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Abstract. Considering the case of homonyms processes (some processes
may share the same identifier) on a ring, we give here a necessary and
sufficient condition on the number of identifiers to enable leader election.
We prove that if l is the number of identifiers then message-terminating
election is possible if and only if l is greater than the greatest proper
divisor of the ring size even if the processes do not know the ring size.
If the ring size is known, we propose a process-terminating algorithm
exchanging O(n log(n)) messages that is optimal.

1 Introduction

The goal of the model of homonym processes [10] is to be an extension of the
classical model in which every process has its own unique identity and the model
in which the processes are fully anonymous. With homonyms, processes have an
identifier coming from a set of identifiers L and as we always assume that each
identifier is the identifier of at least one process, if |L| is equal to the number of
processes n each process has its own identity and |L| is 1, the processes are fully
anonymous. But the cases where 0 < |L| < n are rather natural and useful. For
example in communication signatures [9], signatures are identifiers and process
groups share the same signature to maintain some kind of privacy (it could be
impossible to distinguish between processes with the same identifier). Moreover
it is generally very costly to assign unique identities to processes and some
mechanisms for this (e.g. name servers, hash function) do not avoid to have sites
with the same identifier.

Until now homonyms have been mainly studied in the context of process
failures (Byzantine, omission, crash) for the Consensus problem [4,10–12] and it
has been proved that in many cases unique identifiers are not needed.

A classical and fundamental problem in distributed algorithms is the leader
election problem. The main purpose of our paper is to study the leader election
problem in the framework of homonyms processes and determine in which way
identifiers are needed. In this paper we restrict ourselves to ring topologies (of
known or unknown size). We give necessary and sufficient conditions on |L| the
number of identifiers enabling to solve the leader election problem.

From years, many results have been proved concerning the leader election
problem depending on the network topology (e.g. [2,5,7,22,23]). Clearly some
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of our results, in particular impossibility results, in the framework of homonyms
may be deduced from those results. Nevertheless the results and algorithms
given in this paper are rather simple and neat. Moreover they depend only on
the number of identifiers and not on their layout.

More than thirty years ago it has been proved that with anonymous processes
there is, in general, no deterministic solution for the leader election problem [2].

To avoid impossibility results, randomization is a well known technique to
break symmetry and randomized election algorithms have been considered on
a variety of network topology (e.g. ring, tree, complete graph) in, for example,
[1,17,21], but in this paper we do consider only deterministic algorithms.

The main purpose of our work is to study how to break symmetry with
homonymous and not the properties of communication graphs. Hence we restrict
ourselves to leader election in (bidirectional) rings with homonyms.

Concerning anonymous processes in rings, Dijkstra [13] observed that, with
a particular communication model called central demon, a deterministic leader
election algorithm cannot exist if the ring size is a composite number. Several
papers [6,16] present leader election algorithms for anonymous rings of prime
size with some kinds of demons. In this paper we consider asynchronous mes-
sage passing and with this model of communication it is easy to verify that
no deterministic election algorithm is possible with anonymous processes. On
the other hand, if each process has its own identity the election on a ring is
easy. Between these extremes, weakening anonymous condition with homonyms
processes, it is interesting to determine how many identifiers are sufficient and
necessary to have a deterministic election algorithm.

More precisely we directly prove that there are deterministic solutions for
election on a ring if and only if the number of identifiers is strictly greater than
the greatest proper divisor of the ring size and we explicitly give a solution. For
example, if the ring size is a prime number, then there is a deterministic election
algorithm if and only there are at least two identifiers.

An interesting point is the fact that this necessary and sufficient condition
on the number of identifiers holds even if the ring size is not known by processes
when we consider deterministic message terminating algorithms (i.e. processes
do not terminate but only a finite number of messages are exchanged). More-
over in the last section when the number of identifiers is known, we propose
a deterministic process terminating election algorithm exchanging 0(n log(n))
messages. This message complexity is clearly optimal [19].

