
Chapter 2
The Geometry of Hamiltonian Mechanics

In this chapter an introduction to Hamiltonian mechanics is given. Although, most of
the textbooks devote one or more chapters to the Hamiltonian formulation of classical
mechanics, only a few approach the subject from the theory of differential geom-
etry [1, 3, 5]. The latter neatly exposes the geometrical properties of Hamiltonian
mechanics. Modern analysis on manifolds [7] provides the means to develop the the-
ory in a coordinate free way. However, numerical applications require the translation
of the theory to specific coordinate systems. Hence, in this introductory chapter we
follow both approaches to unveil the geometrical properties of Hamiltonian mechan-
ics [4, 6]. This chapter must be read in parallel with the Appendix where some basic
definitions and theorems from the calculus on manifolds are provided.

2.1 Configuration Manifolds and Coordinate Systems

2.1.1 Cartesian Coordinates

We consider a system of N particles whose configurations in a space fixed Cartesian
coordinate system are described by N vectors of three components or with single
vectors of 3N components. The Cartesian configuration space consists an Euclidean
manifold (M) of dimension 3N , M ⊂ R

3N . The number of degrees of freedom for
the system is 3N . The positions of N particles with masses mα, α = 1, . . . , N , in
our 3D world, are described by N vectors rα

rα = xαi + yαj + zαk, α = 1, . . . , N . (2.1)

(i, j, k) denote the unit vectors along the (x, y, z)-axes, respectively.
The mechanical state of the system is defined by the coordinates of the particles

and the rate of their change in time t , the velocities;
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vα = drα

dt
≡ ṙα = dxα

dt
i + dyα

dt
j + dzα

dt
k

≡ ẋαi + ẏαj + żαk, α = 1, . . . , N . (2.2)

Thus, the time evolution of the system is completely determined by the vectors,
[rα(t), vα(t)], α = 1, . . . , N .

The kinetic energy of the N -particle system is defined by the quadratic function
in velocities

K = 1

2

N∑

α=1

mα(vα)2

= 1

2

N∑

α=1

mα

[
(ẋα)2 + (ẏα)2 + (żα)2

]
. (2.3)

The interactions among the particles are determined by the potential energy,
V (r1, . . . , r N ), i.e., a function of the position vectors. The resultant force on particle
α is the vector

Fα = −∂V (r)

∂rα
≡ −∂αV (r)

= − ∂V

∂xα
i − ∂V

∂yα
j − ∂V

∂zα
k

= Fxα i + Fyα j + Fzα k. (2.4)

2.1.2 Curvilinear Coordinates

Because of some geometrical constraints or space-time symmetries which result in
conservation laws, such as of the total energy, momentum and angular momentum,
and the possible existence of other constants (integrals) of motion, the orbits of the
particles are constrained in a configuration space with dimension less than 3N . If
there are k holonomic constraint equations1

φi (r1, . . . , r N ) = ci , i = 1, . . . , k, (2.5)

that assign specific values to the associated quantities, geometrical or constants of
motion, then, the number of degrees of freedom is n = 3N − k, and the configu-
rations of the system form a smooth (differentiable) manifold Q of dimension n
(see Appendix A), not necessarily Euclidean. The k constraint equations provide an
implicit representation of the configuration manifold (see Appendix A.2).

1 Holonomic constraints may contain the velocities φi (r1, . . . , rn, ṙ1, . . . , ṙ N ) = ci , which how-
ever, can be integrated to equations without the velocities.



2.1 Configuration Manifolds and Coordinate Systems 15

Taking into account possible constraint equations we may want to study the orbits
of the system on the reduced dimension, n, configuration manifold Q. This may be
an imperative step for extracting the underlying physics out of the dynamics of the
system. Smooth manifolds can be covered by atlases of charts, which locally define
maps of open sets of the manifold to open sets of an Euclidean space. In this way
we introduce generalized coordinates, (q1, . . . , qn), and apply ordinary calculus to
study the dynamics of the system. However, it is worth emphasizing that global
properties of manifolds may be studied without any reference to a local coordinate
system. In principle and with the aid of the k constraint equations, one can find
transformation equations from the n generalized coordinates to the 3N = n + k
Cartesian coordinates

xα = gxα (q1, . . . , qn, c1, . . . , ck)

yα = gyα (q1, . . . , qn, c1, . . . , ck)

zα = gzα (q1, . . . , qn, c1, . . . , ck), α = 1, . . . , N . (2.6)

