
2Plate Motions

Abstract

Plate kinematics represents a fundamental sub-discipline of plate tecton-
ics. In this chapter, I describe the geometry of plate motions independently
from the geodynamic factors (forces, torques, stresses) that drive the
movement or changes in the state of motion of a tectonic plate. At this
stage, the focus is on modelling, in particular on plate reconstructions,
thereby the general description proceeds assuming that kinematic data are
already available.

2.1 The ContinuumMechanics
Representation

Earth’s crust and mantle are deformable solids,
composed by a large number of closely spaced
microscopic mineral grains of arbitrary shape and
size. At macroscopic scale, a rigorous quanti-
tative description of the geodynamic evolution
of a rock system starts from the introduction
of infinitesimal quantities, the volume elements
dV, which represent the smallest chemically and
physically homogeneous parts in which a rock
assemblage can be divided. It is usually assumed
that a volume element fills a continuous region
of the three-dimensional space, namely a closed
subset R�<3, and has regular shape, for ex-
ample a parallelepiped dVD dxdydz. In practice,
the computational techniques employed in plate
tectonics often require a definition of volume
elements having dimensions up to several km,
depending on the scale of the problem, yet being
small in relation to the total volume of the rock
system.

In the continuum mechanics representation
of solid Earth systems, any geophysical entity
(for example, a subducting slab) is formed
by a continuous distribution of small volume
elements, dV, whose locations are described
by position vectors r in the selected reference
frame. In this representation, the intensive
variables (also known as bulk properties) are
quantities describing local physical properties
of the volume elements, for example their
temperature, velocity, etc. It is assumed that
these quantities vary smoothly across the region
R, so that they can be represented mathematically
by continuous functions of position vectors r 2
R. Often the intensive variables are associated
with scalar fields (see Appendix 1), ¥D¥(r),
having appropriate continuity properties. Typical
examples are the local temperature, TD T(r),
and pressure, pD p(r), of rocks. However, not all
of the intensive variables can be represented by
scalar fields. For instance, the displacement of
a point r during deformation must be described
by a vector quantity, uDu(r), which varies from
point to point in R. Therefore, intensive variables
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30 2 Plate Motions

are sometimes associated with vector or even
tensor fields (see Appendix 1).

The continuum mechanics representation of
Earth systems also includes extensive variables.
These quantities are global physical properties,
which depend from the total volume V of a sys-
tem through integral expressions involving den-
sity functions. A classic example is the total mass
of a rock body. Let dV be a volume element cen-
tered at position r in the region R. The approach
of continuum mechanics is to consider the mass
contained in dV as the analog of a point mass, so
that the classic equations of elementary physics
can be easily generalized to the new framework.
To this purpose, we can introduce a new intensive
quantity, the density of mass, ¡D ¡(r), such that
the infinitesimal mass contained in the volume dV
will be given by: dmD ¡(r)dV. In this instance,
the total mass of a body is an extensive property
that can be computed by evaluating the following
integral expression:

M D
Z

R

¡ .r/ dV (2.1)

Similar expressions can be written for the total
electric charge, magnetization, etc. introducing
appropriate density functions. If a continuous
rock system is subject to an external action-at-a-
distance force field, such as a gravity or magnetic
field, this force operates on each volume element
in R. Therefore, we can introduce a body force
density (force per unit volume), fD f(r), such
that the infinitesimal force exerted on a volume
element dV will be given by: dFD f(r)dV. Using
this definition, the total force, F, and the torque,
N, exerted on the whole body are extensive vari-
ables given respectively by:

F D
Z

R

f .r/ dV (2.2)

N D
Z

R

r � f .r/ dV (2.3)

An important kinematic parameter of a point
mass distribution is the center of mass, which
is a position vector representing the location of

the entire system. In elementary mechanics, this
vector is obtained by taking the weighted average
of the individual position vectors, and using the
mass of each particle as a weighting parame-
ter. The continuum mechanics analogue of this
quantity is another extensive variable, which can
be calculated by substituting the sum appear-
ing in the elementary definition by an integral
expression.

Therefore, the center of mass of a continuous
distribution is defined as follows:

R D 1

M

Z

R

¡ .r/ rdV (2.4)

where M is the total mass. The last extensive vari-
able considered here is the angular momentum of
the system, which measures the rotational com-
ponent of motion with respect to an arbitrary ref-
erence point. This quantity is usually calculated
with respect to the origin of the reference frame
or, alternatively, with respect to the center of mass
depending on the problem under consideration. In
the former case, the angular momentum is given
by the following integral expression, which is an
obvious extension of the elementary definition:

L D
Z

R

r � ¡ .r/ v .r/ dV (2.5)

In this expression, the vector field vD v(r)
represents the velocity of the mass element at
position r. In the next section, we shall consider
a special form of expression (2.5), which is par-
ticularly useful in plate kinematics, where mass
distributions represent rigid tectonic plates.

2.2 Euler’s Theorem and Rigid
Rotations

Plate dynamics and kinematics, in short plate
tectonics, cannot be described using a unique
mathematical apparatus and a single physical the-
ory, because the various interacting subsystems of
the solid Earth (plates, slabs, asthenosphere, etc.)
conform to different physical laws, depending
on the time scale of observation (seconds, years,
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thousands or million years). Even when consid-
ered at a common temporal scale, these subsys-
tems display distinct mechanical behaviors. For
example, the motion of tectonic plates during
the geological time (intervals of Myrs) can be
described in terms of rigid body’s kinematics,
whereas the asthenosphere behaves as a fluid at
the same temporal scale. However, both can be
considered as elastic bodies if we are studying
earthquakes and propagation of seismic waves in
the solid Earth. In summary, the sole unifying
framework of plate tectonics is the continuum
mechanics representation illustrated in the previ-
ous section, while both the kinematic description
of the processes and the geodynamic laws that
link forces to kinematics will be different depend-
ing on the subsystem and the temporal scale of
observation.

Observation suggests that tectonic plates can
be considered as rigid bodies at first approxi-
mation. Consequently, the volume elements that
fill a region R�<3, representative of a tectonic
plate, are also rigid entities, and the distance
between any pair of volume elements in R is an
invariant. This is equivalent to say that the elec-
tromagnetic interaction between adjacent volume
elements is so strong that any external force
is overcome, so that deformation is negligible.
In this instance, an important theorem, due to
Leonhard Euler (1775), can be used as a starting
point for the mathematical description of plate
kinematics. The statement of Euler’s theorem is
very simple:

Euler’s Theorem
If a sphere S is moved about its center, O, it is
always possible to find a diameter, D, of fixed
points.

