
Chapter 2
Regression Discontinuity Design: When Series
Interrupt

Abstract This chapter introduces the identification and estimation of policy effects
when outcome variables can be ordered according to a given variable and when the
treatment occurs at a given point. The structural change occurring in the outcome
variable is in such a case assumed to be the effect of the policy. The assumptions
behind Regression Discontinuity Design are hence discussed alongside with exten-
sions for heterogeneous effect.

Keywords Regression discontinuity design · LATE · Heterogeneous LATE ·
Geographical discontinuities

2.1 Introduction

The evaluation of policies is driven by the identification of the causal effect of inter-
ventions by considering an exogenous variation in the assignment to the treatment.

When observed units can be ordered according to a running variable and then the
treatment is assigned above a given threshold, a Regression Discontinuity Design
(RDD) can be used. A policy introduced at a given point in time has time as a running
variable and the day/month of the introduction as the threshold. European Union
Cohesion Policy is particularly generous toward Objective 1/convergence regions,
i.e. those regions with a GDP per capita lower than 75 % of EU average. In this
case GDP per capita is the running variable (i.e. the variable used to order regions
according to their GDP), whereas 75 % of the EU average is the threshold.

The discontinuity design relates to situations where the probability of enrolment
into treatment changes discontinuously with some continuous variable. In particular,
in sharp design, the probability of receiving the treatment is 1 below a given threshold
and 0 above (or vice versa), that is P(T = 1|x < x∗) = 1 and P(T = 1|x ≥ x∗) = 0
in the case the forcing variable is x and the threshold is x*. In fuzzy design, the
probability of receiving the treatment increases (or decreases) with x and shows a
discontinuity at the given point x*, that is 1 > P(T = 1|x < x∗) > P(T = 1|x ≥
x∗). In this case, the selection variable influences but does not completely determine
participation in the treatment. In other words, the jump at x* is smaller than 1.
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In sharp design, the implicit assumption is that the assignment process is driven
only by the observable x, so that the discontinuity creates a randomized experiment
around the threshold x*. Units on the two sides of the threshold but close to it are
expected to be very similar. A difference in their outcomes can within reason be
attributed to the treatment:

AT T = E(Y |x ∈ [x∗, x ∗ +δ]) − E(Y |x ∈ [x∗, x ∗ −δ])

However, the discontinuity only identifies the effect at x* and only for “small
values” of δ (i.e., for δ → 0), RDD can reasonably estimate the effect of a policy,
that is, RDD estimates a local ATT.

2.2 The Basic Framework

RDD allows for taking into abbount of observed as well as unobserved heterogeneity
in the estimation of the treatment effect when there is an eligibility rule for the
treatment based on an observable variable x. Indeed, the principle underlying this
strategy is that observations just below and above the threshold are likely to be very
similar to each other with respect to observed and unobserved characteristics, except
for the outcome. Therefore, the mean difference in the outcomes can be attributed to
the treatment effect. This average treatment effect (ATE) sacrifices external validity
by focusing only on observations close to the cut-off point.

Regression discontinuity may be sharp if the eligibility rule is strictly adhered so
that given the threshold level x∗, the probability of treatment T is P(T = 1|x <

x∗) = 1 and P(T = 1|x > x∗) =0. Whenever the rules are not applied sharply, the
RDD is said to be fuzzy.

More formally, let y0 and y1 denote the counterfactual outcomes without and with
treatment T, let x be the forcing variable and consider the following assumptions:

A1. E(yg|T, x) = E(yg|x), g = 0, 1
A2. E(yg|x), g = 0, 1is continuous at x = x∗
A3. P(T = 1|x) ≡ F(x) is discontinuous at x = x∗, i.e. the propensity score of the

treatment has a discrete jump at x = x∗.