The generalized velocities (q̇1, . . . , q̇n) are related to Cartesian velocities by the
equations,

ẋα =
n∑

k=1

∂gxα

∂qk
q̇k

ẏα =
n∑

k=1

∂gyα

∂qk
q̇k

żα =
n∑

k=1

∂gzα

∂qk
q̇k, α = 1, . . . , N . (2.7)

Then, the kinetic energy (Eq. 2.3) in generalized coordinates will take the form,

K = 1

2

n∑

i,k=1

q̇i gik(q, m)q̇k, (2.8)

where, gik(q, m) is the metric tensor and its components are functions of the masses,
m = (m1, . . . , mα, . . . , m N ), and generalized coordinates, q = (q1, . . . , qn)T 2 (see
next section). The sum of kinetic and potential energy is the total energy of the system

E[q(t), q̇(t)] = K [q(t), q̇(t)] + V [q(t)]. (2.9)

We must admit that the transformation equations from curvilinear to Cartesian
coordinates and their inverses (Eq. 2.6) are not always easy to find. As a matter of

2 The letter superscript (T ) denotes a column vector and generally the transpose of a matrix.
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fact, to determine the constants of motion for a dynamical system requires one to
know the solutions of the equations of motion. The equations of motion take a simple
form in Cartesian coordinates and can be solved numerically with modern computers
for large systems with thousand of atoms. Combining, integration of equations of
motion in Cartesian coordinates and transforming to specific curvilinear coordinates
to describe the manifolds on which the trajectories lie is an appealing approach to
illuminate Molecular Dynamics.

2.2 The Topological Map of Lagrangian and Hamiltonian
Mechanics

Topological theories by not relying on specific coordinate systems have the advan-
tage to reveal the general geometrical properties of physical systems, and thus, they
are suitable for a qualitative analysis. In reverse, by knowing the topological structure
of the system one can choose a suitable local coordinate system for computational
work. Figure 2.1 portrays the topological structures of the two main formulations of
Classical Mechanics, the Lagrangian and Hamiltonian. By considering the configu-
ration space of a dynamical system as a smooth (differentiable) manifold, Q, there is
always a chart (a local coordinate system), i.e., a homeomorphism (see Appendix A),

φ : U ⊂ Q → φ(U ) ⊂ R
n, (2.10)

of an open set U of Q onto an open set φ(U ) of R
n . Since, the map is on an Euclidean

space (Rn), we can also define a coordinate representation in R
n

qi = f i ◦ φ or φ(s) = (q1(s), q2(s), . . . , qn(s))T ∈ R
n, (2.11)

for every point s ∈ U , and f i are differentiable functions. The tangent space of
Q (the space where the derivatives live) at a point s ∈ Q (Ts Q) is a vector space
(velocities belong to this space) and the union of all tangent spaces for all points s
of Q form the tangent bundle (T Q) with Q the base space

T Q =
⋃

s∈Q

Ts Q. (2.12)

The tangent bundle contains both the manifold Q and its tangent spaces Ts Q called
the fibres and it is a smooth manifold of dimension 2n. Since, T Q is also a smooth
manifold a chart can be defined by the diffeomorphism

T φ : T U → φ(U ) × R
n ⊂ R

n × R
n . (2.13)
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Fig. 2.1 Topological map of Lagrangian and Hamiltonian Mechanics. The tangent bundle (T Q)
of the configuration manifold (Q) is a smooth manifold with charts defined by the generalized
coordinates (qi ) and their corresponding velocities (q̇ j ). The Lagrangian, L[q(t), q̇(t)], is a function
on the tangent bundle to real numbers. The dual space of T Q is the cotangent bundle (M = T ∗ Q),
also named phase space. The phase space is a differentiable manifold of dimension 2n for which
the tangent bundle, T M ≡ T (T ∗ Q) of dimension (2n × 2n), can also be defined with charts
described by the generalized coordinates (qi ), the conjugate momenta (p j ) and their velocities
(q̇ i , ṗ j ). The potential function, V (q), is a function on the configuration manifold to real numbers.
The Hamiltonian, H [q(t), p(t)], is a function on the phase space to real numbers obtained by a
Legendre transform (L) of the Lagrangian. We may consider that the Legendre transform generates
a differentiable map between the tangent and cotangent bundles of Q, FL : T Q → T ∗ Q. Then,
the tangent mapping T FL defines an isomorphism between the tangent of tangent bundle of Q (not
shown) and the tangent bundle of phase space, T FL : T (T Q) → T (T ∗ Q). πQ , π∗

Q and πM are
canonical projections. T π∗

Q is the tangent mapping of π∗
Q . In Chap. 4 we discuss how the Lagrange

formalism of classical mechanics leads to the path integral formulation of quantum mechanics and
the Hamiltonian mechanics to canonical quantum mechanics

This is a linear map and each chart (φ, U ) from the atlas of Q induces a chart
(T φ, T U ) for T Q. This chart is said to be the bundle chart associated with (φ, U ).