2 Model and Definition

We consider a distributed message-passing system of n processes (n ≥ 2). There
are neither process failures nor link failures. In the following, we establish some
results assuming that process knows n and some results without this knowledge.
Each process gets an identifier from a set of identifiers L = {1, 2, . . . , l}. We
assume that each identifier is assigned to at least one process, that knows it, but
some processes may share the same identifier. Processes with the same identifier
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have the same deterministic algorithm. In our paper, we sometimes refer to
individual processes using names like p, but these names cannot be used by the
processes themselves in their algorithm. The identifier of a process p is denoted
Id(p).

Message-passing communication between processes is asynchronous. Processes
are organized in a bidirectional ring, so that a process can send messages to its
two neighbors. The communication channels are reliable and Fifo. The distance
from p to q, say d(p, q), is 1 plus the number of processes between p and q in the
clockwise ring. Note that if p0, ..., pk−1 are any k different processes in the ring
∑i=k−1

i=0 d(pi, pi+1 mod k) = n
A sequence of n identifiers represents a ring of size n. For example < 1, 2, 3, 3,

1, 2, 3, 3 > is the ring of Fig. 1. All rotations or reflections of this sequence rep-
resent the same ring (i.e. < 2, 3, 3, 1, 2, 3, 3, 1 > denotes also the ring of Fig. 1).

We consider the leader election problem. Each process has a boolean variable
Leader and a process is elected if its variable Leader is equal to true.

Definition 1. A process p is a leader if eventually it is elected forever: there is
a time τ after which the variable Leader of p is forever equal to true.

An algorithm solves the leader election problem if there is a unique leader.
We consider two variants of this problem process-terminating and message-
terminating. In the case of process-terminating, eventually all processes termi-
nate, in a case of message-terminating, eventually there is no message exchanged.

Definition 2. An algorithm solves process-terminating leader election problem
for n processes if for any ring of size n: (1)(leader) there is a unique leader, and
(2)(process-terminating) eventually all processes terminate.

Note that process-terminating leader election problem is equivalent to the
problem where each process takes an irrevocable decision to be leader or not.

Definition 3. An algorithm solves message-terminating leader election problem
for n processes if for any ring of size n : (1)(leader) there is a unique leader,
and (2)(message-terminating) eventually there is no exchanged message.

Definition 4. If x is an integer, the greatest proper divisor of x, gpd(x), is the
greatest divisor of x excluding x itself.

Note that if x is prime, gpd(x) = 1. From this definition we get:

Proposition 1. If x ≥ 2, then x/gpd(x) ≥ 2.

3 Impossibility Results

To strengthen our results, we prove them when the communication is synchro-
nous. So we can assume that we have a round model in which in each round a
process (1) may send a message to its two neighbors, (2) waits δ (during this
time it receives the messages sent by its neighbors if any), and (3) computes its
new state according to its current state and the received messages.
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3.1 Size n Known by Processes

The following result can be deduced from [5,8,22], but in our case it is easier to
show it directly.

Theorem 1. Assuming that n is known by all processes and |L| ≤ gpd(n),
process-terminating leader election for n processes is unsolvable.

Fig. 1. An example: n = 8, |L| = 3.

Proof. We show this theorem by contradiction. Assume that there exists an
algorithm Alg that solves process-terminating leader election problem for n
processes. We construct a ring of size n in which process terminating leader
election problem is unsolvable. If |L| = 1, all processes have the same identifier
and we are in an anonymous system. From the classical result [2], process ter-
minating leader election is unsolvable in an anonymous ring and in synchronous
case. Thus the proposition holds. Now, consider that |L| ≥ 2.

Let k be gpd(n). We call a k-segment a sequence of k processes positioned
in the clockwise direction as follows: the process with identifier 1 is positioned
at the first position of the segment, the process with identifier 2 at the second
position of the segment,..., process having identifier (|L| − 1) at the (|L| − 1)th
position of the segment. k − |L|+1 remaining processes having identifier |L| are
positioned from the |L|th to the kth position. We can construct a ring of size
n by n/k continuous segments. They are symmetrically distributed in the ring.
For example, n = 8, |L| = 3 (see Fig. 1).

It is straightforward to verify, by induction on the number of rounds, that in
every round, the n/k processes with the identical positions on the segments are
in identical states. (All processes with identical positions on the segments have
the same identifier, they start in the same state and execute the same code).