In the fuzzy RDD the discontinuity is used as an instrumental variable for treatment
status. Following Imbens and Lemieux (2008) the goal is to estimate the parameter
ρ on treatment with the following form form:

yi,T = θ + ρTi + f (x̃i,T ) + ηi (2.1)

where yi,T is in our case the outcome of region i whose treatment status is T, θ is a
constant, x̃i,T is the forcing variable properly normalized. Consequently, ρ expresses
the impact of the treatment at xi,T = x0. The f (x̃i,T ) term is a p-th order parametric
polynomial the parameters of which are allowed to differ on the left and the right of
the cut-off point (Angrist and Pischke 2009) in order to account for non-linearity in
the outcome variable. Lastly ηi is an error term.
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Applying OLS estimation to Eq. (2.1) will lead to a biased estimate of the treatment
effect in the case of fuzziness of the treatment variable (Imbens and Lemieux 2008;
Lee and Lemieux 2010). The treatment dummy T can be instrumented by a first stage
regression which takes the form of :

Ti = α + β Ri + f (x̃i ) + εi (2.2)

where α , β, δ are unknown parameters and εi and νi are disturbances. The variable
Ri denotes the treatment that the unit would have been assigned had the eligibility
rule been strictly followed.

In order to have a causal interpretation of the 2SLS the instrument Ri must
affect the treatment (Cov(Ri Ti ) �= 0 ), and it must fulfil the exclusion restriction
Cov(Ri ηi ) = 0 . The last assumption is that the instrument Ri is independent
of the vector of potential outcomes and potential treatment assignments, formally
[yi (T, R)∀T, R, Ti,0, Ti,1]⊥Ri .

2.2.1 Example: The Effect of the Point-Record Driving License
on Car Accidents

The penalty points system is a mechanism introduced in Italy on Tuesday 1 July
2003. Each driver was initially awarded 20 points: in the case of infringement of
the rules of the road the driver will lose some points and will have to pass a theory
test and a driving test, should they lose all their points (the loss of all points cause
the automatic termination of the driver’s license). The number of points deducted
from the license was established by law and varied depending on the severity of the
infringement.

Let us assume evaluation of the introduction of the policy in terms of accidents. In
this case, our running variable is time, so that we can order observations according to
their temporal occurrence. Our approach for estimating the effect of the introduction
of the point-record driving license consists of estimating an eventual break in the
trend of road accidents in correspondence of the policy adoption in July 2003. In
particular, we make use of monthly data; as such our estimation is complicated by
seasonality. To deal with this issue, we can estimate the following general model:

accidentsmt =
11∑

m=1

dm + αtrendt + β Imt + Imt

(
11∑

m=1

dm + αtrendt

)

where the dependent variable accidentsmt indicates the number of accidents occur-
ring in month m in year t ,

∑11
m=1 dm is a full set of month-specific dummy variables

used to take into account seasonality in the data, trendt is a time trend and Imt is
a a dummy variable taking the value of 1 after July 2003 and 0 otherwise, hence
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it indicates an eventual departure from the trend occurring after the point-record

driving license was implemented. Element Imt

(∑11
m=1 dm + αtrendt

)
indicate that

parameters to be estimated are allowed to change on the left and on the right of
the threshold represented by July 2003. Finally, the equation is also estimated by
considering quadratic trend, in order to deal with possible confoundedness with the
parameter of interest β due to non-linearity. Concerning our dependent variables, we
will make use of either the monthly number of deaths, of injuries or the total number
of accidents over the period 1991–2009.

Table 2.1 reports monthly averages for our three outcome variables. No effect of
the policy is reported for the total number of accidents and injuries, whereas a drop
of about 20 % is observed in the case of deaths.

Table 2.2 hence reports OLS estimates for our outcome variables across different
specifications and time period.1 The upper panel, in particular, contains policy impact
estimates when the dependent variable is the total number of accidents. By consider-
ing the pre-treatment average reported in Table 2.1, it emerges that the introduction
of the points-record driving license has reduced the number of accidents by 58–66
per month, a contraction of about 0.22–0.25 % with mild significance in terms of

Table 2.1 Summary statistics

Before the treatment After the treatment

Accidents 25,698.52 26,727.1

Injuries 17,871.38 18,969.54

Deaths 578.6533 437.8205

Table 2.2 Regression estimates (OLS)

Whole sample 1997–2009 With Eurocoin as a control

Accidents

Treatment −58.368** −58.368** −66.776**

(25.060) (25.060) (30.211)