The potential function V is a map of configuration manifold to real numbers R,
V : Q → R. On the tangent bundle we define the state function

L : T Q → R, (2.14)

http://dx.doi.org/10.1007/978-3-319-09988-0_4
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named Lagrangian. Having defined a chart the Lagrangian takes the form

L(q, q̇) = K (q, q̇) − V (q). (2.15)

By using the Lagrangian we define the generalized momenta as

pi (q, q̇) = ∂L

∂q̇i
. (2.16)

To extract the physical meaning of these derivatives we write the Lagrangian in
Cartesian coordinates, Eq. 2.3.

L = K − V = 1

2

N∑

α=1

mα(vα)2 − V (r), r = (r1, . . . , r N ). (2.17)

The partial derivative of L with respect to the position vector of particle α, rα , is the
force acting on this particle, Eq. (2.4), whereas the partial derivative with respect to
the velocity of particle α is

∂L

∂vα
= mαvα. (2.18)

The vector quantity

pα = mαvα = mα(ẋαi + ẏαj + żαk), (2.19)

is the momentum of particle α.
Writing the Lagrangian in generalized coordinates,

L(q, q̇) = 1

2

n∑

i, j=1

q̇i gi j (q, m)q̇ j − V (q), (2.20)

we define the component of the generalized force along the i th degree of freedom as

fi = ∂L

∂qi
, (2.21)

and the component of the generalized momentum along the i th degree of freedom

pi = ∂L

∂q̇i
=

∑

j

gi j q̇
j . (2.22)

The tangent and cotangent bundle (see Appendix A.8), T Q and T ∗Q respec-
tively, exist for any configuration manifold Q. If, however, we can define a metric
on the manifold, i.e., Q is a Riemannian manifold, then, there is a diffeomorphism
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T Q → T ∗Q that sends the coordinate patch (q, q̇) on the tangent space at a point s
of Q to the coordinate patch (q, p) on the cotangent space. Taking as a metric the
covariant tensor rank-2, gi j , that defines the kinetic energy, then, the momentum pi

is the covector of the velocity q̇i , and the velocity q̇i can be obtained by the inverse
tensor gi j

q̇i =
∑

j

gi j p j , (2.23)

where
∑

l gil gl j = δ
j
i .3

The metric tensor is a 2−form (see A.8), and thus, acts on two vectors of the
tangent space to map them to a scalar. In other words, we can write

gs(v,w) =
n∑

i=1

n∑

j=1

vi gi jw
j , (2.24)

where vi and w j are the components of the two vectors v and w of the tangent space,
Ts Q, at the point s of the manifold Q, respectively in a local coordinate system. In a
coordinate free interpretation of the metric, the kinetic energy is just the half of the
metric, K = 1

2 gs(v, v). We may also consider the metric gs to act only on one vector
field, a mapping from T Q to T ∗Q, i.e.,

gs : T Q → T ∗Q : v �→ gs(•, v), (2.25)

with • to denote a vacancy in the pair of vectors. Thus, gs(•, v) is a 1−form, which can
act on another or the same vector in Ts Q to yield a real number, gs(v, v). The metric
assigns to each vector field X ∈ X (Q) the smooth 1−form g(•, X) ∈ X ∗(Q),
and vice versa. X (Q) is the set of vector fields on the configuration manifold Q
and X ∗(Q) the set of covectors. Therefore, we may conclude that, in charts the
generalized momenta pi , which is canonically conjugate to the coordinates qi , is the
1−form

pi = ∂L

∂q̇i
=

∑

j

gi j q̇
j ≡ gs(•, v), (2.26)

which is a map from the tangent bundle (T Q) to the cotangent bundle (T ∗Q). In fact,
(q, p) ≡ (q1, . . . , qn, p1, . . . , pn) are the local coordinates in the cotangent bundle
which is called the phase space of the dynamical system.