Proof Let r1, r2, r3 be three position vectors
pointing to arbitrary points, P1, P2, and P3 in
the original sphere. After an arbitrary change of
orientation of the sphere about its center, these
points are moved to new locations, say: P

0

1, P
0

2,
and P

0

3, represented by the position vectors: r
0

1,
r

0

2, r
0

3. Let T and T0 be the 3� 3 matrices formed
with the components of these vectors:

T D
2
4x1 x2 x3

y1 y2 y3

z1 z2 z3

3
5 IT 0 D

2
4x0

1 x0
2 x0

3

y0
1 y0

2 y0
3

z0
1 z0

2 z0
3

3
5

Now let us define a new 3� 3 matrix:

A D T 0T �1 (2.6)

The matrix A has the property to transform the
original matrix T into the new matrix T0:

AT D T 0 (2.7)

This equation implies, in turn, that A trans-
forms each vector ri into the corresponding ro-
tated vector r

0

i:

Ar i D r 0
i (2.8)

In general, for any position vector, r, the trans-
formation A preserves the distance of the trans-
formed point from the origin, because the sphere
is assumed to be rigid:

kArk D krk (2.9)

Squaring this equation gives:

rT AT Ar D rT r (2.10)

thereby ATAD I, where I is the 3� 3 identity
matrix, and A is orthogonal. Now let us take the
determinant of ATA. It results:

det
�
AT A

� D Œdet .A/�2 D 1 (2.11)

Therefore, det(A)D˙1. If we consider a null
rotation of the sphere from its initial position,
then AD I and det(A)D det(I)DC1. By con-
tinuity, any subsequent infinitesimal rotation or
sequence of rotations must give det(A)DC1.
Furthermore, by the orthogonality of A we have:

AT A �A D �AT � I
�

A D I �A (2.12)

det
�
AT � I

� D det
�
.A � I/T

�
D det .A � I/

(2.13)
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Therefore, taking the determinant of Eq. (2.12)
gives:

det
��

AT � I
�

A
� D det

�
AT � I

�
det .A/

D det
�
AT � I

�D det .A� I/D det .I �A/

(2.14)

Now we take into account that for any 3� 3
matrix R: det(�R)D (�1)3RD�R. In the case of
Eq. (2.14), it results:

det .A � I/ D det .I �A/ D � det .A � I/

” det .A � I/ D 0 (2.15)

Therefore, a vector n¤ 0 exists such that:

.A � I/ n D 0 (2.16)

Equation (2.16) is a particular eigenvalue
equation, where A has eigenvalue œDC1 and n
is the corresponding eigenvector. This means that
n is invariant under transformation A. Therefore,
a diameter aligned with the direction of n will
remain unchanged after the transformation. This
proves Euler’s theorem. �

The importance of Euler’s theorem for the
mathematical formulation of plate kinematics is
not immediately evident, despite almost all books
and articles about this subject emphasize its fun-
damental role. If we assume a spherical Earth,
tectonic plates can be considered as rigid spher-
ical caps, which are constrained to move about
its centre. Their instantaneous motion is always
represented by an infinitesimal rotation about an
axis, as illustrated in Fig. 2.1, and this state-
ment holds independently from Euler’s theorem,
despite it could be inferred from it. In these
rotations, an arbitrary point P lying on a tectonic
plate, R, is moved along a small circle arc about
the rotation axis with a velocity v whose magni-
tude depends from the distance of P from the axis.
However, the rigidity of R ensures that different
points will travel the same angular distance d’

in a small time interval dt, so that a unique
angular velocity ¨D d’/dt, which is independent
from the point, characterizes the instantaneous

Fig. 2.1 Geometry of the instantaneous motion of a tec-
tonic plate R. E is the Euler pole, N is the North Pole. P
is a representative point on R, whose instantaneous linear
velocity is v. ¨ is the Euler vector of R

rotation. We can easily build a vector, which
contains all the information associated with an
instantaneous rotation. Such a vector is called an
Euler vector and has magnitude ¨ and direction
coinciding with the direction of the rotation axis
(Fig. 2.1). In order to assign a unique versor, n, to
an Euler vector, we conform to the common prac-
tice of assuming that all rotations are counter-
clockwise rotations.

In this instance, the linear velocity of a point P
can be calculated by the following formula:

v D ¨ � r (2.17)

where ¨D¨n is the Euler vector of the in-
stantaneous rotation. In general, the motion of
a tectonic plate proceeds through a sequence of
infinitesimal rotations about continuously chang-
ing Euler axes. Thus, in principle, reconstructing
its position at a given time in the geologic past
would require a backtracking procedure, based
upon a complete knowledge of the sequence of
instantaneous rotations. However, the standard
approach adopted in plate kinematic modelling
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follows an opposite pathway, which starts from a
specification of the orientations of tectonic plates
at some ages in the geologic past, before any
determination of the sequence of instantaneous
rotations that carried them to the present day
location. The reason is that in most cases the
only information available in advance, through
the analysis of magnetic or structural data, is rep-
resented by the relative positions of the tectonic
plates at some ages in the geologic past. These
relative positions link the orientation of a tectonic
plate at any time t directly to its present day posi-
tion, regardless of the specific trajectory followed
by the plate. The importance of Euler’s theorem
is just to ensure the existence of a unique invariant
axis associated with such transformation from
the present day position to the orientation at any
time t. This means that we can always find a

rotation axis n and a finite angular displacement,
�, such that a present day tectonic plate can be
moved to the location that it occupied at time t,
even before knowing the details of the complex
sequence of instantaneous rotations that link the
past position to the present day location.

Euler’s theorem implies that rotations can be
composed to furnish other rotations. Therefore,
two transformation matrices A and B can be mul-
tiplied to give a new rotation matrix CDAB and
this operation is not commutative (AB¤BA).
The set of all transformation matrices associated
with the rigid rotations of a sphere forms a group
known as the SO(3) group (special orthogonal
group in <3). It can be shown that the orthogonal
matrix associated with a finite rotation by an
angle � about an axis represented by the unit
vector n, is given by:

R .n; �/

D
2
4 n2

x .1 � cos �/C cos � nxny .1 � cos �/ � nz sin � nxnz .1 � cos �/C ny sin �

nxny .1 � cos �/C nz sin � n2
y .1� cos �/C cos � nynz .1 � cos �/ � nx sin �

nxnz .1 � cos �/ � ny sin � nynz .1 � cos �/C nx sin � n2
z .1 � cos �/C cos �

3
5

(2.18)

The unit vector n has only two independent
components, thereby three independent param-
eters are sufficient to describe a rigid rotation.
The point where a positive rotation axis inter-
sects the Earth’s surface is called Euler pole
(Fig. 2.1), its antipodal is called the antipole. An
Euler pole, expressed through its geographic co-
ordinates (latitude and longitude), and a rotation
angle, are the three parameters generally used in

plate kinematics to indicate a finite rotation. In
Sect. 2.7 we shall learn how to use these finite
rotations to describe the kinematics of tectonic
plates through the geological time.