Observations 120 120 120

Injuries

Treatment −49.817** −49.817** −55.385**

(21.590) (21.590) (25.474)

Observations 120 120 120

Deaths

Treatment −40.412*** −41.660*** −51.094***

(4.426) (7.849) (12.306)

Observations 228 156 156

Note Standard errors in parentheses are clustered by month. *** p < 0.01, ** p < 0.05, * p < 0.1

1 For simplicity, we admittedly omit the issue that data are counts and not continuous.
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the parameters. Similar estimates were obtained in the case of injuries. Interestingly,
estimates of the policy impact was more significant and hence more reliable in the
case of fatalities, with a contraction of 41–51 in the number of death cases per month,
corresponding to a decrease of 7.1–8.8 % with respect to the pre-treatment period.

Finally, the third column in Table 2.2 reports estimates when the EUROCOIN
coincident indicator of economic activity was used as a control for the business
cycle. In this case as well, results were almost robust.

Taken together, our estimates point to a significant effect of the policy, i.e. dra-
matically reducing the severity of road accidents, with a small effect in the case of
the number of accidents and injuries.

In particular, our preferred specifications, i.e. those for the period 1997–2009 with
control variables, indicate that the introduction of the points-record driving license
has reduced the number of accidents by about 801 annually, the number of injuries
by 664, and finally the number of fatalities by 612. We can use these estimates to
compute the reduction in the external costs of accident due to the introduction of the
policy. In particular, the “Handbook on estimation of external costs in the transport
sector” proposes, for Italy, a value of life equal to 1,43 million Euros and a cost per
injury in the interval 14,100–183,700 Euros, depending on the severity.

As for injury, as we are not able to detect the severity of the avoided cases, we
will use a rough benchmark value of 50,000 Euros. Given these average costs, the
introduction of the point-record driving license has had a social benefit equal to
875.16 million Euros for avoided deaths and 33.2 million Euros for avoided injuries,
with a total social benefit equal to 908.36 million Euros and a present value, over 20
years with a 3.5 % social discount rate, of 12.9 billion Euros. To be noted is the fact
that this estimate is a lower bound estimate of social benefits as it does not contain
the cost for physical damage to cars.

2.2.2 Example: The Impact of European Cohesion Policy
on Regional Growth

To give a practical example of RDD, in what follows, we will focus on the effect
of Objective 1 transfers in the European Union, so that the eligibility rule is that all
regions with a per capita GDP lower than 75 % of EU average are eligible. In this
example, we will use as an outcome variable regional growth of NUTS3 regions,
although our identification assumption will rely on the fact that the treatment is
assigned at NUTS2 level. In other words, we will instrument the treatment by using
a “theoretical rule of assignment to treatment” to indicate whether or not a NUTS3
region has a GDP per capita lower than 75 % of EU average.

To start our RDD exercise, it is convenient to perform a graphical analysis.
Following Imbens and Lemieux (2008) the forcing variable has been divided into
equally-sized bins of 1.5 % points width to the left and the right of the threshold level.
Figure 2.1 plots the outcome variable (i.e. average growth rate) against the forcing
variable (i.e. per capita GDP in PPP). Furthermore, a 5-th order polynomial is added.
The jump of the outcome variable at the threshold is evident and amounts to about
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Fig. 2.1 Discontinuity of the outcome at the threshold

Table 2.3 Estimates of the effect of cohesion policy (IV)

(1) (2) (3)

Baseline Country FE With controls

Objective 1 0.758*** 1.034*** 0.923***

(0.277) (0.323) (0.317)

Observations 1233 1233 998

R. sq 0.338 0.581 0.575

Note Dependent variable is cumulative growth over the period 1999–2008. In model 1 all specifica-
tions include a 5th order polynomial in the running variable, that is GDP per capita in 1999. In model
2 we include country dummies, and in model 3 we include population density, employment rate,
and the shares of population with secondary and tertiary education, respectively. Robust standard
errors in parentheses. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1

0.8 %. This result suggests that the RDD is a sound approach toward unravelling the
effectiveness of the structural funds in promoting the growth of GDP in relatively
poorer regions of the EU.

