grid entails a large variety of security requirements. Figure 1
shows an overview of the system. The system consists of a finite number of
prosumers communicating with a Micro Grid EMS. Communication channels
are represented by arrows in the figure.

Fig. 1. High-level description of the smart micro grid system

1 The D-MILS platform consists of a LynxSecure hypervisor provided by LynuxWorks
and a TTEthernet solution provided by TTTech.

Distributed MILS Architectural Approach for Secure Smart Grids 19

Each prosumer communicates with the Micro Grid through well-defined inter-
faces. Initially, the Micro Grid sends the energy price (through channel price)
for the next day. As a response, each prosumer sends its planned consumption
and production (through channel plan) for the next day to the Micro Grid. The
Micro Grid validates the plans received by checking that the overall energy flow
through the grid implied by these plans does not exceed the power line capacity.
The Micro Grid sends back an acknowledgment message ack that contains the
value 0 if the plans are within the power line capacity, otherwise it contains the
amount of energy that exceeds the line capacity. Based on this acknowledgment
message ack, each prosumer is responsible to update its own plan and send it
back to the Micro Grid. The negotiation terminates when ack=0, meaning that
the energy flow on the grid does not exceed the line capacity.

The security requirements that the Micro Grid system should fulfill are
described in detail in [10]. In this paper, however, we focus on one of the most
relevant requirements, which is related to privacy

RQ: No prosumer knows the consumption of another prosumer.

Using the D-MILS approach, the requirement RQ is ensured by two simpler
requirements:

RQ1: No prosumer is able to bypass the defined communication channels to find
out the consumption plan of any other prosumer.

RQ2: No prosumer is able to deduce the consumption plan of any other prosumer
with the received information.

The first requirement refers to the low-level implementation of the system.
This requirement is enforced through separation capabilities of the platform and
its configuration by a configuration compiler (Sect. 5.1). The configuration files
are built from a formal model of the system. A configured D-MILS platform
guarantees the absence of unintended communication channels that are not in
the formal model. The second requirement is ensured by checking that the formal
model satisfies a security hyperproperty as described in Sect. 5.2.

3 D-MILS Platform

The D-MILS platform consists of a set of MILS nodes that communicate over a
deterministic network. A MILS node implements a minimum separation kernel,
which is a low-level hypervisor that controls the information exchange between
the applications and virtualizes hardware resources. Its minimalistic design allows
the separation kernel to be exhaustively tested and evaluated to meet low-level
properties, such as being not by-passable and tamper-proof. The networking sys-
tem, e.g. time-triggered Ethernet, guarantees message delivery and separation.

The separation kernel of each node as well as each switch of the network is
statically configured. The configuration guarantees the absence of unintended
information exchange in the system deployed on the distributed MILS platform.
An example of a possible D-MILS platform configuration is shown in Fig. 2.

20 D. Bytschkow et al.

Fig. 2. D-MILS platform and possible information flows between different partitions

The platform consists of several MILS nodes and a Time-Triggered Ethernet
as the networking system. The D-MILS configuration allocates a partition for
each component of the system. Communications inside a node are handled by
the local hypervisor, which also provides the resources as virtual devices for
the local partitions. In each node, a dedicated partition called MILS Network
Subsystem (MNS) handles the communications over the network. The D-MILS
network ensures separation of (virtual) communication channels between the
nodes through time partitioning. A virtual channel is depicted in Fig. 2 as a
dashed line.

4 Formalization of the Information Flow

The system representation of Fig. 1 illustrates the intended communication chan-
nels. We formalize the system as a component-based model. We use AUTOFO-
CUS 3 (AF3), which is a modeling tool2 based on the semantics of the FOCUS
theory [4]. Each component has a well-defined interface explicitly represented as
a set of ports. AF3 provides strong data encapsulation, i.e. each data variable
resides within an atomic component and each atomic component has exclusive
access to its variables. Therefore, data-sharing is only possible through explicit
communication channels.

Components can be hierarchically decomposed into subcomponents in order
to model complex systems in a comprehensible manner. Components are synchro-
nously executed based on a discrete global time. The semantics of a component
can be specified with state-automata, tables with input/output specification, or
a stateless code specification. This semantics defines a stream [4] for each port,
representing the successive values taken by that port at each time step.