Now let us consider again the instantaneous
kinematics of a tectonic plate R. Using the
expression (2.17), the continuum mechanics
analogue of the kinetic energy, K, will be
given by:

K D 1

2

Z

R

¡ .r/ v2 .r/ dV D 1

2

Z

R

¡ .r/ ¨2r2sin2™ .r/ dV D 1

2
¨2

Z

R

¡ .r/
�
r2 � r2cos2™ .r/

�
dV D

D 1

2
¨2

Z

R

¡ .r/
h
r2 � .n � r/2

i
dV � 1

2
I .n/ ¨2 (2.19)

where ™(r) is the angle between n and r and the
quantity I(n), which depends from plate geome-
try, mass distribution, and the rotation axis, is the
momentum of inertia about the axis n:

I .n/ �
Z

R

¡ .r/
h
r2 � .n � r/2

i
dV (2.20)
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This quantity is a measure of the inertial re-
sistance that a rigid plate opposes to variations of
its angular velocity about a rotation axis. Another
quantity that can be expressed in terms of Euler
vectors is the angular momentum, L. Starting
from expression (2.5), we can write:

L D
Z

R

¡ .r/ r � v .r/ dV

D
Z

R

¡ .r/ r � .¨ � r/ dV

D
Z

R

¡ .r/
�
r2¨ � .¨ � r/ r

�
dV (2.21)

A more compact expression can be determined
introducing the index notation (see Appendix 1),
x1� x, x2� y, x3� z, and Einstein’s summation
convention. With this notation, it is easy to prove
that the angular momentum has the following
simple expression in terms of Euler vectors:

Li D Iij¨j (2.22)

where the quantities Iij form a rank 2 symmetric
tensor, which is known as inertial tensor:

Iij D
Z

R

¡ .r/
�
r2•ij � xi xj

�
dVI i; j D 1; 2; 3

(2.23)

In this expression, the quantity •ij represents
the Kronecker delta (•ijD 1 if iD j, zero
otherwise). The components of the inertial
tensor depend from the mass distribution and the
plate geometry, just like the moments of inertia
(Eq. 2.20). Therefore, we expect that a relation
exists between these quantities. It is quite evident
from (2.23) that the diagonal components of I
coincide with the moments of inertia about the
three coordinate axes:

Iii � Ii D
Z

R

¡ .r/
�
r2 � x2

i

�
dV D I .ei / I

i D 1; 2; 3 (2.24)

where ei (iD 1,2,3) are the base versors of the
coordinate system. In general, it is possible to
show that the momentum of inertia of a tec-
tonic plate about an arbitrary rotation axis n
can be expressed as a linear combination of the
components of the inertial tensor, thereby this
tensor contains all the relevant information for
the determination of the moment of inertia about
any rotation axis. In fact, using Eqs. (2.20) and
(2.21) we see that the component of the angular
momentum in the direction of n is given by:

L � n D
Z

R

¡ .r/
h
r2¨ � .n � r/2¨

i
dV D ¨I .n/

(2.25)

Using Eq. (2.22), and taking into account that
¨jD¨nj, we can also write:

L � n D Li ni D ni Iij¨j D ¨ni Iijnj

Therefore, a comparison with Eq. (2.25) fur-
nishes:

I .n/ D ni Iijnj (2.26)

This expression proves our statement. The pre-
vious equations represent the basic framework for
the description of the instantaneous kinematics of
any rotating rigid plate, independently from the
choice of a reference frame. In the next section,
we shall consider the specific frames of reference
used in plate tectonics.

2.3 Reference Frames

Two broad classes of reference frames are used
in plate tectonics. Geocentric reference frames
are global frames that are built assuming that
the Earth’s centre of mass, R, coincides with the
origin of a Cartesian system of coordinates, so
that RD 0. The best known of these reference
frames is the usual geographic coordinate system,
in which the z axis coincides with the Earth’s spin
axis, and the x and y axes are in the Equatorial
plane and point, respectively, to the Greenwich
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Fig. 2.2 Cartesian (x,y,z)
and spherical (r,™,¥)
coordinates of a point P in
the geographic reference
frame

meridian and 90ıE. Clearly, a point in the city
of London, on the Eurasian plate, has constant
longitude ¥D 0 in this reference frame (Fig. 2.2).

In plate kinematics, the Earth is assumed to
have a spherical shape, so that the Cartesian
coordinates (x,y,z) of a point at distance r from
the Earth’s centre are related to the geographic
coordinates (™,¥), colatitude and longitude, by
the following equations:

8<
:

x D r sin ™ cos ¥

y D r sin ™ sin ¥

z D r cos ™

(2.27)

Figure 2.2 illustrates the relation between
Cartesian and geographic (spherical) coordinates
of a point. Equations 2.27 can be easily inverted
to get an expression of the spherical coordinates
as a function of the Cartesian components:

8<
:

¥ D arctan .y=x/

™ D arccos .z=r/

r D px2 C y2 C z2

(2.28)

Another useful geocentric reference frame is
the geomagnetic coordinate system (e.g., Camp-
bell 2003). This frame is built on the basis of the
observation that the present day Earth’s magnetic
field can be approximated as the field generated
by a magnetic dipole placed at the Earth’s centre,
as we shall see in Chap. 4. Such a dipole has
not fixed direction, but precedes irregularly about
the North Pole according to the so-called secular
variation of the core field. It is mathematically
represented by a magnetic moment vector, m,
which currently (December 31st 2013) points to
a location placed in the southern hemisphere, at
about (80.24ıS, 107.46ıE). This location is called
the geomagnetic South Pole, and its antipodal
point at (80.24ıN, 72.54 W) is known as the ge-
omagnetic North Pole. The axis passing through
these two points defines the z-axis of the geomag-
netic reference frame. The x-axis of this coordi-
nate system is chosen in such a way that the prime
meridian passes through the geographic South
Pole. Finally, the y-axis will be also placed in the
geomagnetic dipole equator, 90ı from the x-axis.

http://dx.doi.org/10.1007/978-3-319-09135-8_4
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In a paleomagnetic reference frame, the z-axis
always coincides with the apparent directions of
the Earth’s spin axis as determined by a se-
quence of paleomagnetic poles (Chap. 6). In
these frames, the longitude of a point is relative
to an arbitrarily selected location on a reference
continent. For example, if the central African
craton is chosen to be the reference continent,
then we could select a reference site in central
Africa and assign to this location a fixed longi-
tude coinciding with the present day value. This
approach can be found in Besse and Courtillot
(1988). Other more complex techniques assign
a changing longitude (in the paleomagnetic ref-
erence frame) to the reference site according to
specific algorithms (e.g., Schettino and Scotese
2005), but in any case the longitude of any other
point is referred to this site and not to the Green-
wich meridian.

The second broad class of reference frames is
represented by local coordinate systems, which
have the following common features: (a) the
origin is an observation point at the Earth’s sur-
face (seismic station, magnetic field measurement
point, etc.); (b) the z-axis is aligned with the
vertical to the observation point (plumb line), so
that the xy plane is a tangent plane to the Earth’s
surface. These reference frames are usually em-
ployed to represent the geometry of faults, focal
mechanisms of earthquakes, and magnetic field
measurements, but they can be used to charac-
terize any local vector or tensor quantity of geo-
physical interest (Cox and Hart 1986). Figure 2.3
illustrates the conventions used in geomagnetism,
where the z-axis is directed downwards, the x-
axis is directed northwards, and the y-axis is
directed eastwards. In this instance, the Earth’s
core field vector, F, can be represented by three
Cartesian components (X,Y,Z) or, alternatively by
its declination, D, by an inclination, I, and a
magnitude, F.

From Fig. 2.3, we see that the equations of
transformation from (F,D,I) to (X,Y,Z) are:

8<
:

X D F cos I cos D

Y D F cos I sin D

Z D F sin I

(2.29)

Fig. 2.3 Local Cartesian components of the Earth’s main
field, F D (X,Y,Z) and horizontal component, H. The dec-
lination, D, is the azimuth of H, while the inclination, I is
the angle between F and H, positive downward

The inverse transformation can be easily ob-
tained from these expressions. It follows that:

8<
:

D D arctan .Y=X/

I D arcsin .Z=F /

F D pX2 C Y 2 CZ2

(2.30)

Finally, form the definition of horizontal com-
ponent, H D pX2 C Y 2, it follows that the
inclination can be also expressed as a function of
Z and H:

I D arctan .Z=H/ (2.31)

We emphasize that although these equations
refer to the specific case of the geomagnetic field,
they can be used to express the components of
any other vector quantity in a local coordinate
system at the Earth’s surface.