Consider the round τ , at which all processes have terminated, they end up
in the same state.

If one process in some segment is leader then every process with the identical
position of another segment is also leader. Then n/k processes are leader. By
Proposition 1, n/k is greater than 2, contradicting the fact that Alg solves the
leader election problem and we must have a unique leader.
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Theorem 2. Assuming that n is known by all processes and |L| ≤ gpd(n),
message-terminating leader election for n processes is unsolvable.

Proof. We show this theorem by contradiction. Assume that there exists an algo-
rithm that solves message terminating leader election problem for n processes.
The proof is the same that the proof of Theorem1 but instead of considering the
round τ , at which all processes have terminated, we consider the round τ after
which no message are exchanged.

3.2 Size n Unknown by Processes

If n is unknown, that means that the algorithm for a process with some identifier
is the same for any values of n.

Theorem 3. Even if |L| > gpd(n), there exists no algorithm for process-
terminating leader election if the processes don’t know the ring size.

Proof. Assume there is an algorithm Alg that solves process-terminating leader
election for n processes.

Let S =< i1, i2, ...., in > be a ring of size n, consider an execution e of Alg
on this ring. By hypothesis, there exists r such that after r rounds all processes
have terminated and exactly one process in S is leader.

We consider the ring S′ =< j1, ...., jm > of size 2n that is composed by
< i1, i2, ...., in > 2 times. s1, s2 denotes these 2 segments. Consider now an
execution of Alg on S′. After r rounds, the kth process of segment s1 and the
kth process of segment s2 is at each end of round in the same state that the
kth process of S in the execution e. Then after r rounds, all processes in s1 and
s2 terminate. As in execution e there is exactly one leader, in the execution of
Alg on S′ there are at least 2 leaders contradicting the fact that Alg solves the
leader election problem.

4 Deterministic Leader Election with Homonyms

4.1 The Simple Protocol

The model we consider in this subsection is essentially a model of population
protocol [3], the only difference is that here the state of an agent is an integer
and hence an agent is not a finite state automaton. We present a very simple
election protocol in this model.

In the simple protocol we consider a set, A, of fully anonymous agents, each
agent a is described by an automaton. The state of an agent is an integer initial-
ized at some value va > 0 for agent a. As in population protocol, two agents may
meet together, in this case if agent a meets agent b then they both change their
states following the rule R (sx denote the state of agent x before the meeting
and s′

x the state for agent x after the meeting):

if sa > sb then s′
a = sb + sa and s′

b = 0
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If sa = sb the states of the agents are not modified.
A global state, S of the system is the states of each agent: for global state S

and agent a, S(a) is the value of sa in this state.
Let V = Σa∈Ava. An easy induction proves that the sum of the states of

each agent is invariant, hence for each global state S of the system, we have
Σa∈AS(a) = V .

On the other hand, assuming that each agent meets infinitely often all the
other agents, it is easy to verify that eventually a global state will be reached such
that all agent states are either equal to 0 or to some common value M . Moreover
after such a global state T , any meeting between agents will not change T . Hence,
the protocol converges to a global state T such that there is a M for all a ∈ A
we have T (a) = M or T (a) = 0.

Remark that M ≥ max{va|a ∈ A}. If Lead is the set of agents with state
equal to M in global state T , then from the invariant (Σa∈AS(a) = V ) we deduce
M × |Lead| = V and hence M and |Lead| divide V .

To summarize:

Lemma 1. The simple protocol converges to a global state T such that there
is an integer M and a set Lead of agents such that for all a ∈ Lead we have
T (a) = M and for all a ∈ A \ Lead we have T (a) = 0.

The set Lead may be considered as the set of the leaders and:

Lemma 2. The simple protocol is a leader election if and only if max{va ∈
A} > gpd(V ). Moreover the state of the leader is equal to V .

In particular, if V is prime and there are at least two agents a and b such that
va �= vb, then Lead is a singleton and hence the simple protocol is a leader
election.

4.2 Message-Terminating Leader Election in a Ring
with Homonyms

Assuming that the number of identifiers is strictly larger than the greatest proper
divisor of the ring size, we propose a message-terminating leader election in a
ring of unknown size with homonyms. The algorithm is described in Fig. 2.