2 AF3 is an open source tool available at http://af3.fortiss.org.

http://af3.fortiss.org

Distributed MILS Architectural Approach for Secure Smart Grids 21

Figure 3 shows our model. The model contains three prosumers, a micro grid
and communication channels to the environment. Black dots represent output
ports, whereas the white dots represent input ports. Arrows encode the com-
munication channels. The communication between the components of the model
define the policy architecture.

Fig. 3. The connections between the components define the policy architecture for the
smart micro grid system.

The Micro Grid receives the energy price for the next day and transmits it
to prosumers through the channels pricePrediction. The prosumers react to
the price by generating their plan for the next day. Each prosumer Prosumer i
sends its plan through the channel planUpdateProsumer i. A plan consists of a
nonnegative production plan Pi, a non-positive consumption plan Ci and battery
usage plan Bi indicating whether the battery will store energy (negative value)
or provide energy (positive value). We summarize this information in a tuple
(Pi, Ci, Bi). We furthermore assume that for each prosumer i, Pi ∈ {0, 1, 2},
Ci ∈ {−3,−2,−1, 0} and Bi ∈ {−1, 0, 1}. By adding the three values, we get the
global contribution of the prosumers to the grid. For the plans to be accepted,
the balance of energy produced/consumed must be admissible for the system,
which is specified by line capacity bounds L and H. More precisely, the set of
plans is accepted if L ≤ ∑n

i=1(Pi + Ci + Bi) ≤ H. In this case, the Micro Grid
sends zero on the ack port. In the sequel, we define that L = −7 and H = 4.
If the sum is below L or above H, the difference is sent back on the ack port
to the prosumers. In this case, each prosumer updates its plan accordingly and
sends it back to the Micro Grid. This negotiation process terminates when the
plans are accepted.

22 D. Bytschkow et al.

The trace of an execution consists of successive values written on the ports
at each step. The first steps of a trace (for ports planUpdateProsumer{1, 2, 3}
and ack) are depicted in Table 1. The ack port is represented once since it is
the same for each prosumer. This trace represents a negotiation, where the plans
initially consume too much energy (an excess of four energy units in the first
round, and one unit in the second). Accordingly, Prosumers 1 and 2 reduce their
consumption by discharging the battery instead of charging it.

Table 1. The beginning of a trace for the smart micro grid

Execution step 1 2 3 4 5 6 . . .

planUpdateProsumer1 (0, −3, −1) (0, −3, 0) (0, −3, 1) . . .

planUpdateProsumer2 (0, −3, −1) (0, −3, 0) (0, −3, 1) . . .

planUpdateProsumer3 (0, −3, 0) (0, −2, 0) (0, −2, 0) . . .

ack −4 −1 0 . . .

5 Ensuring Security Properties

As said in Sect. 2, the D-MILS approach separates our main requirement RQ
into two simpler requirements. The requirement RQ1 is obtained by enforc-
ing the policy architecture defined by the connections in the high-level model.
A platform configuration automatically derived from the high-level model by a
configuration compiler is used for this purpose, as described in Subsect. 5.1.

At the software component level, security policies are expressed through
hyperproperties [8]. The assumption that communications match the policy
architecture is supported by the platform configuration. Hyperproperties allow
us to formalize security requirements such as RQ2, as shown in Subsect. 5.2.

5.1 Ensuring Security of the Platform

A D-MILS platform establishes and enforces an intransitive security policy, pro-
vided that it is configured properly. Such a security policy defines communication
channels between components. A configured D-MILS platform ensures that the
only possible communications are the ones defined in the security policy. In
particular, it guarantees that there are no hidden channels.

A D-MILS platform consists of a set of nodes, connected through a net-
work. Each node is a physical machine equipped with a separation kernel. The
latter defines partitions that are completely isolated and host components. Two
components running on two distinct partitions of the same node are able
to communicate only if the configuration allows it. The communication between
components deployed on distinct nodes relies on a network able to enforce sepa-
ration of channels. In the D-MILS project, a time-triggered network is used for

Distributed MILS Architectural Approach for Secure Smart Grids 23

Node 1 Node 2
TTE

SWITCH

Node 3

Fig. 4. A simple D-MILS platform

this purpose and separation is enforced through time partitioning. In the sequel,
we assume a D-MILS platform as depicted in Fig. 4.