2.4 Plate Boundaries

Three fundamental kinds of plate boundaries can
be observed in the oceanic domain, which have
three counterparts in continental areas. In the
oceans, we find mid-ocean ridges, trenches, and
strike-slip faults. The continental analogues of
these tectonic structures are, respectively, rifts,
collision zones, and transcurrent faults. Now we

http://dx.doi.org/10.1007/978-3-319-09135-8_6
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Fig. 2.4 Geometry of the
Mid-Atlantic ridge in the
central Atlantic area (red
line). Dashed lines are
major fracture zones. Black
dots bound transform faults
and spreading segments
along the ridge. Numbers
label the eight segments
identified along this tract of
the ridge. Double arrows
indicate directions of
spreading. Also shown is
the full spreading rate. The
background image,
showing free-air gravity
anomalies (Sandwell and
Smith 1997), enhances the
location of the axial zone
of the ridge and the track of
the fracture zones (FZ)

are going to consider all these faults and systems
of faults from the point of view of plate kine-
matics. Mid-ocean ridges are extensional bound-
aries in the oceanic domain. We have seen in
Chap. 1 that these features are spreading centers,
where new oceanic crust is passively accreted
as a consequence of divergent motion between
two tectonic plates. These boundaries are formed
by sequences of ridge segments that are linked
together by transform faults, as illustrated in
Fig. 2.4.

Transform faults are faults with a pure strike-
slip kinematics and a strike that reflects the local
direction of instantaneous motion between two
plates. Therefore, these faults are always paral-
lel to velocity vectors of relative motion. This
relative motion is clearly left-lateral strike-slip
in the case of dextral offset of the spreading
segments and vice versa. For example, all the
transform faults shown in Fig. 2.4 imply left-
lateral strike-slip motion. The adjective “trans-
form” that is attributed to these tectonic features
arises from the fact that they generate active
bathymetric discontinuities, as far as the two
plates move apart. Such discontinuities are called
fracture zones and represent linear features that
apparently pursue the transform faults toward
the continental margins (Fig. 2.4). Therefore, the
latter seem to be “converted” into a different

Fig. 2.5 Age discontinuities across fracture zones. Two
points, x and y, on plate A, having very different ages, are
at contact through a transform fault. When the two points
are moved to locations x0 and y0, their difference of age,
�T, is conserved

class of faults, characterized by vertical slip. The
explanation of this phenomenon is quite simple.

Let v and L be, respectively, the relative ve-
locity along a transform fault and its length, and
consider a point x close to one of the ends of
the fault (Fig. 2.5). The age of formation of the
crust at x is T(x)D 2L/v, because the velocity
of accretion on both sides of the ridge is on
average v/2. This point is clearly at contact with
another point, say y, which is close to the ridge
and has age T(y)D 0. Therefore, the difference
of age between x and y is �TD 2L/v. At any
successive time t, these two points will be dis-
placed away from the ridge by the same offset,
to two close locations x0 and y0, independently
from any change of v with time. Therefore, they

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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will remain neighbor points. Thus, the motion of
points x and y away from the ridge will leave
a linear track of age discontinuities, �T, which
crosses the whole oceanic part of the plate and
reaches the continental margin, as illustrated in
Fig. 2.5.

Furthermore, a specular trace will form on
the conjugate plate, reaching the opposite con-
tinental margin. Generally, fracture zone tracks
are easily identified on bathymetric or gravity
anomaly maps (Fig. 2.4), because age disconti-
nuities are always associated with bathymetric
gaps. In Chap. 12, we shall prove that the depth
to the sea floor increases with the crustal age,
so that an age discontinuity always implies a
bathymetric gap. Despite the invariance of the age
discontinuity, �T, along a fracture zone track, the
difference of depth across the two sides changes
with time, because the rate of sea floor subsidence
is not a linear function of time, especially dur-
ing the first �100 Myrs. This implies a lateral
discontinuity in the amount of subsidence, so
that fracture zones can be assimilated to vertical
faults characterized by vertical slip. Therefore,
as suggested by their name, transform faults are
converted to a different class of faults, fracture
zones, which are not associated with horizontal
slip and do not represent plate boundaries, but
simply are active bathymetric gaps associated
with discontinuities in the age of the sea floor.
Finally, it is necessary to keep in mind that
although transform faults and ridge segments are
very different tectonic features, they are part of
unique plate boundaries, namely the mid-ocean
spreading centers. In other words, they cannot be
considered as distinct classes of plate boundaries.

Now let us consider the kinematics along mid-
ocean spreading ridges. In principle, these fea-
tures should be orthogonal to the relative velocity
field between two plates. However, the exam-
ple of Fig. 2.4 shows that the azimuth of the
segments composing a mid-ocean ridge is not
necessarily 90ı from the direction of spreading.
This phenomenon is called spreading obliquity,
and is quantified measuring the angle between
the normal to the ridge trend and the direction of
a transform fault. Observation suggests that the
spreading obliquity is particularly strong in the

case of slow-spreading ridges (e.g., Southwest
Indian Ridge and North Atlantic Ridge), where
it could be as high as �80ı (Whittaker et al.
2008). It is always necessary to take into ac-
count of this parameter when interpreting marine
magnetic data. In Chap. 5, we shall learn how
to deal with oblique spreading. In general, plate
kinematics studies require an accurate prelimi-
nary mapping of the plate boundaries through
GIS software, especially in the case of mid-
ocean ridges. In this instance, the location and the
geometry of the segments forming a spreading
center, as well as the trace of transform faults,
can be established by close inspection of the
axial valley topography and by the analysis of
gravity anomalies (Fig. 2.4). However, in most
cases a precise definition of the ridge segments
will require a successive refinement, based upon
the analysis of marine magnetic anomalies, as we
shall see in Chap. 5. The overall geometry of mid-
ocean ridges is not constant through the geologi-
cal time. It is subject to changes, even in absence
of variations of relative motion, as a consequence
of three basic mechanisms: spreading asymmetry,
ridge jumps, and ridge segment reorientations.
Figure 2.6 illustrates these three possibilities.

Spreading asymmetry occurs when the rate
of accretion of new crust is not uniform across
the two sides of a spreading segment (Fig. 2.6a).
Let v be the full spreading rate along a ridge
segment. This quantity clearly coincides with the
local magnitude of the velocity vector of a plate
A with respect to another plate B.