Consider a ring of n processes with homonymous processes and let L be the
set of identifiers. Assuming that the ring is oriented, in the following, next (resp.
previous) will denote the next process (resp. previous process) for the clockwise
direction.

We first give some intuitions about the algorithm. Roughly speaking, the
algorithm realizes in parallel leader elections for each set of processes having
the same identifier. These elections are based on the same principles as in the
simple protocol and when the election converges the chosen processes have an
estimate est of the ring size. For each identifier i, at least one process (but
perhaps several) is eventually elected, and eventually each leader for identifier l
has the same estimate est of the ring size. Moreover, these estimates of the ring
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var: Id, state = active, est = 0, Leader = false, ∀i ∈ L L[i] = 0;
1 procedure Compute()
2 begin
3 /* compute distance to the next active process with identifier Id*/
4 send(right, Id) to next
5 receive(ALeft, Id, v) from next
6 est = v
7 /* compute distance to the previous active process with identifier Id */
8 send(left, Id) to previous
9 receive(Aright, Id, v) from previous
10 leftest := v
11 if est < leftest then
12 state = passive
13 send(restart) to next
14 send(restart) to previous
15 else if est = leftest then send(publish, Id, est) to next
16 end of procedure

initially
17 Compute()

messages
18 on receive(left, i) from previous
19 if state = active ∧ i = Id then send(ARight, i, 1) to previous
20 else send (left, i) to next
21 on receive(right, i) from next
22 if state = active ∧ i = Id then send(ALeft, i, 1) to next
23 else send (right, i, v) to next
24 on receive(Aright, i, v) from previous ∧(state = passive ∨ i �= Id)
25 send(ARight, i, v + 1) to next
26 on receive(Aleft, i, v) from next ∧(state = passive ∨ i �= Id)
27 send(Aleft, i, v + 1) to previous
28 on receive(restart)
29 Compute()
30 on receive(publish, i, v)
31 if L[i] < v then
32 L[i] = v
33 send(publish, i, v) to next
34 (∗, j) = max{(L[j], j)|j ∈ L}
35 if (j = Id) ∧ state = active
36 then Leader = true
37 else Leader = false

Fig. 2. Message-terminating leader election algorithm for identifier Id.

size are strictly lower than n if more than one leader is elected, and is equal to
n when there is only one leader for identifier i.

We now describe more precisely the leader election for processes with the
same identifier i. A process is initially active and may become definitely passive.
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Only an active process may be a leader. Each active process having i as identifier
computes the distance to the next (Lines 3–6) and the previous (Lines 8–10)
active process with the same identifier. This computation is easy: a process p with
identifier i sends a message right and a message left to respectively its successor
and its predecessor on the ring. These messages are retransmitted (in the same
direction) by all passive processes or processes with identifier different from i.
When the first active process with identifier i receives one of these messages it
sends back a message (Aleft, respectively Aright) with a counter to the initiator
of the message. The counter is incremented in each node that retransmits the
message until the message reaches p. When received by p, the counter associated
with a message Aleft gives the distance between p and the next active process
with identifier i. This distance is recorded by p in its variable est. In the same
way, p will get the distance to its previous active process and stores it in variable
leftest.

If the estimate est is strictly lower than leftest then p becomes passive
(Line 11) and sends message restart to next and previous active processes with
identifier i (Lines 13 and 14) these messages lead to a computation of the dis-
tances for these processes (Lines 28–29).

The point is here that the behaviour of the nodes emulates the simple proto-
col. For this, considering the ring with the processes having the same identifier
i, and let the state sp of p for the simple protocol be the value of est for p. We
obtain an emulation of the simple protocol. Indeed, as est is the distance to the
next process with identifier i, the sum of all the sp is equal to n. When a process
becomes passive we may consider that it sets sp to 0 and that the previous active
process q updates sq to sq + sp. Hence the moves of the algorithm emulate the
rule R of the simple algorithm.