The Hamiltonian, H(qi , p j ), is a function on the phase space to real numbers
obtained by a Legendre transform (L) of the Lagrangian

3 The components of Kronecker delta tensor, δ
j
i , are equal to 1 for i = j and 0 for i 	= j .
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H(q, p) =
n∑

i=1

q̇i pi − L(q, q̇) =
n∑

i=1

q̇i
n∑

j=1

gi j q̇
j − L(q, q̇)

= 1

2

∑

i j

q̇ i gi j q̇
j + V (q) = K + V . (2.27)

The transformation equations in a new coordinate system in the configuration
space lead to the following transformation equations for the velocities in the tangent
space

Qi = Qi (q1, . . . , qn), i = 1, . . . , n (2.28)

q̇ j =
∑

i

(
∂q j

∂ Qi

)
Q̇i , (2.29)

and the new momenta in the cotangent space

Pi = ∂L

∂ Q̇i
=

∑

j

(
∂L

∂q̇ j

) (
∂q̇ j

∂ Q̇i

)

=
∑

j

p j

(
∂q j

∂ Qi

)
. (2.30)

2.3 The Principle of Least Action

The function

S(qa, qb; ta, tb) =
tb∫

ta

L[q(t), q̇(t)]dt, (2.31)

is called the action along the path that connects the configuration points qa and qb

at the times ta and tb, respectively;

qa = q(ta), qb = q(tb). (2.32)

In mechanics we accept the Principle of Least Action; among the infinite number of
paths between two fixed configuration points (qa, qb) and times ta and tb the system
will follow that one which minimizes the action (Eq. 2.31),

S0 = min [S(qa, qb; ta, tb)] = min

tb∫

ta

L[q(t) + δq(t), q̇(t) + δq̇(t)]dt. (2.33)
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We assume the two end points fixed and we expand S in δq. The variation of S around
an extremum q is

δS =
tb∫

ta

L[q(t) + δq(t), q̇(t) + δq̇(t)]dt −
tb∫

ta

L[q(t), q̇(t)]dt

=
tb∫

ta

(
∂L

∂q
δq + ∂L

∂q̇
δq̇

)
dt = 0. (2.34)

Integrating by parts we have

δS =
tb∫

ta

(
∂L

∂q
δq + d

dt

[
∂L

∂q̇
δq

]
− d

dt

[
∂L

∂ q̇

]
δq

)
dt

=
[
∂L

∂q̇
δq

]tb

ta

+
tb∫

ta

(
∂L

∂q
− d

dt

∂L

∂ q̇

)
δqdt = 0. (2.35)

Since, δqa = δqb = 0 and δS is zero for any positive or negative variation of δq, we
infer that

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (2.36)

These are the Euler–Lagrange equations. Hence, according to the variational prin-
ciple the equations of motion define the path for which the action takes a stationary
value. Generally, for a system with n degrees of freedom is valid

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0, i = 1, . . . , n. (2.37)

For a Lagrangian written as in Eq. 2.17 the Euler–Lagrange equation (Eq. 2.37)
takes the form

fi = ṗi , i = 1, . . . , n, (2.38)

i.e., Newton’s equations. The importance of the Lagrangian stems from its utility to
define the action along a path between two configuration points, (qa , qb). Hence, the
action is a function of the initial and final configuration points as well as the time.
The principle of the least action leads to the equations of motion, which involve the
partial derivatives of the Lagrangian defined on the tangent space, T Q.
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2.4 Hamiltonian Vector Fields

In Sect. 2.2 we introduced the Hamiltonian state function in phase space, the cotan-
gent space of the tangent space of the configuration manifold. As we shall see, the
Hamiltonian formalism of classical mechanics is the most appropriate to reveal intrin-
sic symmetries of the system, and the entrance to quantum and statistical mechanics.
Thus, it is worth formulating classical mechanics in phase space. The Hamiltonian
of a mechanical system in phase space, H(q, p, t), is a function of coordinates,
momenta and possibly of time. Then, the equations of motion can be inferred from
the Principle of Least Action

δS(qa, qb; ta, tb) = δ

⎛

⎝
tb∫

ta

(
n∑

i=1

pi q̇
i − H

)
dt

⎞

⎠ = 0, (2.39)

with fixed end points. This equation is transformed to

δS =
n∑

i=1

tb∫

ta

(
δpi q̇

i + piδq̇i − ∂ H

∂qi
δqi − ∂ H

∂pi
δpi

)
dt

=
n∑

i=1

⎡

⎣
tb∫

ta

δpi

(
q̇i − ∂ H

∂pi

)
dt −

tb∫

ta

δqi
(

ṗi + ∂ H

∂qi

)
dt +

[
piδqi

]tb

ta

⎤

⎦

= 0. (2.40)