We can introduce a quantity �1 < ’ <C1,
such that the widths of the crust accreted to the
right and left sides of a spreading segment in a
time interval �t are:

�xR D 1

2
.1C ’/ v�t I�xL D 1

2
.1 � ’/ v�t

(2.32)

The quantity ’ is an expression of the asym-
metry of spreading across a mid-ocean ridge
segment. In normal conditions (’D 0), a spread-
ing segment moves at velocity v/2 with respect
to each of the conjugate plates. In the case of
spreading asymmetry, the segment will move at a

http://dx.doi.org/10.1007/978-3-319-09135-8_12
http://dx.doi.org/10.1007/978-3-319-09135-8_5
http://dx.doi.org/10.1007/978-3-319-09135-8_5
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Fig. 2.6 Mechanisms responsible for the changing ge-
ometry of mid-ocean ridges. After a time interval �t, a
normal ridge segment travels a distance �x D ½v�t. In
a the third segment shows spreading asymmetry, because
a larger amount of crust is accreted to the left side. In b
there is no spreading asymmetry, but after a time interval

�t the third segment becomes extinct and a new spreading
segment forms at another location, transferring a piece
of oceanic lithosphere to the conjugate plate. In c the
orientation of the third segment changes as a consequence
of variations of spreading asymmetry along the same
segment

velocity v0D (1C’)v/2 with respect to one plate,
and v00D (1�’)v/2 with respect to the conjugate
plate. Therefore, any variation of asymmetry be-
tween neighbor segments of a mid-ocean ridge
will modify the geometry of the plate boundary,
as illustrated in Fig. 2.6a. Another mechanism,
which is responsible for changing the geome-
try of the mid-ocean ridges, is represented by
the ridge jumps (Fig. 2.6b). In this instance,
a spreading segment is abandoned and a new
center of spreading forms at a certain distance
from the original position. The final effect is
apparently similar to that associated with spread-
ing asymmetry. However, in this instance the
piece of intervening lithosphere between the old
and the new segments will be accreted instan-
taneously to the conjugate plate, determining a
complex pattern of the magnetic lineations and
possible errors in the interpretation of the sea
floor magnetization pattern. This problem will
be considered in detail in Chap. 5. Finally, the
analysis of marine magnetic anomalies shows
that the geometry of the mid-ocean ridges can
be modified by reorientations of the spreading
segments. This phenomenon is ultimately a spe-

cial form of spreading asymmetry, which may
linearly change within the same segment, deter-
mining a continuous rotation that accommodates
the reorientation. The mechanism was originally
proposed by Menard and Atwater (1968) to ex-
plain the effect of changes of the Euler pole of
relative motion, and consequently of the spread-
ing directions, on the mid-ocean ridge geometry.
A series of subsequent studies (e.g., Hey 1977;
Hey et al. 1988) proposed a much more complex
mechanism for the reorientation of the spreading
segments, known as ridge propagation. However,
the simple process of segment rotation is a still
valid model in absence of Euler pole changes.

Apart from the present day system of mid-
ocean ridges, the oceanic domain also includes
many extinct plate boundaries that in origin were
spreading centers. Some of these extinct bound-
aries were produced by large-scale ridge jumps,
which left wide remnant oceanic basins. Impor-
tant examples are the proto-Atlantic Basin in the
central Atlantic (e.g., Schettino and Turco 2009),
the Mascarene Basin in the Indian Ocean (Schlich
1974), the Rockall Trough (Smythe 1989) and
the Norway Basin (e.g., Gaina et al. 2009) in

http://dx.doi.org/10.1007/978-3-319-09135-8_5
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Fig. 2.7 Reconstruction
of the North Atlantic
region in the early
Burdigalian (�20 Ma).
The continental lithosphere
is shown in grey. Thinned
continental areas are shown
in light brown. Regions in
black are LIPs. Present day
coastlines are shown for
reference. Late Cretaceous
oceanic crust is shown by
green colours, Eocene crust
is shown by yellow to
orange colours, Oligocene
oceanic crust is shown in
red. RR Reykjanes Ridge,
RT Rockall Trough, NB
Norway Basin, JM Jan
Mayen microcontinent, AR
Aegir Ridge

the North Atlantic. Figure 2.7 illustrates a plate
reconstruction of the North Atlantic region at
�20 Ma, shortly after a westward ridge jump
that determined the extinction of the Aegir Ridge
and cessation of extension in the Norway Basin.
The newly formed spreading segment rifted the
Greenland margin, determining the separation of
a continental fragment: the Jan Mayen microplate
(Jung and Vogt 1997).

Other extinct plate boundaries formed as a
consequence of cessation of divergent motion
between the conjugate plates, not because of a
reorganization of the boundary. In this instance,
a direct causal relation with a nearby onset of
spreading is missing, although the final result is
the same: a remnant oceanic basin and an extinct
ridge testifying the former existence of divergent
plate motions. Important examples of remnant
oceanic basins associated with ridge extinction
are the Jurassic Ligurian Basin in the western
Mediterranean (Schettino and Turco 2011), the

Labrador Basin (Roest and Srivastava 1989), the
South China Sea (Briais et al. 1993), the Somali
Basin (e.g., Coffin and Rabinowitz 1987), the
Gulf of Mexico (Ross and Scotese 1988), the
Amerasian Basin (Rowley and Lottes 1988), and
the Tasman Sea (Gaina et al. 1998).

The second kind of oceanic plate boundaries
is represented by the trench zones (or subduction
zones). These are convergent boundaries, where
oceanic lithosphere bends and sinks into the as-
thenosphere. The structural, stratigraphic, and
petrologic features associated with trenches and
island arcs have been described extensively in the
geologic literature (e.g., Frisch et al. 2011). Here
we shall consider only some aspects that are sig-
nificant for plate kinematics. The geometry of a
subduction zone is that of a small circle arc, both
if we consider the subducting lithosphere as a
flexible-inextensible spherical shell (Frank 1968)
or as a body that can be extended or shortened
during the passive sinking in the mantle (e.g.,
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Fig. 2.8 Geometry of the
Mariana subduction zone.
The brown line represents
the best-fit small circle to
the trench zone, determined
using the algorithm of
Schettino and Tassi (2012).
The background image
shows the free-air gravity
anomaly field (Sandwell
and Smith 1997). The red
line is the active back-arc
spreading center (see text).
The West Mariana Ridge is
an extinct island arc

Schettino and Tassi 2012). Figure 2.8 shows the
example of the Mariana subduction zone in the
western Pacific, which forms an almost perfect
small circle arc. We have already mentioned that
the geometry of tectonic plates can be represented
by spherical caps. Therefore, trench zones can be
viewed as the surficial hinge lines of bending of
spherical caps, associated with the subduction of
oceanic lithosphere. Such hinge lines do not have
constant curvature, but their geometry generally
varies to accommodate changes of the relative ve-
locity field of convergence. For example, Fig. 2.8
shows that the present day Mariana Trench is
deforming as a consequence of an extensional
process in the back-arc area, accompanied by the
formation of new oceanic crust along a back-
arc spreading center in the Mariana Trough. This
spreading ridge is placed to the East of an extinct
island arc, the West Mariana Ridge, which is
representative of a previous geometry of sub-
duction. Almost every subduction zone shows
evidence of back-arc activity, either currently or
sometime in the past. Even in the case of Andean-

like trench zones, where the oceanic lithosphere
is subducting beneath a continent, we observe
back-arc deformation of the continental margin
in the geologic past (e.g., Dalziel 1981; Ramos
et al. 2002), to the point that the present day
western margin of South America has the shape
of a sequence of arcuate hinge lines, which can
be represented anyway by small circle arcs.