From Lemma 1 the election for identifier i stabilizes to a set Lead of processes
that we call leaders for identifier i, of agents having the same estimate est.
Moreover, if the cardinality of L is greater than the greatest proper divisor of n,
for at least one identifier, say l, from Lemma 2 the leader election for identifier i
eventually gives only one leader for i. It remains to choose one identifier among
the identifiers leading to one leader. This is done by choosing the identifier whose
the estimate is the biggest (using order of identifiers if more than one identifier
is the biggest). Then a process leader with this identifier considers itself as the
global leader (variable Leader Lines 30–37).

An active process with identifier i may be a leader for this identifier only
if the values est and leftest are the same (else the election is not “stabilized”
for this identifier). To collect information about leaders for each identifier, when
est equals to leftest, an active process with identifier i sends a message publish
with its estimation of the ring size (Line 15) that will circulate on the ring (in
such a way that at most n messages are generated). All active processes in the
ring maintain an array L containing for each identifier the best estimation of
the ring size. Then each active process chooses (s, i) as the max among all the
(T [j], j) (ordered by (a, b) < (a′, b′) if and only if a < a′ or a = a′ and b < b′)
and considers itself as the (global leader) if its identifier is i.
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Proposition 2. If |L| > gpd(n), algorithm of Fig. 2 is a message-terminating
election algorithm with homonyms.

Proof. We only give the main steps of the proof.
Adapting the proof of Lemma1 we get the main Lemma:

Lemma 3. For each identifier i, there is a non empty set Li of processes with
identifier i and there is v > 0 such that (1) there is a time after which Li is the
set of active processes with identifier i, (2) v is greater or equal the maximum
of distance on the ring between processes with identifier i, and (3) n = v × |Li|.
Under the condition of this previous lemma, we say that the election on identifier
i converges to Li with estimate v for the size of the ring.

Lemma 4. If the election for identifier i converges to estimate e then for any
estimate est of processes with identifier i, e ≤ est.

If the election for identifier i converges to set Li and p ∈ Li, p eventually sends a
publish message. As publish messages reach all processes with Lemma 4 we get:

Lemma 5. If the election for identifier i converges to estimate e then eventually
at each process L[i] = e.

We say that process p chooses identifier i as leader if after Line 30 for some x
(e, j) = (x, i). Call a process with variable Leader equal to true a winner, and a
process with variable Leader equal to false a looser.

Lemma 6. Eventually all processes choose the same identifier i as leader. Then
eventually all processes with identifiers different from i are forever looser and
only active processes with identifiers equal to i are forever winner.

Lemma 7. If |L| > gpd(n), then for at least one identifier i, there are p and q
with identifier i such that the distance from p to q is greater than gpd(n).

Proof. Indeed let G(i) be the set of processes with identifier i and di(p) be the
distance on the ring to the next process with identifier i (if the next such process
is p itself di(p) = n) clearly

∑
p∈G(i) di(p) = n.

Let M = {i ∈ L|max{di(p)|p ∈ G(i)} > gpd(n)}. By contradiction assume
that M = ∅, then for all i ∈ L:

∑
p∈G(i) di(p) = n ≤ gpd(n) · |G(i)|. Thus

gpd(n) · n = gpd(n) · (
∑

i∈L
|G(i)|) =

∑

i∈L
gpd(n) · |G(i)| ≥ |L|n

Hence gpd(n) ≥ |L| a contradiction.

Then from Lemma 3:

Lemma 8. If |L| > gpd(n) then for at least one i ∈ L the election converges to
a singleton with estimate n.
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From Lemmas 8 and 6, we deduce that eventually only one process is winner and
all other processes are looser. A simple verification enables to proves that only a
finite number of messages are exchanged, finishing the proof of the proposition.

If n, the ring size, is known algorithm of Fig. 2 may easily be changed to get
a process-terminating leader election algorithm. Essentially for each identifier
active processes verifies that there is only one leader for the identifier by sending
a message Probe. Details are given in Fig. 3.