The last term evaluated at the end points is zero and the independent variations of
δqi and δpi lead to Hamilton’s equations

q̇i = ∂ H

∂pi

ṗi = −∂ H

∂qi
, i = 1, . . . , n. (2.41)

Equations 2.41 define the local flow of the Hamiltonian vector field. If we denote
this vector field as (X H , (X H ))T to distinguish coordinates from momenta, then, the
Hamiltonian vector field in local coordinates is written as

(
(X H )i

(X H ) j

)
=

(
∂ H/∂pi

−∂ H/∂q j

)
, i, j = 1, . . . , n. (2.42)

Hence, the principle of least action results in the Euler–Lagrange equations in the
Lagrangian formalism, whereas in the Hamiltonian formalism of classical mechanics
it gives Hamilton’s equations. However, it is important to understand that in the
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Lagrangian formalism the dynamics take place in the tangent of the tangent bundle
of configuration manifold, T (T Q), and in the Hamiltonian formalism in the tangent
of the cotangent bundle of configuration manifold, T (T ∗Q). Since, the Lagrangian
and Hamiltonian state functions are connected by a Legendre transform it can be
proved that the two formulations of classical mechanics are equivalent.

Finally, if we consider the action as a function of the initial and final coordinates,
not fixed but taking the path that minimizes the action, i.e., the generalized coordi-
nates describe an integral solution of Hamilton’s equations, then, the variation of the
action is

δS(qa, qb) =
n∑

i=1

tb∫

ta

(
δpi q̇

i + piδq̇i − ∂ H

∂qi
δqi − ∂ H

∂pi
δpi

)
dt

=
n∑

i=1

⎡

⎣
tb∫

ta

δpi

(
q̇i − ∂ H

∂pi

)
dt −

tb∫

ta

δqi
(

ṗi + ∂ H

∂qi

)
dt +

[
piδqi

]tb

ta

⎤

⎦

=
n∑

i=1

[
pibδqi

b − piaδqi
a

]
, (2.43)

where a and b denote the end points of the path. Thus,

∂S

∂qi
a

= −pia

∂S

∂qi
b

= pib, i = 1, . . . , n. (2.44)

Similarly, if we consider the action as a function of the coordinates and time

d

dt
S(q, t) = L = ∂S

∂t
+ ∂S

∂q
q̇

= ∂S

∂t
+ pq̇. (2.45)

Hence,
∂S

∂t
= L − pq̇ = −H. (2.46)

From the above equations we can write the total differential of action as

d S(q, t) =
n∑

i=1

pi dqi − H(q, p, t)dt. (2.47)
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2.5 The Canonical Equations Expressed with the Symplectic
2−Form

By replacing velocities with momenta not only second order differential equations
(Euler–Lagrange) are replaced by the first order equations of Hamilton, but as we
shall see, generalized coordinates and their conjugate momenta acquire equivalent
significance and reveal the geometry of phase space. Let us first collect the general-
ized coordinates and their conjugate momenta of a dynamical system of n degrees of
freedom to a single vector x = (q1, q2, . . . , qn, p1, p2, . . . , pn)T of 2n-dimension.
Then, Hamilton’s equations are written in the form

ẋ(t) = J∂ H(x), (2.48)

where ∂ H is the gradient of Hamiltonian function, and J the symplectic matrix

J =
(

0n In

−In 0n

)
. (2.49)

0n and In are the zero and unit n×n matrices, respectively. It is proved that J satisfies
the relations,

J−1 = −J = J T and J 2 = −I2n . (2.50)

X Hx = J∂ H(x) is the Hamiltonian vector field as was defined by Eq. 2.42. In fact,
as was discussed in Sect. 2.2 and from Fig. 2.1 (top) we can infer that x defines a
chart in the tangent space (T M) of phase space M .