Table 2.3 reports our 2SLS estimation for the whole sample and different groups
of regions and different specifications. Model 1 presents the baseline regression
where the dependent variable—the average growth rate of GDP over the period
under analysis, is related to the treatment status. The Objective 1 status seems to a be
significant determinant of the economic performance of NUTS3 regions when the
whole sample is taken into account. To further support the reliability of our results,
model 2 includes controls for country dummies that should account for any distinctive
economic pattern at a national level. Results generally remained consistent with our
previous findings. Finally model 3 accounts for a number of additional controls
that can be considered standard within the existing literature: population density,
employment rate and the share of population with secondary and tertiary education
as a proxy for human capital. Additionally, in this case, results remain unchanged.
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2.3 Regression Discontinuity with Heterogeneous Effects

RDD, as do most of the evaluation tools, estimates an average effect of the pol-
icy, which may hide some interesting heterogeneity driven by certain characteristics
of observed units. In other words (and following previous example), the impact of
cohesion policy may differ across regions according to local characteristics (e.g. the
quality of institutions, economic structure). To deal with this issue, an Heteroge-
neous LATE (HLATE) can be used. More formally, the heterogeneous local average
treatment effect is defined as (Becker et al. 2013):

HLATE(xi = x∗, zi ) = HLATE(x∗, zi ) = E[yi1|x∗, zi ] − E[yi0|x∗, zi ] (2.3)

where the notation is the same as in Sect. 2.2, whilst zi is our interaction variable,
i.e. the one we hypothesize to drive heterogeneity. The identification of the HLATE
in (2.3) needs two further assumptions:

A4. the interaction variable zi is continuous at x∗, the threshold;
A5. the interaction variables zi is uncorrelated with the error term in the outcome

equation, conditional on x∗.

Assuming that the conditional expectation function E[yi |xi , zi ] follows an additive
process, we can express the two potential outcomes as follows:

E[yi0|xi , zi ] = α + f0(x̃i ) + h0(z̄i ) (2.4)

E[yi1|xi , zi ] = E[yi0|xi , zi ] + β + f ∗
1 (x̃i ) + h∗

1(z̄i ) (2.5)

where α is a constant, β is the coefficient of the treatment dummy, x̃i , as before, is
the deviation from the threshold GDP of region i’s GDP while z̄i is the deviation
from the sample mean of region i’s interaction variable. The functions f0(x̃i ), h0(z̄i ),
f ∗
1 (x̃i ) and h∗

1(z̄i ) are sufficiently smooth polynomials. They define f1(x̃i ) and h1(z̄i )

analogously to f0(x̃i ) and h0(z̄i ) but with the treatment switched on. In addition, it
evident that f ∗

1 (x̃i ) = f1(x̃i ) − f0(x̃i ) and h∗
1(z̄i ) = h1(z̄i ) − h0(z̄i ). The equation

for generic treatment status can be written as:

E[yi |xi , zi ] = E[yi0|xi , zi ] + Ti [β + f ∗
1 (x̃i ) + h∗

1(z̄i )]. (2.6)

With this specification, the LATE is given by β whereas the HLATE is given by
β + h∗

1(z̄i ).
If the RDD is sharp then simple OLS can indeed estimate the parameters without

bias using the following specification:

yi = α + f0(x̃i ) + h0(z̄i ) + Ti [β + f ∗
1 (x̃i ) + h∗

1(z̄i )] + εi (2.7)

If the RDD is fuzzy the treatment dummy must be instrumented, for the reasons
already mentioned, against the rule dummy indicating whether region i satisfies the
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eligibility criteria or not, and the exogenous variables of the model, therefore the first
stage of the 2SLS is given by:

Ti = g0(x̃i ) + l0(z̄i ) + Ri [δ + g∗
1(x̃i ) + l∗1 (z̄i )] + νi (2.8)

where all the variables have the same notation and the polynomial functions are
defined as above. Substituting (2.8) in (2.7) we obtained the reduced form for the
fuzzy RDD.