An important aspect of the subduction kine-
matics is represented by the velocity relations
between subducting plate, hinge zone, and upper
plate (Fig. 2.9). Hamilton (2002) criticized what
he defined a widespread misconception in the
Earth Sciences community, consisting in the view
that subducting plates roll over stationary hinge
lines and slide down fixed slots. In reality, in
a reference frame fixed to an unsubducted plate
A, the hinge line H always moves toward the
oceanic foreland with some velocity vHA, just as
the margin of the overriding plate, B, and with
equal velocity (because vBHD 0). If we consider
a reference frame fixed to the top of the transition
zone, O, then the hinge line and the overriding
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Fig. 2.9 Cross-sections illustrating the kinematics of a
subduction zone. Velocity vectors vA, vB, and vS are
relative to the lower mantle, vSB is the slab velocity relative
to plate B. Lines in the upper mantle represent streamlines,

everywhere parallel to mantle velocity vectors (Chap.
13). Two end-member dynamic scenarios are shown. Any
other dynamic scenario results from superposition of these
two basic configurations

plate will move at a velocity given by:

vH D vB D vHA C vA (2.33)

If the relative hinge line velocity vHA

increases, for any reason, then the overriding
plate margin will be subject to back-arc
extension, in order to preserve the coupling
between margin and hinge line, a phenomenon
which is known as trench retreat. Conversely,
any decrease of vHA will lead to episodes of
back-arc compression and shortening. In general,
the deformation of active continental margins
and island arcs is an expression of both spatial
and temporal changes of the relative velocity
field between the convergent plates, as well
as of variations in the hinge line velocity vHA.
Regarding the possibility that subducting plates
roll over stationary hinge lines, thereby they
would slide down fixed slots, this is not a wrong
interpretation of the subduction process but one
of two end-member geodynamic configurations
at a subduction zone, as illustrated in Fig. 2.9a.
In fact, when the velocity vBD 0, a subducting
plate effectively bends and rolls over a fixed
hinge line in the mantle reference frame,
dragging the surrounding asthenosphere, as
we shall prove in Chap. 13. In these dynamic
conditions, the pull exerted by the sinking
slab is balanced by the resistive viscous drag
and subduction tends to proceed at constant
velocity. However, the active drag exerted by the
corner asthenospheric flow below the overriding
plate B pulls this plate trenchward, so that B
will acquire a small velocity vB opposite to

vA. The velocity vB increases progressively
until the additional frictional resistance that is
generated at the trench balances the trenchward
asthenospheric drag. If the starting dynamic
configuration is that illustrated in Fig. 2.9b, so
that the overriding plate velocity vB¤ 0 while
vAD 0, the induced oceanic corner flow below
A drags actively this plate trenchwards, thereby
A will acquire a small velocity opposite to vB.
Therefore, the final equilibrium configuration
will be similar to the previous one. Finally,
hypothetical scenarios such that the two
converging plates move in the same direction
but with different velocity (in the upper mantle
reference frame) cannot be stable geodynamic
configuration. In fact, in this instance the
excess hydrodynamic resistance exerted on the
slab should be supplied by additional torques
other than the known driving forces of plate
tectonics (Chap. 12). Subduction roll-back is the
geodynamic process determining the progressive
oceanward migration of the trench zone in the
upper mantle reference frame. In fact, in a
reference frame fixed to the subducting plate
A the hinge line always migrates toward the
foreland of A.

The third kind of oceanic plate boundary
is represented by strike-slip faults, which are
characterized by pure or prevalent left-lateral or
right-lateral motion. Differently from transform
faults, which must be considered in the context
of mid-ocean spreading centers, these structures
are truly independent plate boundaries, which
can be linked to mid-ocean ridges, trenches,
or other strike-slip faults. In the present day

http://dx.doi.org/10.1007/978-3-319-09135-8_13
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Fig. 2.10 Strike-slip plate
boundaries in the Scotia
Sea (yellow lines). The
arrows represent direction
and magnitude of the
relative velocity field
between plates pairs.
Numbers are magnitudes
of velocity in mm/year

Fig. 2.11 Flower structures associated with left-lateral transcurrent motion (From Frisch et al. 2011)

oceanic regions, only few examples can be
found that belong to this class of boundaries.
In the South America – Antarctica – Pacific
system, the northern, the southern, and part of
the western boundary of the Scotia plate are
classic examples of strike-slip plate boundaries
(Fig. 2.10). Other important examples are the
Owen Fracture Zone in the Arabian Sea (Fournier
et al. 2001), the Cayman Trough transform
system along the present day North America –
Caribbean plate boundary (Pindell et al. 1988),
and the McDougall Ridge in the southwest
Pacific (Lebrun et al. 2003).

We have mentioned that the continental coun-
terparts of the oceanic plate boundaries are zones
of active rifting, collision, or transcurrent motion.
It is interesting to note that while the average
relative velocity along rifts and orogenic belts
is one order of magnitude less than along the

oceanic domain analogues, in the case of tran-
scurrent boundaries the opposite is generally true.
For example, the magnitude of strike-slip motion
along modern transcurrent faults like the San An-
dreas Fault in western US (Pacific – North Amer-
ica boundary) and the North Anatolian Fault
in Turkey (Anatolia – Eurasia boundary) is re-
spectively of �47 mm yr�1 and �29 mm yr�1,
while less than 8 mm yr�1 and 11 mm yr�1

can be observed, respectively along the Owen
Fracture Zone and around the Scotia plate. From
the structural point of view, transcurrent bound-
aries are generally associated with characteristic
flower structures at the upper crustal level, whose
complexity arises from the necessity of accom-
modating transpressional or transtensional com-
ponents within a prevalent strike-slip kinematics.
Figure 2.11 illustrates the typical structural set-
ting along these boundaries.
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Fig. 2.12 Uniform stretching in McKenzie’s (1978) model of rifting

Important modern examples of transcurrent
boundaries are the San Andreas (e.g., Beck 1986)
and North Anatolian (Sengör 1979) faults men-
tioned above, the East Anatolian Fault of south-
ern Turkey (McKenzie 1976), and the Dead Sea
Fault Zone in Middle East (e.g., Garfunkel 1981;
Butler et al. 1997).

Rift zones are extensional plate boundaries,
which usually exhibit complex systems of normal
faults, linked together by transfer zones. The
basic model of evolution of the basins associated
with these fault systems is McKenzie’s (1978)
model, which assumes that the crustal stretching
generated by an extensional force field occurs
through a uniform continuous thinning of the
ductile lower crust, a process that is known as
pure shear. Conversely, extension in the brittle
upper crust would be accommodated symmetri-
cally by listric (upward-concave) normal faults,
as shown in Fig. 2.12. In the model of McKenzie
(1978), rifting events start with rapid stretching
of the continental lithosphere, which determines
passive upwelling of asthenosphere (Fig. 2.12).
This stage is characterized by faulting of the up-
per crust and tectonic subsidence. Then, on a time
scale of 50–100 Myrs conductive cooling of the
lithosphere determines an increase of thickness
and a phase of slow thermal subsidence that is
not accompanied by faulting.