The configuration compiler is a tool that produces a configuration for each
node and each switch of the platform. To this purpose, the configuration compiler
is fed with the policy architecture, such as in Fig. 3, a model of the platform,
such as in Fig. 4 and deployment information. For instance, one could assume
that Prosumer 1 and Micro Grid components from Fig. 3 are deployed on nodes
1 and 2 from Fig. 4 respectively, and that Node 3 hosts both Prosumer 2 and
Prosumer 3. Therefore, the configuration compiler generates configuration files
such that Node 3 runs two separate partitions and that the communication
channels between partitions are restricted to the channels of Fig. 3. The deployed
system is depicted in Fig. 5. Each node contains a dedicated partition for hosting
a Mils Network Subsystem (MNS) in charge of the communications over the
time-triggered network.

Prosumer 1 MNS1

separation kernel

Node 1

Micro Grid MNS2

separation kernel

Node 2

Prosumer 2 Prosumer 3 MNS3

separation kernel

Node 3

TTEthernet Switch

Fig. 5. A communication channel in a deployed D-MILS smart micro grid.

In order to state some correctness conditions for the MNS components, we
derive an intermediate model between the high-level model and the correspond-
ing deployed software. The intermediate model includes the components of the
high-level model and the MNS components. Two different types of channels are
defined:

– Channels between components deployed on the same node. These channels
model communications handled by the separation kernel.

– Channels between MNS components. Each of these channels model a virtual
link defined over the time-triggered network.

The channels between components hosted on different nodes are modified to be
routed through the MNS components. Figure 6 shows how a channel ab between

24 D. Bytschkow et al.

components deployed on distinct nodes is transformed. For each inter node-
channel, a new virtual link is defined. In the figure, vlab is the virtual link
defined to support the channel ab from the high-level model. For each channel
of the high-level model either incoming to the node or outgoing from the node,
the MNS component includes two corresponding ports. One port is connected to
the component of the node involved in the channel, the other port to the virtual
link associated to the channel. Each MNS transfers outgoing messages on the
virtual link corresponding to the input port that received the message. Similarly,
it transfers incoming messages on the output port corresponding to the virtual
link that conveyed the message.

A Bab

Node 1 Node 2

A MNS1abi MNS2vlab Babo

Node 1 Node 2

High-Level Model Intemediate Model

Fig. 6. Transformation of a channel between components deployed on distinct nodes.

Using this model, we say that the set of MNS components is correct if it
implements the information flow described in the high-level model as in Fig. 1 for
our example. On Fig. 6, the MNS are correct if in every execution, the sequence
of values observed on the channel abi and the sequence of values observed on
the channel abo are identical. A sufficient condition for correctness is stated
through filter functions [6]. A filter function refines an existing information flow
by specifying whether a given message is allowed according to the history of
received and sent messages. In our case, a separate filter function is attached to
each output port of the MNS component. The filter function allows an outgoing
message only in the sequence of messages seen on the output port is a prefix of
the sequence of message seen on the corresponding input port. The combination
of these filters function correspond to our correctness criteria. Consider again the
Fig. 6, the filter function on abo requires that it transmits the same sequence of
messages as vlab. Similarly, the filter function on vlab requires that it transmits
the same sequence of messages as abi. According to [18], checking that the filter
functions are respected can be done locally for each MNS and does not depend
on the implementation of other components.

Essentially, the platform guarantees that the information exchanged bet
ween components follows the channels defined in the high-level model. Each
component is only aware of the values sent to its input ports. For instance,
each prosumer can only see the information sent by the Micro Grid component,
and cannot directly communicate with another prosumer. However, a prosumer
obtain get some information about other prosumers through the Micro Grid
component.

