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Abstract. A frequently mentioned limitation of Monte-Carlo Tree
Search (MCTS) based Go programs is their inability to recognize and
adequately handle capturing races, also known as semeai, especially when
many of them appear simultaneously. The inability essentially stems from
the fact that certain group status evaluations require deep lines of cor-
rect tactical play which is directly related to the exploratory nature of
MCTS. In this paper we provide a technique for heuristically detect-
ing and analyzing semeai during the search process of a state-of-the-art
MCTS implementation. We evaluate the strength of our approach on
game positions that are known to be difficult to handle even by the
strongest Go programs to date. Our results show a clear identification of
semeai and thereby advocate our approach as a promising heuristic for
the design of future MCTS simulation policies.

1 Introduction

Monte-Carlo Tree Search (MCTS) is a class of simulation-based search algo-
rithms that brought about great success in the past few years regarding the
evaluation of stochastic and deterministic two-player games such as the Asian
board game Go. MCTS is a simulation-based algorithm that learns a value func-
tion for game states by consecutive simulation of complete games of self-play
using randomized policies to select moves for either player. MCTS may be clas-
sified as a sequential best-first search algorithm [12] that uses statistics about
former simulation results to guide future simulations along the search space’s
most promising paths in a best-first manner. A crucial part of this class of search
algorithms is the playout policy used for move decisions in game states where
statistics are not yet available. The playout policy drives most of the move deci-
sions during each simulation. Moreover, the simulations’ final positions are the
main source of data for all remaining computations. Accordingly, for the game of
Go there exists a large number of publications about the design of such policies,
e.g., [3,4,7]. One of the objectives that playout designers pursue focuses on sim-
ulation balancing to prevent biased evaluations [7,8,13]. Simulation balancing
targets at ensuring that the policy generates moves of equal quality for both
players in any situation. Hence, adding domain knowledge to the playout policy
for attacking also necessitates adding domain knowledge for defending. One of
the greatest early improvements in Monte-Carlo Go was the idea of sequence-like
playout policies [7] that highly concentrate on local answer moves. They lead to a
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highly selective search. Further concentration on local attack and corresponding
defense moves ameliorated the handling of some types of semeai and hereby con-
tributed to additional strength improvement of MCTS programs. However, by
adding more and more specific domain knowledge with the result of increasingly
selective playouts, the door is opened for more imbalance. This in turn allows for
severe false estimates of position values. Accordingly, the correct evaluation of
semeai is still considered to be quite challenging for MCTS-based Go programs
[11]. This holds true, especially when they require long sequences of correct play
by either player. In order to face this issue, we search for a way to make MCTS
searchers become aware of probably biased evaluations due to the existence of
semeai or groups with uncertain status. In this paper we present our results
about the analysis of score histograms to infer information about the presence
of semeai. We heuristically locate the fights on the Go board and estimate their
corresponding relevance for winning the game. The developed heuristic is not yet
used by the MCTS search. Accordingly, we cannot definitely specify and empir-
ically prove the benefit of the proposed heuristic in terms of playing strength.
All experiments are performed with our MCTS Computer Go engine Gomorra.
The main contributions of this paper are as follows.

– Analysis of score histograms towards the presence of semeai during an MCTS
search process.

– Stochastic mapping of score clusters derived from histograms to board sites
of individual semeai.

– Experimental evaluation of our approach on a variety of test positions that
are known to be difficult to handle by modern MCTS-based Go programs.

In Sect. 2 we give a summary of related work and some background about clus-
tering and mode finding in empirical density functions and about the meaning
and computation of the Monte-Carlo (MC) criticality measure. Section 3 details
our concrete method for the detection of semeai by the analysis of score his-
tograms. The method was used for our experiments presented in Sect. 4. Finally,
in Sect. 5 we draw conclusions and give directions for future work.