/* replace Line 15 of Algorithm of Figure 2 */
if (est = leftest) then

if est = n then send(publish, Id, n)
else send(Probe, Id, est, true, 1) to next

/* replace Line 30 to 37 of Algorithm of Figure 2 */
on receive(publish, i, v)

L[i] = v
if ∀k ∈ L L[k] �= 0 then

if (Id = max{j ∈ L|L[j] = n}) ∧ (state = active) then
Leader = true
send(Terminate)
terminate

send(publish, i, v) to next

/* code for messages Terminate */
on receive(Terminate)

Leader = False
send(Terminate)
terminate

/* code for messages Probe */
on receive(Probe, i, v, b, c)

if (c = n) ∧ (b = true) then send(publish, i, v)
else if (c < n) then

if ((Id �= i) ∨ (state = passive)) then send(Probe, i, v, b, c + 1) to next
else

if est = v then send (Probe, l, v, b, c + 1)
else send (Probe, i, v, false, c + 1)

Fig. 3. From message-terminating to process-terminating.

Proposition 3. If |L| > gpd(n) and n is known by processes, algorithm of Fig. 3
is a process-terminating election algorithm with homonyms.

Remarks. It is only for simplify the code that we refer in the algorithm to L. L
is used only in algorithm Fig. 2 for array L indexed by identifiers in Lines 30–34.
Instead of array L it is possible to deal with an ordered list without a pri-
ori knowledge of the set of identifiers. Hence we get a deterministic message-
terminating election algorithm with neither the knowledge of the ring size neither
the knowledge of the number of identifiers.
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In the same way, if |L| > gpd(n), if n is not a prime number, n is lower
or equal to |L|2. With the knowledge of |L| we get a bound on n, it is easy
to adapt the algorithm of Fig. 3 in such a way we obtain process-terminating
election algorithm with only the knowledge of |L|.

5 A Process Terminating Leader Election Algorithm
with O(n × log(n)) Messages

5.1 Definitions

We encode in a multi-sequence, a number of processes and a set of identifiers.
A multi-sequence is a sequence ((a1, i1), (a2, i2), ..., (au, iu)), where for each 1 ≤
h ≤ u, ih is an identifier, ah is the multiplicity of ih, and i1 < i2 < ... < iu. For
a multi-sequence I = ((a1, i1), (a2, i2), ..., (au, iu)), Id(I) = {i1, i2, ..., iu} and
nb(I) = a1 +a2 + ...+au. We define a total order on such multi-sequences. Given
two sequences I = ((a1, i1), (a2, i2), ..., (au, iu)) and J = ((b1, j1), (b2, j2), ...,
(bv, jv)), we say that I < J if

– it exists k ≤ min{u, v} such that
• for every 0 ≤ h < k: iu−h = jv−h and au−h = bv−h

• iu−k < jv−k or (iu−k = jv−k and au−k < bv−k)
or

– u < v and for every 0 ≤ h < u: iu−h = jv−h and au−h = bv−h

It can be easily verified that we have defined a total order between multi-
sequence. In the following <> denotes the empty multi-sequence and ⊕ is the
operator adding an element to a multi-sequence.

5.2 Algorithm

Our leader election algorithm uses a similar approach to the ones in [15,20],
where processes have distinct identifiers. Recall that in their algorithms, each
process is initially active. Processes that are passive, simply forward the message
they receive. At each step, an active process sends a message with its identifier to
its both neighbors and receives messages from its both nearest active neighbors.

If one of the received messages contains an identifier greater than its own
identifier then it becomes passive. Otherwise, it starts a new step. If a process
receives its own message (i.e. a message with its own identifier) then the process
becomes leader. The algorithm terminates after O(log(n)) steps, and each step
requires 2n messages.

In our algorithm, we keep the idea that each process is initially active and,
at each step, each remaining active process p will exchange messages with its
two nearest active neighbors and it will determine if it becomes passive (as for
the previous algorithm).

But to determine if a process p becomes passive we use not only the identifiers
of its two nearest active neighbors q and s but also the distances d(p, q) and
d(p, s) and the identifiers of the processes between p and q and p and s.
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We encode these two last information in multi-sequence and we use the total
order on these multi-sequences.

The algorithm ensures that p and q are active and neighbors then the infor-
mation they get each other are the same: if p receives from its left (Id(q),DL)
then q receives from its right (Id(p),DR) with DR = DL.