Distributed MILS Architectural Approach for Secure Smart Grids 25

5.2 Checking Security of the High-Level Model

In this section, we focus on requirement RQ2 which demands that no prosumer
can deduce the consumption plan of any other prosumer. In order to formalize
this requirement, we use the theory of knowledge [14]. In this theory, an agent
observes only a part of the system and knows the set of all possible traces allowed
by the system. If a particular property holds in all traces that are (1) possible
and (2) consistent with the current observation, then the agent knows that this
property holds in the current execution. In our case, the agent is a prosumer and
its observation is restricted to its input and output ports. We want to ensure
that the property “the consumption plan of prosumer i is X” cannot be deduced
by any other prosumer.

For our analysis, we focus on the knowledge gained during one exchange
of plans and acknowledgements. In our case, the set of traces is determined
by the bounds imposed on the prosumer plans and the line capacity. Recall
that each prosumer i may send any plan (Pi, Ci, Bi) such that Pi ∈ {0, 1, 2},
Ci ∈ {−3,−2,−1, 0} and Bi ∈ {−1, 0, 1}. Then, the Micro Grid returns the
value 0 on the port ack if −7 ≤ ∑n

i=1(Pi + Ci + Bi) ≤ 4, otherwise, it returns
the difference between the sum of the plans and the bound exceeded. We assume
that each prosumer knows the set of possible traces, or, equivalently, the bounds
for the prosumer plans and the line capacity. Such an assumption is supported by
the fact that these bounds may be publicly available (line capacity), estimated
(production from solar energy), or learned by observing multiple executions of
the system.

Figure 7 presents a set of possible traces and the corresponding observa-
tions made by Prosumer 3. The bounds imply that only one trace is consistent
with Observation 1, as it corresponds to the case where both Prosumer 1 and
Prosumer 2 requested 4 units of energy (P1 = P2 = 0, C1 = C2 = −3 and
B1 = B2 = −1), which is an extreme value. In this case, there is only one
trace consistent with Observation 1, where C2 = −3. Thus Prosumer 3 can
deduce from Observation 1 that the consumption plan of Prosumer 2 is -3. How-
ever, several traces are consistent with Observation 2. In some traces C2 = −3
whereas in some others C2 = −2. Therefore, Prosumer 3 cannot deduce the
exact consumption plan of Prosumer 2 from Observation 2. We conclude that
this implementation is insecure because it allows one case (i.e. Observation 1)
where a prosumer can infer the consumption of another prosumer.

The implementation is secure if there is no observation that allows a given
prosumer to deduce the consumption of another one. This intuitive definition is
formalized as follows. We denote by τ a trace (in our case a set of plans and the
corresponding acknowledgement), and by T the set of all possible traces. Given a
set of ports V , we denote by τ |V the values taken by the ports in V when executing
τ . In particular, prosumer i can observe the ports planUpdateProsumer i (abbre-
viated pUPi) and ack. Hence, τ |{pUPi,ack} denotes the observation of prosumer i
during the execution of τ . For ease of notation, we denote by τ |Ci

the value of the
consumption in the plan sent by Prosumer i. We formalize the property “Prosumer
i is not able to deduce the consumption plan of prosumer j” by

26 D. Bytschkow et al.

planUpdateProsumer3

ack

(0, −3, 0)

−4

Observation 1

(0, −3, 0)

−3

Observation 2

Observed by
Prosumer 3

ack

planUpdateProsumer3

planUpdateProsumer2

planUpdateProsumer1

Possible
traces (0,-3,0)

(0,-3,-1)

(0,-3,-1)

-4

(0,-3,0)

(1,-3,-1)

(0,-3,-1)

-3

(0,-3,0)

(0,-3,0)

(0,-3,-1)

-3 (0,-3,0)

(0,-2,-1)

(0,-3,-1)

-3

Fig. 7. Some possible traces and corresponding local observations. There is a single
trace consistent with Observation 1, and several for Observation 2. The list of possible
traces is not exhaustive.

∀τ ∈ T ∃τ ′ ∈ T τ |{pUPi,ack} = τ ′|{pUPi,ack} ∧ τ |Cj
�= τ ′|Cj

(1)

The formula states that for any trace τ of the system, there exists at least another
trace τ ′ where Prosumer i observes the same values as in τ , but such that the
consumption of j differs between τ and τ ′.