2 Background and Related Work

A central role in our proposed method for identifying the presence and concrete
location of semeai in game positions, takes into account the clustering of MC
simulations into groups related to the score they achieve in their corresponding
terminal positions. We decided to use a mean shift algorithm on score histograms
for this task. Mean shift is a straightforward mode-seeking algorithm that was
initially presented in [6] and more deeply analyzed in [2]. It is derived from a gra-
dient ascent procedure on an estimated density function that can be generated
by Kernel Density Estimation on sampled data. Modes are computed by itera-
tively shifting the sample points to the weighted mean of their local neighboring
points until convergence. Weighting and locality are hereby controlled by a ker-
nel and a bandwidth parameter. We obtain a clustering by assigning each point
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in the sample space the nearest mode computed by the mean shift algorithm. See
Subsect. 3.2 for formulae and detailed information about our implementation.

The stochastic mapping of clusters to relevant regions on the Go board is
realized by the application of a slightly modified MC-criticality measure. Starting
in 2009 several researchers came up with the idea of using an intuitive covari-
ance measure between controlling a certain point of a Go board and winning the
game. The covariance measure is derived from the observation of MC simula-
tion’s terminal positions [5]1 [1,10]. Such kind of measures are most often called
(MC-)Criticality when used in the context of Computer Go. The particular pub-
lications around this topic differ slightly in the exact formula used but foremost
in the integration with the general MCTS framework. Coulom [5] proposed the
use of MC-Criticality as part of the feature space of a move prediction system
that in turn is used for playout guidance in sparsely sampled game states, while
Pellegrine et al. [10] used the criticality measure with an additional term in the
UCT formula. Baudis and Gailly [1] argued for a correlation of MC-Criticality
and RAVE and consequently integrated both.

3 MC-Criticality Based Semeai Detection

In this section, we present our approach for detecting and localizing capturing
races (jap.: semeai) in positions of the game of Go by the clustering of MC sim-
ulations according to their respective score and the computation of cluster-wise
MC-criticality. When performing an MCTS search on a game position, a number
of randomized game continuations are generated from the position under consid-
eration. Each of these simulations ends in a terminal game position that can be
scored according to the game rules. In case of Go, the achievable score2 per simu-
lation ranges from −361 to +361. A common first step for obtaining information
about the score distribution is the construction of a score histogram that can be
interpreted as an empirical density function by appropriate scaling. Assuming
that the presence of semeai likely results in more than one cluster of simulation
scores (depending on whether the one or the other player wins) we are inter-
ested in identifying such clusters and the corresponding regions on the Go board
that are responsible for each particular cluster. Accordingly, semeai detection
with our approach is limited to cases in which different semeai outcomes lead
to distinguishable final game scores. In the following, we first introduce some
notations and afterwards step through our method starting with clustering.

3.1 Notations

Let S ⊆ Z be the discrete set of achievable scores. Having built a histogram H
of a total of n simulation outcomes, we write H(s) for the number of simulations
1 Available online: http://remi.coulom.free.fr/Criticality/
2 The player that makes the second move in the game is typically awarded some fixed

bonus points, called komi, to compensate for the advantage the other player has by
making the first move. Typical komi values are 6.5, 7 and 7.5, depending on the
board size. Accordingly, the score range might become asymmetric.

http://remi.coulom.free.fr/Criticality/
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that achieved a final score of s ∈ S, hence
∑

s∈S H(s) = n. We denote the
average score of n simulations by s =

∑
s∈S H(s)/n. Each element c of the set

of score clusters C is itself an interval of scores, hence c ⊆ S. All clusters are
disjunct in respect to the score sets they represent. We write c(s) for the single
cluster to which a score s is assigned to.

3.2 Clustering

As mentioned in Sect. 2 we use a mean-shift algorithm for mode seeking and
clustering in score histograms that depends on the choice of a kernel and a para-
meter h that is called bandwidth. For our implementation we use the triweight
kernel K defined as

K(x) =
35
32

(
1 − x2

)3
I(|x| ≤ 1),

where I denotes the indicator function that equals to 1 if the condition in the
argument is true and to 0 otherwise. Figure 1 shows a plot of the kernel. We use
Silverman’s rule of thumb [14] (p. 48) to determine the bandwidth parameter h
based on the number of simulations n and their variance:

h = 3.15 · σ̂n− 1
5 with σ̂2 =

∑
s∈S(s − s)2H(s)

n − 1
.