Let us denote with θ the 1−forms defined on the phase space manifold M

θ : M → T ∗M : m ∈ M �→ θm ∈ T ∗
m M, (2.51)

and with α the 1−forms on the configuration manifold Q

α : Q → T ∗Q : r ∈ Q �→ αr ∈ T ∗
r Q. (2.52)

Since, α is a linear map from Q to M and θ an 1−form on M we can pull-back θ

to Q to produce the 1−form α∗θ , which lives on the base manifold Q. Then, the
Canonical Poincaré 1−Form is given by

θ̂ =
∑

i

pi dqi , (2.53)

and satisfies the relation

α∗θ̂ = α forall α ∈ X ∗(Q). (2.54)
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θ̂ is invariant under coordinate transformations. This is proved by using Eq. 2.30.
Indeed,

θ̂ =
∑

i

pi dqi =
∑

i

pi

∑

j

∂qi

∂ Q j
d Q j

=
∑

j

(
∑

i

pi
∂qi

∂ Q j

)
d Q j =

∑

j

Pj d Q j . (2.55)

The Canonical Symplectic 2− Form is extracted by taking the exterior derivative
of θ̂

ω̂ ≡ 2
ω = −d θ̂ . (2.56)

This is a closed 2−form (dω̂ = −d ◦ d θ̂ = 0). In local coordinates (q, p), ω̂ is
expressed by the wedge products (Darboux’s theorem)

ω̂r =
∑

i

dqi ∧ dpi , r ∈ M. (2.57)

If we introduce dx = (dq1, . . . , dqn, dp1, . . . , dpn), the symplectic 2−form
(Eq. 2.57) is written

ω̂ =
n∑

i=1

dxi ∧ dxn+i . (2.58)

We can compute symplectic k−forms by taking the k−fold exterior products
of ω̂

ω̂r =
∑

i

dqi ∧ dpi ,

ω̂r ∧ ω̂r = −2!
∑

i1<i2

dqi1 ∧ dqi2 ∧ dpi1 ∧ dpi2 ,

ω̂r ∧ ω̂r ∧ ω̂r = −3!
∑

i1<i2<i3

dqi1 ∧ dqi2 ∧ dqi3 ∧ dpi1 ∧ dpi2 ∧ dpi3 ,

· · · · · · · · · = · · · · · · · · · (2.59)

The largest 2n−form is

n− f old︷ ︸︸ ︷
ω̂r ∧ · · · ∧ ω̂r = n!(−)[n/2]dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ pn (2.60)
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and this defines the oriented volume form

Ωω̂ = (−)[n/2]

n!

n− f old︷ ︸︸ ︷
ω̂ ∧ · · · ∧ ω̂ . (2.61)

[n/2] is the largest integer smaller than or equal to n/2.
As is illustrated in the Appendix A.9.2, the geometric meaning of forms is that

of an area or volume, objects, which are quite often introduced in chemical theories.
For example, reaction rates are determined by the flux through a multidimensional
dividing surface (transition state) and the evaluation of the density of states of reactant
molecules, both requiring the calculation of phase space areas and volumes [2].

Summarizing, ω̂ is a symplectic form on a manifold M of even dimension 2n and
it is non-degenerate, skew-symmetric, closed 2−form (dω̂ = 0). A pair (M, ω̂) is
said to be a symplectic manifold. Those charts (coordinates) which satisfy Darboux’s
theorem, ω̂ = ∑n

i=1 dxi ∧ dxn+i , are said to be symplectic charts and the local
coordinates are called canonical coordinates. In the following we shall see that
Hamiltonian mechanics and its geometrical properties can be formulated with ω̂.

2.5.1 Symplectic Transformations

The equations
Xi = Fi (x, t), i = 1, . . . , 2n, (2.62)

define a transformation, which may involve both coordinates and their conjugate
momenta, and do not change the equations of motion. These transformations are
called canonical and the Jacobian matrix, (DF), of the transformation, (DF)i j =
∂ Fi/∂x j , satisfies the symplectic property

(DF)T J (DF) = J. (2.63)

We can generalize the above transformations. A smooth map F that relates two
symplectic manifolds (M, ω̂) and (N , τ̂ ) is said to be symplectic if F∗τ̂ = ω̂, i.e.,
the pull-back of τ̂ yields ω̂. The symplectic maps are the canonical transformations
of mechanics if the two manifolds (M, N ) are identical

F∗ω̂ = ω̂. (2.64)

Let (M, ω̂) be a symplectic manifold of dimension 2n with ω̂ a canonical sym-
plectic 2−form. The Hamiltonian function H is a smooth function on M = T ∗Q.
The Hamiltonian vector field, X H , is then defined through the condition

iX H ω̂ = ω̂(X H , •) = d H. (2.65)
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iX H ω̂ symbolizes interior product and the triple (M, ω̂, X H ) is a Hamiltonian
system.