For this kind of properties, it is not sufficient to check that each trace indi-
vidually complies with the property. Rather, the property depends on the exact
set of traces T allowed by the system. Such properties are called hyperproperties
and were introduced by Clarkson and Schneider [8]. Several formalisms exist to
specify such security properties. Van der Meyden proposed several semantics for
intransitive non-interference [16]. Intransitive non-interference is possibly rein-
forced through filter functions [6], that are used in [18] to specify a weaker secu-
rity property for the same Micro Grid as discussed here. Balliu uses epistemic
logic [2] in a more general case than ours, Clarkson et al. defines a temporal
logics for hyperproperties [7].

In order to check the security property, we wrote a SMT-lib script. The
script encodes the constraints for a trace where a prosumer i can deduce the
consumption of another prosumer j. Formally, we search for a trace τ such that

τ ∈ T ∧ ∀τ ′ ∈ T τ |{pUPi,ack} = τ ′|{pUPi,ack} =⇒ τ |Cj
= τ ′|Cj

(2)

If these constraints are unsatisfiable for each pair i, j such that i �= j, no prosumer
can deduce the consumption of another prosumer. Z3 [11] found a trace satisfying
the constraint (2), which corresponds to Observation 1 from Fig. 7. Thus, the
system is insecure.

In order to make the system secure, we add further constraints on prosumers
plans. We ask that the global contribution of the prosumer remains within the
bounds corresponding to the maximal consumption or production. Formally, for
a plan (Pi, Ci, Bi), we require that −3 ≤ Pi + Ci + Bi ≤ 2. In this case, the
extreme values for each plan can be reached in several ways, as in Observa-
tion 2 of Fig. 7, which hides the real value of the consumption. By adding these
constraints on the prosumers plans, we modify the set of traces T allowed by
the system. Consequently, Z3 outputs that the constraint (2) is unsatisfiable,
meaning that the security property (1) is met.

Distributed MILS Architectural Approach for Secure Smart Grids 27

6 Conclusion

We have outlined an application of the two-phase D-MILS architectural method-
ology for demonstrating security properties of the distributed implementation of
a prosumer-based smart grid.

The low-level platform view of D-MILS is provided by a secure technology
layer, which guarantees the sharing of resources using components, such as sepa-
ration kernels and partitioning communications systems that deliver the required
guarantee of separation. A correct configuration of those components provides
the assurance that no unintended channels exist, and data leakage is prevented
on the resource sharing level.

The high-level architectural view is represented by a formal model, which con-
stitutes the system design and defines available channels for data exchange. The
assurance argument that the high-level model indeed satisfies the given security
goals is independent of low-level considerations of the platform implementation.
This high-level architectural model is used as input for the configuration com-
piler, which produces configurations of the D-MILS components, which enforce
the intended high-level information flow on the low-level technical platform; in
particular, a correct configuration compiler does not introduce any hidden chan-
nels on the resource-sharing platform.

The separation into an architectural and a platform-dependent part struc-
tures and considerably simplifies the construction of assurance cases for security
properties of the micro grid case study.

We have demonstrated that representative privacy properties of the micro
grid case study can be encoded in terms of hyperproperties. We proposed a
preliminary encoding of facts deduced from the execution traces which are visible
at the input ports. These encodings allowed us to detect a case where privacy is
broken and propose an alternative model that is more secure. The analysis can
be extended by taking into account the history of actions (instead of one step
of execution as currently). Ultimately, the privacy property should be stated in
term of the quality of approximation that a prosumer can obtain from a given
observation.

Altogether, our smart grid case study demonstrates that the D-MILS app-
roach is suitable to reason about security requirements. Together with a secure
low-level technical platform, which can be configured to allow desired informa-
tion flow channels, and more importantly prevent undesired information flow
channels, the D-MILS approach provides an environment for design, analysis,
verification, and implementation of scalable, interoperable and affordable trust-
worthy smart grid architectures. However, significant progress along several lines
is needed for reaching our ultimate goal of a complete and cost-effective solu-
tion for securing smart grids. In particular, the D-MILS methodology as outlined
needs to be supported by (1) a high-level architectural language (e.g. AADL) for
specifying the security policy architecture and a wide variety of security proper-
ties, (2) a suitable automated and suitable verification framework, (3) assurance
and verification methods for compositional assurance, and (4) a runtime mon-
itoring plane for testing, diagnosis, assessment, auditing and management of

28 D. Bytschkow et al.

D-MILS systems. Moreover, the current versions of D-MILS are static and do
not support the evolution of smart grids in time, as configurations are determined
a priori and cannot be dynamically changed during runtime. Both the D-MILS
architectural design methodology and platform need to be extended to support
dynamically changing information flow policies and platform configurations.