2.3.1 Example: EU Cohesion Policy, Economic Structure
and Regional Growth

In the example in Sect. 2.2.1, RDD was used to estimate a LATE of cohesion policy.
However, as pointed out by Percoco (2013), the effect of regional development poli-
cies is likely to be heterogeneous, depending on local economic structure. In what
follows we will consider the case of the share of the service sector (in terms of the
gross value added, GVA) as an interaction variable.

Table 2.4 shows the summary statistics of the interaction variable. The first three
rows present similar mean and standard deviation, although one sub-sample is dou-
ble the size of the other, whereas the two other sub-samples have similar sizes but
different means highlighting the heterogeneity of the Objective 1 transfers treatment
based on the extent of the service sector. Indeed our example will make use of these
two sub-samples to estimate the impact of the policy.

Results are showed in Table 2.5, the columns of which refer to the degree of
the polynomial in the forcing variable, initial per capita GDP in PPP, while in the
horizontal dimension shows the three different specifications of the polynomial in
the interaction variable, the regional GVA coming from the tertiary sector as a share
of the total regional GVA (SERV). Recall that both variables have previously been
centred, the first at the threshold level while the latter at the sample mean. Estimates
of the parameters of the forcing variable polynomials, i.e. ρ’s, have been omitted for
the sake of clarity and simplicity.

Table 2.4 Summary Statistics of service GVA share at time of commission decision

Sample Observations Mean St. Dv. Min Max

Whole 1,080 0.653 0.096 0.226 0.935

Below threshold 365 0.644 0.093 0.405 0.883

Above threshold 715 0.658 0.097 0.226 0.935

Below sample mean 556 0.579 0.059 0.226 0.653

Above sample mean 524 0.732 0.057 0.653 0.935
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Table 2.5 Objective 1 and tertiary sector: HLATE

3rd order polyn 4th order polyn 5th order polyn

linear SERV (1) (2) (3)

Object1 0.371 0.407 0.534*

(0.226) (0.271) (0.301)

Object1 × SERV −2.429*** −2.392*** −2.396***

(0.812) (0.812) (0.803)

SERV −0.948* 1.302** −1.561**

(0.573) (0.590) (0.609)

Const. 3.627*** 3.639*** 3.848***

(0.197) (0.250) (0.290)

Obs. 1080 1080 1080

R2 0.349 0.354 0.368

quadratic SERV (1) (2) (3)

Object1 0.476** 0.436 0.355

(0.228) (0.285) (0.318)

Object1 × SERV 2.466*** −2.366*** −2.241***

(0.803) (0.806) (0.805)

Object1 × SERV2 −7.134 −7.696 −7.719

(5.747) (5.764) (5.774)

SERV −0.960 −1.242* −1.781***

(0.624) (0.635) (0.663)

SERV2 −0.844 −5.333 −17.69**

(6.240) (6.453) (7.609)

Const. 3.606*** 3.637*** 3.824***

(0.201) (0.264) (0.308)

Obs. 1080 1080 1080

R2 0.350 0.354 0.358

cubic SERV (1) (2) (3)

Object1 0.426* 0.417 0.332

(0.227) (0.286) (0.318)

Object1 × SERV −5.457*** −5.194*** −5.316***

(1.383) (1.390) (1.388)

Object1 × SERV2 −1.305 −2.178 −1.771

(6.221) (6.241) (6.228)

Object1 × SERV3 118.4** 110.4** 122.4***

(46.44) (46.60) (46.67)

SERV −0.787 −0.949 −0.550

(0.864) (0.858) (0.856)

SERV2 −1.573 −3.722 −21.38**

(7.033) (7.181) (8.663)

(continued)
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Table 2.5 (continued)

3rd order polyn 4th order polyn 5th order polyn

linear SERV (1) (2) (3)

SERV3 −15.03 −12.57 −52.51*

(28.16) (27.66) (28.84)

Const. 3.624*** 3.615*** 3.801***

(0.201) (0.263) (0.306)

Obs. 1080 1080 1080

R2 0.354 0.357 0.362

Note Standard errors in parentheses
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