When perceiving f(s) = H(s)/n as an empiric density function, we can use
Kernel Density Estimation with the triweight kernel and the computed band-
width parameter to obtain a smooth estimated density function f̂ :

f̂(y) =
1

nh

∑

s∈S

H(s)K
(

y − s

h

)
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Fig. 1. The Triweight kernel K(x)
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A plot of the term K
(
x−s
h

)
is shown in Fig. 2. An example for a normalized

histogram and the corresponding estimated density function f̂ can be found,
e.g., in Fig. 3b, where f̂ is represented by the black curve.

To find the modes of f̂ , we initialize a mode variable ms for each score
s ∈ S to the respective score itself, i.e., ms = s. The mean shift algorithm now
iteratively updates this mode variables by

ms =
∑

s∈S H(s)K
(
ms−s

h

)
s

∑
s∈S H(s)K

(
ms−s

h

)

until convergence. The different conversion points of the mode variables are the
positions of the modes of f̂ . We build one score cluster for each mode and write
mc for the position of the mode that corresponds to cluster c. To account for
estimation errors and sample variances we only consider clusters corresponding
to mode positions m with f̂(m) ≥ T for some appropriate threshold T . Each
score s is then assigned to the cluster c(s) = argminc∈C |ms − mc|.

3.3 Player-, Intersection-, and Cluster-Wise MC-Criticality

MC-criticality was introduced as an intuitive covariance measure between con-
trolling a certain intersection of a Go board and winning the game. Here, con-
trolling an intersection from the viewpoint of a specific player means that in the
game’s terminal position the intersection is either occupied by a stone of the
player, or the intersection is otherwise counted as the players territory (e.g.
builds an eye of the player). We propose a slightly modified measure to compute
the correlation of controlling a point on the Go board and achieving a score that
falls into a given interval. Let P = {black,white} be the set of players, I the set
of all board intersections and C a set of score clusters determined as presented
in Subsect. 3.2. Given a number of terminal game positions generated by MCTS
simulations, we define the following random variables.

Xp,i =

{
1, if player p controls intersection i

0, else

Xc =

{
1, if the score falls into cluster c

0, else

We define the player-, intersection-, and cluster-wise MC-criticality measure g :
P × I × C → (−1, 1) by the correlation between the two random variables Xp,i

and Xc:

g(p, i, c) := Corr(Xp,i,Xc) =
Cov(Xp,i,Xc)

√
Var(Xp,i)

√
Var(Xc)

which gives

g(p, i, c) =
μp,i,c − μp,iμc

Z
with Z =

√
μp,i − μ2

p,i

√
μc − μ2

c ,
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for μp,i,c = E[Xp,iXc], μp,i = E[Xp,i] and μc = E[Xc] with E[·] denoting the
expectation. Accordingly, µp,i,c denotes the ratio of all n simulations’ terminal
positions in which player p controls intersection i and the score falls into cluster
c, µp,i represents the ratio of the simulations’ terminal positions in which player
p controls intersection i regardless of the score and µc is the ratio of simulations
with a final score that falls into cluster c. The measure g(p, i, c) gives the critical-
ity for player p to control intersection i by the end of the game in order to achieve
some final score s ∈ c. The lowest possible value that indicates a highly negative
correlation is −1. Here, negative correlation means that it is highly unlikely to
end up in the desired score cluster if player p finally controls intersection i. Our
measure becomes most similar to the former published intersection-wise critical-
ity measures when choosing the cluster Cblack = {s ∈ S|s > 0} representing a
black win, and Cwhite = {s ∈ S|s < 0} representing a white win. This clustering
then resembles the criticality by

gformer(i) ≈ g(black, i, Cblack) + g(white, i, Cwhite)

with the difference that g(p, i, c) uses the correlation instead of the covariance.