The amount of thinning is measured by the
stretching factor, “, which is simply given by:
“DH1/H2, where H1 and H2 are respectively
the average thicknesses of the lithosphere at the

beginning and at the end of the phase of tec-
tonic subsidence. Although McKenzie’s model
furnishes a simple and elegant picture of the
thermal evolution of rift basins, many conjugate
pairs of continental margins show an asymmetric
pattern of faulting and the presence of exhumed
lower crust, which cannot be explained by the
symmetric model. Wernicke (1985) proposed an
alternative asymmetric model of rifting that de-
scribes accurately many geological features of
these zones (Fig. 2.13).

The key difference of Wernicke’s model with
respect to McKenzie’s model is the recognition of
low-angle detachment faults at crustal scale and
simple shear (that is, localized, non-distributed
shear) as the main mechanisms of lithospheric
thinning during rifting. In general, several suc-
cessive studies (e.g., Buck 1991; Brun 1999;
Corti et al. 2003) have shown that the models of
McKenzie and Wernicke must be considered as
descriptions of distinct modes of rifting. Depend-
ing from crustal thickness, heat flow, and rate of
extension, we can distinguish two basic modes
of rifting: (a) a wide rift mode, characterized
by high thinning of the crust and the mantle
lithosphere over an area larger than �100 km,
and (b) a narrow rift mode, in which extension
by normal faulting is concentrated in a limited
area (less than �100 km wide). Classic modern
examples of wide and narrow rifts are respec-
tively the Basin and Range region of western
US (Hamilton 1987) and the East African Rift
(e.g., Jestin et al. 1994). A transitional mode of
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Fig. 2.13 The simple
shear model of rifting of
Wernicke (1985)

continental extension is represented by the so-
called core complexes, in which high-grade meta-
morphic rocks from the middle to lower crust are
exposed at the surface, surrounded and overlain
by low-grade metamorphic rocks. This rifting
mode requires high extension rates over nar-
row zones and an extremely weak, low-viscosity
lower crust. In this instance, while extension pro-
ceeds, a lower crust inflow from the surrounding
region keeps the topography uniform.

Orogenic belts represent the last kind of con-
tinental plate boundaries. These are collisional
structures that should be distinguished from
other kinds of mountain belts, for example from
orogens associated with accretionary wedges,
like the northern Apennine chain of Italy (Treves
1984), or from Andean-type orogens associated
with subduction magmatism and accretion of
exotic terranes. Orogenic plate boundaries are
the product of continental collisions, which
follow the closure of intervening oceans in the
context of the Wilson cycle (see Sect. 1.3). The
tectonic style of these compressive structures is
sometimes called the Alpine style of orogeny
(e.g., Frisch et al. 2011), essentially because the
spectacular Alpine-Himalayan belt, extending
from western Europe to China, is the unique
example of active orogenic boundary in the
modern Earth. The formation of this mountain
belt started after the collision of three continental
masses, Africa, Arabia, and India, with the
southern Eurasian margin during the Eocene

(�50 Ma). This event followed the closure of the
neo-Tethys ocean, a wide oceanic domain that
existed between Gondwana and Eurasia since
the early Mesozoic (e.g., Schettino and Turco
2011). The collisional structures of this orogenic
belt are still active. This is confirmed both by
the diffuse seismicity (Fig. 2.14) and by space
geodetic observations across the mountain ranges
(Kreemer et al. 2003). Figure 2.14 shows the
chain of convergent and transpressive boundaries
composing the Alpine-Hymalaian belt. In the
next section we shall learn how the set plate
boundaries that are active at any given time
can be linked together to form a plate tectonic
configuration.

2.5 Triple Junctions

Both the direct observation of modern plates and
plate reconstructions show that plate boundaries
are joined together in groups of three, at loca-
tions that are called triple junctions. The lack of
higher order junctions is not casual but depends
from their instability. For example, it is easy to
show that a four-order junction always splits into
two triple junctions (e.g., Cox and Hart 1986).
McKenzie and Morgan (1969) showed that there
are 16 possibilities to form triple junctions by
linking three plate boundaries at a point. If we
designate by R, T, and F, respectively a mid-
ocean ridge, a trench, and a strike-slip fault, then

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 2.14 The Alpine-Himalayan collisional orogen.
This belt is composed by several plate boundaries linked
together (blue lines with labels). From the West, they are:
Alps, Dinarides (DIN), the North Anatolian Fault (NAF),

the Makran subduction zone (MAK), Sulaiman ranges
(SUL), and Himalayas (HIM). Yellow dots are earthquake
epicenters in the Harvard CMT catalog

the symbol RRR can be used to indicate a triple
junction where three spreading ridges meet, TTR
would indicate a link between two trenches and a
ridge, and so on. At any given time, a plate tec-
tonic configuration can be represented by a graph
G(j,b) (in the sense of Computer Science, e.g., see
Gould 1988 and Appendix 2) having j degree-
three nodes and b edges, corresponding respec-
tively to triple junctions and plate boundaries. In
this representation, which is useful to investigate
the topological properties of the global system of
tectonic plates, a plate P is defined by the ordered
cyclic sequence fJ1,J2, : : : ,Jng of triple junctions
that tie its boundaries. It should be noted that
in this representation the exact geometry of the
plate boundaries is unessential, because what we
are describing is a system of relations between
tectonic plates, their interactions, not the specific
geologic details that implement them. If J is an
arbitrary node in G(j,b), then J is a vertex belong-
ing simultaneously to three adjacent cyclic se-
quences. Starting from this node, the sequence of
triple junctions defining one of the corresponding
tectonic plates is obtained applying the following
simple traversal algorithm:

Algorithm 2.1 (Plate Traversal Algorithm)
1. Select an arbitrary edge of the starting node J;
2. Move to the neighbor node through the se-

lected edge. If this is the starting node J, then
stop;

3. Now you have two alternative (left and right)
edges to leave the current node. Select the left
edge;

4. Jump to step #2.

In this algorithm, the choice of one of the three
plates associated with J is performed implicitly
at step #1 through the selection of a starting edge.
The algorithm can be used as a base for the design
of more sophisticated computational procedures
that investigate the structure of a global plate
tectonic configuration.

The theoretical definition of tectonic plates
discussed above allows to classify them accord-
ing to the number of triple junctions that tie
the corresponding sequence of plate boundaries.
We define the order N of a tectonic plate as
the number of triple junctions that are traversed
applying algorithm 2.1, as illustrated in Fig. 2.15.
Figure 2.16 shows the present day plate tectonic

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 2.15 Definition of the order N of a tectonic plate

Fig. 2.16 Modern plate tectonic configuration and triple
junctions. Plate boundaries are a slightly modified version
of those proposed by Bird (2003). There are 23 major

plates, 42 triple junctions (red circles), and 63 plate
boundaries (green lines)

configuration, assuming a simplified version of
the plate boundaries proposed by Bird (2003).
This configuration does not include plates and
microplates whose relative velocity is negligi-
ble with respect to adjacent plates, for example
Adria in the central Mediterranean, or that are
expression of forearc deformation, such as the
Burma platelet in Southeast Asia (e.g., Vigny
et al. 2003). In addition, it does not include
small triple junction microplates such as the Juan
Fernandez (e.g., Anderson-Fontana et al. 1986)
and Galapagos (e.g., Lonsdale 1988) microplates
in the Pacific. It is not difficult to prove that two
simple equations allow to express the number of
plates p as a function of the number of plate
boundaries, b, and triple junctions, j.