The first striking result was that the treatment, Object1, was not significant per
se, instead its interactions with SERV and SERV3 were very significant, meaning
that there was indeed an heterogeneity of the treatment according to the level of
the SERV variable. Results for Object1 and its interactions remained similar across
the columns, which highlights the different specifications of the polynomial in the
forcing variable, meaning that a higher order of initial GDP cannot explain the impact
of the service share of GVA on the economic growth of the treated regions. The other
striking result was that the interactions had negative sign, meaning that a tertiary
GVA above the mean, centred at 0, reduced the impact of the transfers on the per
capita GDP growth, whereas a service GVA below the mean, i.e. a negative value of
SERV, made the transfers more effective.

As an example let us consider the case in column (3) with a cubic SERV polyno-
mial for a treated region whose level of SERV is 0.1, roughly the same as the sample
standard deviation. This means that the share of GVA is 10 % points higher than
the sample mean causing a disadvantage given by −5.316 ∗ 0.1 − 1.771 ∗ 0.12 +
124.4 ∗ 0.13 = −0.42491 which is not offset by the positive effect of the treatment
alone resulting in a negative growth of 0.332 − 0.425 = −0.93 % points which
represents the HLATE. This case might appear a bit extreme as the sample average
is 0.653 which becomes 0.753 with the additional 10 % points leaving roughly only
25 % of regional GVA to the other two sectors but confronting the data 119 NUTS 3
region out of 474 treated regions are above such level and among these 119 regions
98 comply with the 75 % rule. Nevertheless even with a smaller but positive amount
of SERV the effect is still negative but might be offset by the treatment itself.

2.4 Sensitivity Analysis

In a wide range of scientific matters, sensitivity analysis (SA) plays a crucial role
in evaluating the quality of estimated or calibrated models. In particular, SA esti-
mates variation in the output of a given model following the perturbation of given
parameters. The literature has so far proposed two distinctive approaches to SA:
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(a) Global Sensitivity Analysis (GSA) evaluates the variation in a model’s output
after imposing probability distributions on the model’s parameters and running
simulations;

(b) Local Sensitivity Analysis is similar in spirit to comparative statics as it relies
on the global perturbations of parameters, which are often based on derivatives.

GSA is very close in spirit to Bayesian Model Averaging; it is likely outside of
the scope of this book, but is of interest in verifying the robustness of estimates for
the impact of a policy when relaxing some assumptions.

In this section, we will not provide a complete overview of SA in the context of
policy evaluation. Rather, we will present some interesting features of the LSA in
the context of RDD. Let us consider a sharp RDD:

yi = α + βTi + f (xi ) + εi

Suppose for simplicity that f (xi ) = γ xi , so that the OLS estimate of β is:

β̃ = cov(T, y)

var(T )
− T

var(T )
γ̃ x = β̂ − T

var(T )
γ̃ x

where γ̃ is an OLS estimate of γ and β̂ is a partial OLS estimate of β. Rearranging
previous expression, we have:

β̃ − β̂ = − T

var(T )
γ̃ x

which can be approximated through a Taylor expansion of β̂ perturbated in γ = 0,
i.e.:

β̃ − β̂ = β̂(γ ) − β̂(0) = ∂β̂(γ )

∂γ

∣∣∣∣
γ=0

+ OP

(
1

n

)

so that ∂β̂(γ )
∂γ

= cov(T,x)
var(T )

. The expression for the first derivative of β̂ gives two
main pieces of information:

(a) it provides a quantification of the reaction of β̂ to local perturbations in γ and
that this variation is larger the larger the correlation between T and x ;

(b) suppose that we have several variables as potential candidates for perturbation.
The first derivative may provide a ranking of the most important variables on
the basis of the magnitude of the derivative itself.

It should also be noted that previous derivation of the sentivity of β̂ to γ simply
provided an LSA representation of the omitted variable bias in OLS. However, it
should also be noted that the Taylor expansion representation is more general as,
since although it has been proposed as centred at γ = 0, it might still provide similar
information concerning other values of the parameter (e.g. in cases of measurement
error in x).
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