
Chapter 2
Fundamentals of Adaptive Filter Theory

In this chapter we will treat some fundamentals of the adaptive filtering theory
highlighting the system identification problem. We will introduce a signal and system
model that will be used throughout this book.

2.1 Signal and System Model

In this book, we will assume that the acoustic echo path from the loudspeaker to the
microphone is linear and can be modeled by a finite impulse response (FIR) filter.

There are two possibilities for the matrix representation of a MIMO FIR-system
which are equivalent with respect to the output of the system. These two models are
introduced in the following subsections. The first representation which we will call
the standard representation has a direct correspondence to the underlying physics
that will be treated in detail in Sect. 4.1.1. The second representation is the compact
representation which is preferable in the absence of prior knowledge about the system,
as we will show later on in this monograph.

2.1.1 Standard Representation

The convolution of an input signal of length M with an FIR filter of the order L can
be expressed by a matrix vector multiplication where the matrix represents the filter
and exhibits a Toeplitz structure with M columns [1]
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◦
H[M],pq :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h pq,0 0 . . . 0

h pq,1 h pq,0
...

... h pq,1
. . . 0

h pq,L−1
... h pq,0

0 h pq,L−1 0
...

. . .
...

0 . . . 0 h pq,L−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.1)

In the MIMO case, the system representing the P × Q acoustic paths is composed
as

◦
H :=

⎡
⎢⎢⎣

◦
H[M],11 . . .

◦
H[M],P1

...
...

◦
H[M],1Q . . .

◦
H[M],P Q

⎤
⎥⎥⎦ . (2.2)

For a finite input signal block with length P M

x(n) = [xT
1 (n), xT

2 (n), . . . , xT
P (n)]T,

xp(n) = [x p(n), x p(n + 1), . . . , x p(n + M − 1)]T, (2.3)

one obtains a block of the output signal y

y(n) = ◦
H x(n), (2.4)

with

y(n) = [yT
1 (n), yT

2 (n), . . . , yT
Q(n)]T,

yq(n) = [yq(n), yq(n + 1), . . . , yq(n + (L + M) − 1)]T. (2.5)

2.1.2 Compact Representation

An equivalent matrix representation of the MIMO system w.r.t. the output can be
achieved by employing the Toeplitz structure, which results from the convolution
operation, in the input signal. In this case the MIMO system can be expressed by a
non redundant matrix H with the dimensions P · L × Q. This is composed by P · Q
subfilters, hpq = [h pq,0, h pq,1, . . . , h pq,L−1]T.
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H =
⎡
⎢⎣

h11 · · · h1Q
...

. . .
...

hP1 · · · hP Q

⎤
⎥⎦ , (2.6)

a vector with the output samples at the time instant n is obtained by

y(n) = HT · x(n), (2.7)

with x(n) as input signal vector with the length-P L (loudspeaker signals in the
near-end) interpreted as one column of a block-Toeplitz matrix that represents the
signal

x(n) = [xT
1 (n), xT

2 (n), . . . , xT
P (n)]T,

xp(n) = [x p(n), x p(n − 1), . . . , x p(n − L + 1)]T. (2.8)

Please note that the output vector in Eq. (2.7) contains only the current output sample
for each output channel.

2.2 Optimal System Identification in Least-Squares Sense

2.2.1 The Wiener–Hopf Equation

As stated in Sect. 1.1 the most popular optimization criterion is the LSE. Typically,
in the scenario given by an MC-AEC setup, the MIMO identification problem is
considered as series of independent MISO systems for each microphone channel [2].
The echo paths from the P loudspeakers to a single microphone with the index q are
identified by minimizing the following cost function

J (̂hq) = Ê{|eq(n)|2} = Ê{|yq(n) − ĥH
q x(n)|2}, (2.9)

here the definitions from Sect. 2.1.2 are used. Determining the minimum of the
quadratic cost function in Eq. (2.9) requires a gradient calculation w.r.t. ĥq . By ap-
plying the chain rule and Eq. (A.3) we obtain

∇ĥq
J = −2Ê{x(n)[y∗

q (k) − ĥT
q x∗(n)]},

= −2rxyq (n) + 2Rxx(n)̂hq , (2.10)

where Rxx denotes the P L × P L correlation matrix containing all inter- and intra-
channel correlations
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Rxx(n) := E{x(n)xH(n)}, (2.11)

and rxy is the P L × 1 crosscorrelation vector

rxyq (n) := E{x(n)y∗
q (n)}. (2.12)