3.4 Detecting and Localizing Semeai

Putting the clustering procedure from Subsect. 3.2 and the criticality measure
of Subsect. 3.3 together, we obtain a method (1) for analyzing complete board
positions with respect to a possible presence of semeai and (2) in case they
exist, the method even allows for approximately localizing them on the board.
To analyze a given position, we perform standard MCTS and collect data about
the simulations’ terminal positions which is necessary to derive later on the score
histogram H and the values for μp,i,c, μc and μp,i. All we need for this purpose
is (1) a three-dimensional array control with a number of |P | · |I| · |S| elements
of a sufficiently large integer data type, (2) initialize all elements to zero and
(3) increment them appropriately at the end of each MC simulation. Here, for
each terminal position the value of element control(p, i, s) is incremented in case
player p controls intersection i and the position’s score equals s. Given this
relation, we derive the histogram function H by

H(s) =
∑

p∈P

control(p, i, s) for some fixed i ∈ I.

Having the score histogram of n =
∑

s∈S H(s) simulations, we apply the cluster-
ing procedure as described in Subsect. 3.2 to obtain the set of score clusters C.
As mentioned in Subsects. 3.1 and 3.2, each cluster c ∈ C is constructed around
a mode of f̂ and we denote the corresponding mode’s position by mc. Given this,
we can derive the values for μp,i,c, μc, and μp,i:

μp,i,c =
1
n

∑

s∈c

control(p, i, s),
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μc =
1
n

∑

s∈c

H(s),

μp,i =
1
n

∑

s∈S

control(p, i, s).

This in turn allows for the cluster-wise criticality computation as described in
Subsect. 3.3, that, for each player determines the criticality of controlling the
corresponding intersection in order to make the game end with a score belonging
to the respective cluster. In case more than one cluster was found, the resulting
distribution of criticality values for a given player and cluster, typically shows
high valued regions that are object to a semeai. Thereby, the criticality values
represent a stochastic mapping of each cluster to board regions with critical
intersections that have to be controlled by one player in order to achieve a score
that corresponds to the cluster. By further comparison of the critical board
regions of the varying clusters and under consideration of the clusters mode
positions mc, it might even be possible to estimate the value of a single semeai
in terms of scoring points. In the next section, we present results achieved with
our approach on a number of example positions.

4 Experimental Results

Based on our Go program Gomorra, we implemented our approach and made a
series of experiments on different Go positions that contain multiple semeai. For
our experiments, we concentrated on a number of two-safe-groups test cases out
of a regression test suite created by Shih-Chieh (Aja) Huang (6d) and Martin
Müller [9]. The collection of problems in this test suite was especially created
to reveal the weaknesses of current MCTS Go engines and is part of a larger
regression test suite of the Fuego Open Source project3.

Figure 3 shows one of the test positions that contains two semeai, one on
the upper right, the other on the lower right of the board. Black is to play and
the result should be a clear win for white, hence a negative final score, because
both semeai can be won by the white player. Figure 3b shows the corresponding
score histogram of 128,000 MC simulations. The colors indicate the clustering
computed by the method described in Subsect. 3.2. Figure 3a, c, d, and e show
the respective criticality values for the white player to end up in cluster 1, 2, 3,
and 4, counted from left to right. Positive correlations are illustrated by white
squares of a size corresponding to the degree of correlation. Each intersection
is additionally labeled with the criticality value. One can clearly see how the
different clusters map to the different possible outcomes of the two semeai.