References

1. Alves-Foss, J., Harrison, W.S., Oman, P., Taylor, C.: The MILS architecture for
high-assurance embedded systems. Int. J. Embed. Syst. 2(3/4), 239–247 (2006)

2. Balliu, M.: A logic for information flow analysis of distributed programs. In:
Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 84–99.
Springer, Heidelberg (2013)

3. Boettcher, C., DeLong, R., Rushby, J., Sifre, W.: The MILS component integration
approach to secure information sharing. In: IEEE/AIAA 27th Digital Avionics
Systems Conference, 2008, DASC 2008, pp. 1.C.2-1–1.C.2-14. IEEE (2008)

4. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, Secaucus (2001)

5. Camek, A., Holzl, F., Bytschkow, D.: Providing security to a smart grid prosumer
system based on a service oriented architecture in an office environment. In: Pro-
ceedings of Innovative Smart Grid Technologies (ISGT), 2013 IEEE PES (2013)

6. Chong, S., van der Meyden, R.: Using architecture to reason about information
security. In: Layered Assurance Workshop (2012)

7. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014 (ETAPS 2014). LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014)

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

9. D-MILS: Distributed MILS for dependable information and communication
infrastructures. STREP, FP7. http://www.d-mils.org

10. D-MILS: Safety and security requirements for the fortiss Smart Micro Grid demon-
strator (2013), d-MILS project deliverable

11. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. ENISA: Appropriate security measures for smart grids - guidelines to assess the
sophistication of security measures implementation. Study of the European Net-
work and Information Security Agency (ENISA) (2012)

13. ENISA: Smart grid security - recommendations for Europe and member states.
Study of the European Network and Information Security Agency (ENISA) (2012)

14. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

15. Koss, D., Sellmayr, F., Bauereiß, S., Bytschkow, D., Gupta, P.K., Schätz, B.: Estab-
lishing a smart grid node architecture and demonstrator in an office environment
using the SOA approach. In: SE4SG, ICSE, pp. 8–14. IEEE (2012)

16. van der Meyden, R.: What, indeed, is intransitive noninterference? In: Biskup,
J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 235–250. Springer,
Heidelberg (2007)

http://www.d-mils.org

Distributed MILS Architectural Approach for Secure Smart Grids 29

17. NIST: NIST IR 7628: guidelines for smart grid cyber security (2011). http://csrc.
nist.gov/publications/PubsNISTIRs.html

18. Quilbeuf, J., Igna, G., Bytschkow, D., Ruess, H.: Security policies for distributed
systems. CoRR abs/1310.3723 (2013)

19. Rushby, J.: Noninterference, transitivity, and channel-control security policies. SRI
International, Computer Science Laboratory (1992)

20. Rushby, J.: Partitioning in avionics architectures: requirements, mechanisms, and
assurance. Technical report, DTIC Document (2000)

21. Vanfleet, W.M., et al.: MILS: architecture for high assurance embedded computing.
Cross Talk 18, 12–16 (2005)

22. Yardley, T., Berthier, R., Nicol, D., Sanders, W.: Smart grid protocol testing
through cyber-physical testbeds. In: ISGT, 2013 IEEE PES, pp. 1–6 (2013)

http://csrc.nist.gov/publications/PubsNISTIRs.html
http://csrc.nist.gov/publications/PubsNISTIRs.html

http://www.springer.com/978-3-319-10328-0

	Distributed MILS Architectural Approach for Secure Smart Grids
	1 Introduction
	2 Case Study
	3 D-MILS Platform
	4 Formalization of the Information Flow
	5 Ensuring Security Properties
	5.1 Ensuring Security of the Platform
	5.2 Checking Security of the High-Level Model

	6 Conclusion
	References