After the exchange of messages, p compares (Id(q),DL) and (Id(s),DR) that
it received from its two nearest active neighbors. If the number of processes
between itself and its neighbors is the size of the ring, this process is the only
active process. Then it is the leader. It sends a message STOP in order that all
passive processes terminate and it terminates. If the number of processes between
itself and its neighbors is different from the ring size, the process becomes passive
if (1) Id(p) < Id(q) or Id(p) < Id(r) or (2) if Id(p) = Id(q) = Id(s) and (DR <
DL or DR = DL) (condition (2) is an adaptation for homonyms). Otherwise, it
remains active and starts a new step.

If we consider three consecutive active processes by the previous rules at least
one of them become passive. In each step, at least a third of active processes are
hence eliminated. By repetitive application of these rules eventually it remains
only at most one active process (the ring structure ensures that if two processes
are active at least one will be eliminated). Thus after O(log(n)) steps, it remains
at most one process.

But we have to avoid that all processes become passive. The fact that |L| is
greater than the greatest proper divisor of n ensures that it is impossible that
there is a subset of processes with the same identifier such that the distance
between them is the same and the set of identifiers of processes between them
are the same (see Lemma 10).

Thus, the algorithm will finish with only one active process. The algorithm
is described in more details in Fig. 4.

We give below the main steps of the proof of this theorem and we sketch their
proofs. By abuse of language we say that a process is active (resp. passive) if its
status variable is active (resp. passive). As channels are FIFO, a computation
of an active process can be decomposed in (asynchronous) rounds. As long as a
process is active and has not terminate, it executes a round: it waits to receive
messages from the left and the right and computes its new state after receiving
them. We name sr

p the state of p after r rounds. Let s0
p denotes the initial state.

If a process is terminated or passive in sr
p then for all r′ greater than sr′

p = sr
p.

Directly from the algorithm we have:

Lemma 9. If process q is active at sr
q and p is its the nearest active right neigh-

bor (i.e. the nearest right neighbor p such that p is active in sr
p) then if q receives

Dq
R from its right and p receives Dp

L from its left then Dq
R = Dp

L.

Lemma 10. Let G be a subset of processes with the same identifier, there do
not exist a set of identifiers I and an integer x such that for any two processes
p and q of G, there are x processes between p and q and the set of identifiers of
processes between p and q is I.
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Code for a process with identifier i

1 status = “active”
2 Leader = false
3 send(i, <>, 1) in both directions

4 for ever
5 if status = “passive” then

6 wait until received a message:
7 On receiving (j, D):
8 send(j, D⊕ < i >) in the same direction

9 On receiving (STOP ):
10 send(STOP ) in the same direction; halt

11 if status = “active” then

12 wait until received a message from the left and the right:
13 assume that (jR, DR) came from right and (jL, DL) came from left
14 if nb(DR) = n then Leader = true; send(STOP ) to left; halt
15 else if (i < jR or i < jL) or (i = jR = jL and (DR < DL or DR = DL ) )
16 then status = “passive”
17 else send(i, <>, 1) in both directions

Fig. 4. O(n log(n)) algorithm for process terminating leader election

Proof. Assume that there exists a subset G of processes with the same identifier,
a set of identifier I and an integer x such that for any two processes p and q of
G, there are x processes between p and q and the set of identifiers of processes
between p and q is I. Note that x ≥ |I|. We have n = |G| ∗ x, then (1) x is a
divisor of n. As for each identifier, the ring contains at least one process with
this identifier, we get I = L.

Then x ≥ gpd(n), with (1) this implies that G contains only one process.

Lemma 11. For all r, there is at least one process p active in sr
p.

Proof. We show this property by induction, it holds trivially for r = 0. Assume
it is true until r − 1. Assume for contradiction that all processes become passive
in r. Let G be the set of processes that changes its state from active to passive
in round r.

If G contains at least two processes with a different identifier, we consider
the subset H of G that contain the processes with the greatest identifier. As
there is a process in G with another identifier, there is at least one process in H
that has from right active neighbor a process in H \ G. From condition line 15,
this process remains active.