Indeed, we have seen that Hamilton’s equations can be written in the form

ẋ(t) = J∂ H [x(t)] = X Hx , (2.66)

where H is the Hamiltonian function and X Hx the Hamiltonian vector field at x .
Since, the Hamiltonian vector field in local coordinates is written as

(
(X H )i , (X H ) j

)T =
(

∂ H

∂pi
,− ∂ H

∂q j

)T

,

the 2−form ω̂ with a vacant position (•) is transformed to

ω̂(X H , •) =
n∑

i=1

(
dqi (X H )dpi − dpi (X H )dqi

)
,

=
n∑

i=1

(
(X H )i dpi − (X H )i dqi

)
,

=
n∑

i=1

(
∂ H

∂pi
dpi + ∂ H

∂qi
dqi

)
,

= d H. (2.67)

With every Y ∈ X (M) we can write

ω̂(X H , Y ) = d H(Y ). (2.68)

The integral curves of the Hamiltonian vector field X H , Φt (x), are solutions of the
canonical equations of motion Eq. 2.66. If the Hamiltonian does not have an explicit
dependence on time, then, the energy is conserved. Indeed, the Lie derivative of the
Hamiltonian is

d

dt
H(x(t)) = d H(ẋ) = d H(X Hx(t) ) = ω̂(X Hx(t) , X Hx(t) ) = 0. (2.69)

We can also show this with charts.

ω̂(X Hx(t) , X Hx(t) ) =
∑

i

dqi ∧ dpi (X Hx(t) , X Hx(t) )

=
∑

i

[
dqi (X Hx(t) )dpi (X Hx(t) ) − dpi (X Hx(t) )dqi (X Hx(t) )

]

=
∑

i

[
−q̇i ṗi + ṗi q̇

i
]

= 0. (2.70)
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Symplectic diffeomorphisms (F∗τ̂ = ω̂) leave Hamilton’s equations invariant.
Using the properties of pull-back (Eq. A.89) we show

iX F∗ Hτ
ω̂ = d(F∗Hτ ) = F∗d Hτ = F∗iX Hτ

τ̂ = iF−1∗ X Hτ
F∗τ̂ = iF−1∗ X Hτ

ω̂, (2.71)

which implies X F∗ Hτ = F−1∗ X Hτ . F−1∗ X Hτ means push-forward the vector field
X Hτ which is related with τ̂ to the vector field X F∗ Hτ associated with the symplectic
2−form ω̂.4

4 For time dependent Hamiltonians, H(q, p, t), we can apply the same formalism of conservative
Hamiltonians by introducing time as a new variable, q0 = t , with conjugate momentum, p0, and
new Hamiltonian, Ht = p0 + H(q, p, t) = 0. Thus, the extended phase space Mt = T ∗ Qt of
the extended configuration manifold, Qt = (t, q1, . . . , qn)T , is of 2(n + 1)−dimension and in its
cotangent bundle we define the Canonical Poincaré 1−Form

θ̂t =
n∑

i=0

pi dqi = p0dq0 +
n∑

i=1

pi dqi = −H(q, p, t)dt + θ̂ , (2.72)

and symplectic 2−form

ω̂t = −d θ̂t = d H ∧ dt − d θ̂ = −dt ∧ d H +
n∑

i=1

dqi ∧ dpi . (2.73)

The new Hamiltonian vector field (X Ht ) is defined by the equation

ω̂t (X Ht , •) = d Ht , (2.74)

(
(X Ht )

0

(X Ht )0

)
=

(
1

−∂ H/∂t

)
,

(
(X Ht )

i

(X Ht )i

)
=

(
∂ H/∂pi

−∂ H/∂qi

)
, i = 1, . . . , n. (2.75)

The Hamiltonian vector field lives in the tangent bundle of the extended phase space, T (T ∗ Qt ), the
base vector fields of which are

(
∂

∂t
,

∂

∂p0

)
,

(
∂

∂qi
,

∂

∂pi

)
, i = 1, . . . , n. (2.76)

(Mt , ω̂t , X Ht ) is a Hamiltonian system and the Canonical Poincaré 1−Form, Eq. 2.72, is related to
the total differential of action (Eq. 2.47). We can see, that with this formulation of time dependent
systems the trajectories are projected at each time t in the physical phase space of the system of
2n−dimension, x = (q1, . . . , qn, p1, . . . , pn)T , and they are given by Hamilton’s equations of
motion with the time dependent Hamiltonian