At the minimum of the cost function we set

∇ĥq
J = 0, (2.13)

where 0 is a P L ×1 zero vector. Hence, by substitution into Eq. (2.10) we obtain the
optimal estimation of ĥq in the LS-sense by the so-called Wiener-Hopf equation [3]

ĥq,opt = R−1
xx (n)rxyq (n). (2.14)

For the optimal estimation of the complete MIMO system, it can be easily seen that

Ĥopt = R−1
xx (n)Rxy(n), (2.15)

with

Rxy(n) := E{x(n)yT(n)}. (2.16)

2.2.2 Derivation of Iterative Estimation Approaches

2.2.2.1 The Recursive Least-Squares Algorithm Based on the Matrix
Inversion Lemma

Preferably, the optimal solution is estimated iteratively. The derivation of an iterative
solution of the given estimation problem that can be found in the literature is based
typically, either on the matrix inversion lemma (Woodbury matrix identity) [3] or on
the Newton method [4–6].

The starting point for the derivation based on the matrix inversion lemma is the
iterative estimation of the autocorrelation matrix

Rxx(n) = αRxx(n) + (1 − α)x(n)xH(n), (2.17)

where α denotes the forgetting factor. The crosscorrelation vector is estimated by

rxyq (n) = αRxx(n) + (1 − α)x(n)y∗
q (n). (2.18)
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Applying the matrix inversion lemma Eq. (A.7) and substituting in the normal
equation leads to the recursive least-squares update equation [3, 7, 8]

ĥq(n) = ĥq(n − 1) + k(n)
(

y∗
q (n) − xH(n)ĥq(n − 1)

)
︸ ︷︷ ︸

:=e∗
q (n)

, (2.19)

with k(n) denoting the so-called Kalman-gain defined as

k(n) = α−1(1 − α)R−1
xx (n − 1)x(n)

1 + α−1(1 − α)xH(n)R−1
xx (n − 1)x(n)

. (2.20)

2.2.2.2 Newton-Method Based Derivation of the Recursive Least Squares
Algorithm

More generally, the Newton-based iterative estimation offers a method that is not re-
stricted to a particular correlation estimation approach. The cost function in Eq. (2.14)
can be approximated by the Taylor series [see Eq. (A.4)] and accordingly, its roots
can be determined using the Newton method. This reads in the multidimensional
case [5]

ĥq(n) = ĥq(n − 1) − (∇ĥq
∇T

ĥq
J (̂h(n − 1)))−1∇ĥq

J (̂hq(n − 1)). (2.21)

Using Eqs. (2.10) and (2.11) we derive for the Hessian matrix

∇ĥ∇T
ĥ J (̂h(n − 1)) = Rxx(n). (2.22)

Finally, we obtain

ĥq(n) = ĥq(n − 1) + R−1
xx (n)x(n)e∗

q(n). (2.23)

The equivalence of the Eqs. (2.19) and (2.23) can be directly obtained by the identity

k(n) = R−1
xx (n)x(n). (2.24)

In the general MIMO case, we can write

Ĥ(n) = Ĥ(n − 1) + R−1
xx (n)x(n)eH(n) (2.25)

with length-Q vector of the error signals

e(n) := y(n) − ĤH(n − 1)x(n). (2.26)
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With Eq. (2.25), it becomes apparent that the RLS algorithm takes the nonwhiteness
of the input signal into account since all crosscorrelations need to be computed.
This leads typically to high computational complexity. Ignoring the nonwhiteness of
the input signal leads to a less accurate but efficient algorithm. This will be briefly
discussed in the next section.

2.2.2.3 The Normalized Least Mean Square Algorithm

For white noise input we can approximate Rxx ≈ ‖x‖2I leading to the simplified
update equation

ĥq(n) = ĥq(n − 1) + μ
e∗

q(n)

xHx
x, (2.27)

with μ denoting a step size. This algorithm is known as the normalized least mean
squares (NLMS) algorithm. Hence, the NLMS algorithm can be obtained from RLS
by neglecting the nonwhiteness of the input signal [3] and it meets a trade-off between
the computational complexity and taking into account all correlations.
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