If all processes in G have the same identifier, by Lemma 10, for at least one
process we have DL > DR. From condition Line 15, this process remains active.
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Lemma 12. For r > 0, let x = |{p|p is active in sr−1
p }|, we have |{p|p is active

in sr
p}| ≤ (2/3) ∗ x + x mod 3.

Proof. Consider the set {p|p is active in sr−1
p }) and x = |{p|p is active in sr−1

p }|.
We split this set in sets of three processes that are neighbors in the ring (it
remains x mod 3 processes). Consider some sets of three processes {p, q, v} and
assume that p is the left neighbor of q and x its right neighbor.

If p and q or q and v have not the same identifier then the process with the
smallest identifiers become passive. Let Dq

R and Dq
L the values that it receives

from its nearest active neighbors. If they have the same identifier, q remains
active only if Dq

R > Dq
L but in this case by Lemma 9, p becomes passif.

Lemma 13. For r > 0, let |{p|p is active in sr−1
p }| = 2, we have |{p|p is active

in sr
p}| = 1.

Proof. It remains two active processes, let p and q be these processes.
If p and q have not the same identifier then the process with the smallest

identifiers become passive. Let Dq
R and Dq

L the values that it receives from its
nearest active neighbors. If p and q have the same identifier, q remains active
only if Dq

R > Dq
L but in this case by Lemma 9, p becomes passive.

From Lemmas 11, 12 and 13, we deduce that eventually it remains only one
active process. Directly from the algorithm this process becomes leader and
propagates the termination by sending a STOP messages.

Theorem 4. If n is known by processes and |L| > gpd(n) then there exists
an algorithm that solves process terminating leader election with O(n log(n))
messages.

6 Concluding Remarks

Given a ring of size n, gpd(n) identifiers are needed to have a deterministic
election algorithm. If n is a prime number then two identifiers are sufficient,
but in the worst case when n is even n/2 (hence O(n)) identifiers are needed.
Moreover, if there is a deterministic solution for leader election, then we do
not have any penalty: there is an election with the same order of number of
exchanged messages as when all processes have their own identity. Then limiting
the number of identifiers without avoiding the existence of deterministic election
algorithm is mainly interesting if some properties of the size ring are known (e.g.
this size is a prime number).

The leader election problem has been studied in framework similar to
homonyms: [5,7,8,22,23] consider “partially anonymous”, [14] “nonunique label”
and [18] “partially eponymous”. Some of the results in these papers are similar
to the ones we present here but we present our results, restricted to the ring
topology, in term of number of process identifiers rather than properties of the
general communication graph. Even if [14] concerns rings with asynchronous
communication, our algorithm, with our conditions on |L| gets the optimality in
term of messages that is not achieved in a more general framework by [14].
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4. Arévalo, S., Anta, A.F., Imbs, D., Jiménez, E., Raynal, M.: Failure detectors in
homonymous distributed systems (with an application to consensus). In: ICDCS,
pp. 275–284 (2012)

5. Boldi, P., Shammah, S., Vigna, S., Codenotti, B., Gemmell, P., Simon, J.: Sym-
metry breaking in anonymous networks: characterizations. In: ISTCS, pp. 16–26
(1996)

6. Burns, J.E., Pachl, J.K.: Uniform self-stabilizing rings. ACM Trans. Program.
Lang. Syst. 11(2), 330–344 (1989)

7. Chalopin, J., Godard, E., Métivier, Y.: Election in partially anonymous networks
with arbitrary knowledge in message passing systems. Distrib. Comput. 25(4),
297–311 (2012)

8. Chalopin, J., Métivier, Y., Morsellino, T.: Enumeration and leader election in par-
tially anonymous and multi-hop broadcast networks. Fundam. Inform. 120(1),
1–27 (2012)

9. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

10. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A.-M., Ruppert,
E., Tran-The, H.: Byzantine agreement with homonyms. In: PODC, pp. 21–30.
ACM (2011)

11. Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Byzantine agreement with
homonyms in synchronous systems. In: Bononi, L., Datta, A.K., Devismes, S.,
Misra, A. (eds.) ICDCN 2012. LNCS, vol. 7129, pp. 76–90. Springer, Heidelberg
(2012)

12. Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Homonyms with forgeable iden-
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