ẋ(t) = J∂ H(x, t). (2.77)
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The symplectic maps of a symplectic vector space (V, σ̂ ) onto itself

V : (V, σ̂ ) → (V, σ̂ ), F∗σ̂ = σ̂ , (2.78)

form the symplectic group Sp2n . Applying a symplectic transformation to the sym-
plectic matrix J in local coordinate representation yields

(DF)T J (DF) = J. (2.79)

Theorem 1 (Liouville’s Theorem)

If (M, ω̂, X H ) is a Hamiltonian system, and Φt the flow of the vector field X H(
dΦt
dt = X H

)
, then, for all times t the flow is symplectic, i.e., Φ∗

t ω̂ = ω̂. From

this, we conclude that the oriented volume Ωω̂ (Eq. 2.61) is conserved (Liouville’s
Theorem).

2.5.2 Poisson Brackets

f and g are two dynamical quantities acting on the Hamiltonian system (M, ω̂, H).
If X f and Xg are vector fields assigned to the two dynamical quantities, then, they
are defined by the equations

ω̂(X f , •) = d f, ω̂(Xg, •) = dg, (2.80)

which imply

X f =
(

∂ f

∂p
,−∂ f

∂q

)T

and Xg =
(

∂g

∂p
,− ∂g

∂q

)T

. (2.81)

The Poisson bracket is defined as

ω̂(X f , Xg) = d f (Xg)

=
n∑

i=1

[
∂ f

∂qi
dqi (Xg) + ∂ f

∂pi
dpi (Xg)

]

=
n∑

i=1

[
∂ f

∂qi

∂g

∂pi
+ ∂ f

∂pi

(
− ∂g

∂qi

)]

=
n∑

i=1

[
∂ f

∂qi

∂g

∂pi
− ∂ f

∂pi

∂g

∂qi

]
(2.82)

≡ { f, g} = −{g, f }. (2.83)
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The Lie derivative of a dynamical quantity g with respect to a vector field X f is
defined as the directional derivative of g along the vector X f

L X f g = dg(X f ) = ω̂(Xg, X f ). (2.84)

So, to be consistent with the definition of Poisson brackets (Eq. 2.82) for a Hamil-
tonian vector field we take L X H g = dg(X H ) = ω̂(Xg, X H ) = {g, H}.

Some properties of Poisson brackets are:

P1: The Poisson bracket in terms of Lie derivative is written as

{g, f } = L X f g = dg(X f ) = −d f (Xg) = −L Xg f = −{ f, g}. (2.85)

P2: The quantity f (or g) is constant along the flow of Xg (X f ) if and only if
{g, f } = 0.

P3: Let Φt be the flow of the Hamiltonian vector field X H and g being a dynamical
quantity, then, it is valid

d

dt
(g ◦ Φt ) = ∂

∂t
(g ◦ Φt ) + {g ◦ Φt , H}. (2.86)

P4: Poisson brackets defined on the set of smooth functions F (M) on M generate
a Lie algebra, i.e.,

• { f, g} is bilinear,

• { f, f } = 0, and

• { f, {g, h}} + {g, {h, f }} + {h, { f, g}} (Jacobi identity).

P5: In a local symplectic chart with canonical coordinates (qi , p j ) the following
equations are true

{qi , q j } = 0 (2.87)

{pi , p j } = 0 (2.88)

{qi , p j } = δi
j . (2.89)

P6: F is diffeomorphism between two symplectic manifolds, F : (M, ω̂) → (N , τ̂ ).
This map is also symplectic if preserves the Poisson brackets of functions and/or
1−forms, i.e.,

{F∗ f, F∗g} = F∗{ f, g} forall f, g ∈ F (N ). (2.90)
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Similarly to the previous section we can use the formalism of interior product to
describe Lie derivatives and Poisson brackets. The Lie derivative of a form α is
defined as (Cartan’s magic formula)

L Xα = iX dα + diXα. (2.91)

If α is a function (0−form) then

L Xα = iX dα. (2.92)

A differential form is conserved if

L Xα = 0. (2.93)

An example is the conservation of the canonical symplectic 2−form, ω̂, along a
Hamiltonian vector field X H

L X H ω̂ = iX H dω̂ + diX H ω̂ = −iX H d ◦ d θ̂ + d ◦ d H = 0. (2.94)

The Poisson bracket is defined in terms of interior products as

{g, f } = L X f g = iX f dg = iX f iXg ω̂. (2.95)
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