Figure 4a–d show the results for test cases 1, 2, 3, and 5 of the above men-
tioned test suite (test case 4 is already shown in Fig. 3). Due to space lim-
itations, we restrict the result presentation to the score histograms and the
criticality for player white to achieve a score assigned to the leftmost cluster.
3 See: http://fuego.svn.sourceforge.net/viewvc/fuego/trunk/regression/

http://fuego.svn.sourceforge.net/viewvc/fuego/trunk/regression/
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The histograms and criticality values always show the correct identification of
two separate semeai. We took the leftmost cluster, as for the given test cases
this is the one containing the correct evaluation, i.e., a win for the white player.
As can be derived from the shown histograms, in all cases, Gomorra gets dis-
tracted by the other possible semeai outcomes and wrongly estimates the position
as a win for black as it is typical for MCTS programs that only work with the
mean outcome of simulations. Figure 5 shows results for a 13 × 13 game that
was lost by the Go program Pachi playing black against Alex Ketelaars (1d).
The game was played at the European Go Congress in Bonn in 2012 and was
one of only two games lost by Pachi. As can be seen in the histogram, Alex
managed to open up a number of semeai. Again, the board shows the criticality
values for the leftmost cluster and reveals Gomorra’s difficulties in realizing
that the lower left is clearly white’s territory. It is one example of a number of
games Ingo Althöfer collected on his website4. The site presents peak-rich his-
tograms plotted by the Go program Crazy Stone. He came up calling them
Crazy Shadows. Rémi Coulom, the author of Crazy Stone, kindly generated
a Crazy Analysis for the 13 × 13 game discussed above5.

5 Conclusions and Future Directions

We presented a method to detect and localize capturing races and explained how
to integrate the detection into existing MCTS implementations. By doing so in
practice, we were able to present a number of examples that demonstrate the
power of our approach. However, the detection and localization of semeai alone
is only a first step towards improving the semeai handling capabilities of modern
MCTS-based Go programs. We must develop and evaluate methods to use the
gathered knowledge in form of criticality values in the simulation policies to turn
it finally into increased playing strength. Specifically, we are highly convinced
that remarkable improvements can only be achieved when using the gathered
information even in the playout policies.

Accordingly, in future work, we plan to investigate the use of some kind of
large asymmetric shape patterns that dynamically adapt their size and shape to
the critical regions as they are determined by the presented method. Integrating
those patterns into existing move prediction systems as they are widely used in
Computer Go in addition to training their parameters during the search process
builds the next interesting challenge [15]. Already now, the results might be of
interest for human Go players using Go programs to analyze game positions6.

For the sake of correctness, we must admit that the term semeai might not
be completely appropriately used throughout this paper. A score cluster does
not always need to be caused by the presence of a capturing race. In any case,
it represents an evaluation singularity that is likely caused by uncertainty in the
4 http://www.althofer.de/crazy-shadows.html
5 http://www.grappa.univ-lille3.fr/∼coulom/CrazyStone/pachi13/index.html
6 Some more context to existing visualizations for computer aided position analysis

can be found online at http://www.althoefer.de/k-best-visualisations.html.

http://www.althofer.de/crazy-shadows.html
http://www.grappa.univ-lille3.fr/~coulom/CrazyStone/pachi13/index.html
http://www.althoefer.de/k-best-visualisations.html
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(a) White’s criticality and score histogram for two-safe-groups test case 1.

(b) White’s criticality and score histogram for two-safe-groups test case 2.

(c) White’s criticality and score histogram for two-safe-groups test case 3.

(d) White’s criticality and score histogram for two-safe-groups test case 5.

Fig. 4. The player-wise criticality values for another 4 test cases of the two-safe-groups
regression test suite. The boards always show the criticality values for player white to
end up with a score associated with the leftmost cluster of the corresponding histogram
shown to the right. The numbering of test cases is as given in the test suite.
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(a) Score histogram after 128,000 simulations.

(b) Criticality for player white to reach a score of the left-
most cluster.

Fig. 5. Analysis of a position occurred in the game between Go program Pachi (black)
vs. Alex Ketelaars at the European Go Congress 2012 in Bonn (move 90).

evaluation of the life and death state of one or more groups of pieces. Also in
this case our approach will help to localize the respective groups on the board.
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