They are:

�
b D 3 .p � 2/

j D 2 .p � 2/
(2.34)

In fact, if we start from a hypothetical Earth
with only three plates (pD 3), then it is quite
evident that we have bD 3 and jD 2. In order to
generate a new plate, we must split an existing
one. This operation requires cutting two edges
of the plate through the insertion of two new
triple junctions and a new edge connecting them.
Therefore, for each new plate we add two triple
junctions, thereby j is always even. Regarding
the number of plate boundaries, although we add
only one new edge, the operation of cutting two
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Table 2.1 Order of modern tectonic plates

Plate N Plate N Plate N Plate N

Pacific 13 Nazca 7 Philippine 5 Scotia 3

N. America 10 Australia 5 Arabia 5 Anatolia 3
Eurasia 9 India 5 Sundaland 5 Amurian 3

Antarctica 9 Somalia 5 Caribbean 4 J. de Fuca 2

S. America 8 Cocos 5 Rivera 3 Easter 2

Africa 7 Okhotsk 5 S. Sandwich 3

existing boundaries determines further increase
of the total number of plate boundaries by two
units. Therefore, there are three additional bound-
aries for each new plate. This proves Eq. (2.34).

The present day configuration illustrated in
Fig. 2.16 includes 23 plates. Thus, Eq. (2.34)
requires that jD 42 and bD 63. The order N of
these plates is listed in Table 2.1. The order of a
tectonic plate measures the degree of interaction
with the global system, because it coincides with
the number of neighbor plates. For example, in
the modern Earth’s configuration the dynamics
and kinematics of the Pacific and N. American
plates have the largest impact on the global plate
system, because they are interacting with 14 of
the remaining 21 tectonic plates.

The classification and the kinematics of triple
junctions has been the subject of several studies
since the 1960s (McKenzie and Morgan 1969;
Patriat and Courtillot 1984; Kleinrock and Phipps
Morgan 1988). The basic principle describing the
instantaneous kinematics of these important tec-
tonic features is represented by the closure rule.
In general, if ¨AB, ¨BC, and ¨CA are respectively
the Euler vectors of a plate A with respect to
another plate B, of B with respect to a third plate
C, and of C relative to A, then the closure rule
simply states that:

¨AB C¨BC C¨CA D 0 (2.35)

If this three-plates system is connected
through a triple junction J, then this point
belongs simultaneously to A, B, and C. Therefore,
applying Eq. (2.17) we have that in this case the
closure rule can be expressed in terms of linear
velocities at the triple junction:

vAB C vBC C vCA D 0 (2.36)

The velocity triangle associated with Eq.
(2.36) can be used to predict the kinematics
of triple junctions. The method is illustrated
in Fig. 2.17 through four significant examples.
It is useful to assume a reference frame fixed
to one of the three plates (for example, A).
Strike-slip boundaries and trenches must be
moved according to the magnitude of the relative
velocity vectors. However, trenches are always
displaced with the upper (overriding) plate,
thereby they remain at rest when this coincides
with the reference plate. An important geological
consequence of this behaviour is represented
by the development of strike-slip boundaries at
triple junctions where a subduction flip occurs
(Fig. 2.17 bottom right). This is a general result,
which in principle may be observed along any
composite flipping convergent boundary between
two plates, as illustrated in Fig. 2.18.

Differently from the other plate boundaries,
ridges move at half of the relative velocity v
between two conjugate plates (Fig. 2.17 top left).
In the case of an RRR junction, an extra space
of triangular shape is created during the dis-
placement of the three spreading segments, with
edges given by: vAB�t, vBC�t, and vCA�t. The
new triple junction will be placed within this
triangle, but the link to the original segments may
be somewhat complicated. It may involve either
a simple propagation of the spreading segments
toward the new location of the triple junction,
or the formation of new spreading segments and
even of a small microplate, as it is observed in the
East Pacific region (Juan Fernandez and Galapa-
gos microplates). The fact that a ridge moves at
half velocity with respect to the reference plate
clearly implies that any set of points located near
a spreading segment at time t will be displaced



2.6 Tectonic Elements 49

Fig. 2.17 Evolution of RRR, FFF, and TTT triple junc-
tions. In all panels, a reference frame with origin in O
is fixed to A. Top left: An RRR junction. Arrows are full
spreading velocity vectors at the triple junction J. The
new location of J after a small time interval �t can be
anywhere in the central dashed triangle. The ridges link
to this new location of J by propagation, development of
new transforms, or oblique spreading. Dark green lines
are points having the same sea floor age (isochrons). Top
right: An unstable FFF triple junction, which collapses
into a new triple junction microplate. In this example,
three new RRF junctions are created that substitute the

original junction J. Dashed lines represent initial locations
of plate boundaries. Bottom: The two different kinds of
TTT junctions. Dotted lines represent subducted points
of lower plate margins. The left panel shows a stable
situation where A is always upper plate, B is both upper
and lower plate, and C is always lower plate. The junction
J migrates rightward along the A�C boundary. The right
panel illustrates a much more complicated configuration,
in which A, B, and C are all upper and lower plates at the
same time. In this instance, the triple junction is not stable,
and new strike-slip boundaries develop (blue lines)

Fig. 2.18 Development of
strike-slip faults along
flipping convergent
boundaries

away from the ridge, after a time interval �t,
by a distance v�t/2 (Fig. 2.6). If we link all the
displaced points of age t from one side of a ridge,
and combine these segments with points placed
along the fracture zones, we obtain a line that
represents the geometry of the mid-ocean ridge
at a certain time t in the past. Such a line is called
an isochron. In Chap. 5, we shall learn the process
of construction of isochron maps, which describe
the pattern of sea-floor spreading through the
geological time. For the moment, it is sufficient
to note that in the reference frame of a plate A,
an isochron of the conjugate plate B moves at
full velocity v, just like trenches and strike-slip
boundaries, as illustrated in Fig. 2.17.

2.6 Tectonic Elements

Computer modelling of plate kinematics has the
primary objective of reconstructing sequences of
past plate configurations. It requires, at a first
step, the specification of the tectonic elements
that will be included in the reconstructions. On
a present day tectonic map, these are defined
as rigid crustal blocks, bounded by paleo-faults,
which have had an independent kinematic history
in the geologic past (Ross and Scotese 1988).
This quite general definition applies equally well
to different scales of modelling (global, regional,
or local) and to different structural features, such

http://dx.doi.org/10.1007/978-3-319-09135-8_5
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Fig. 2.19 Major Mesozoic
and Cenozoic tectonic
elements of Africa. MOR
Morocco, NWA northwest
Africa, CAF central Africa,
NEA northeast Africa,
NUB Nubia, SOM Somalia,
TUN Tunisia. Numbers
refer to the temporal range
of independent motion

as exotic terranes, thrust sheets, microplates, sliv-
ers, continents, blocks of oceanic crust, etc. Usu-
ally the boundaries of these tectonic elements are
traced using specialized GIS software, such as
GlobalMapper™, but some plate tectonic mod-
elling tools allow to draw directly the shape of
the crustal blocks as spherical polygons (Schet-
tino 1998, 1999a). If we normalize the Earth’s
radius to unity, then a spherical polygon repre-
senting a tectonic element is a cyclic ordered
sequence of n unit vectors, PDfr1,r2 : : : ,rng,
placed along its boundaries. The greater is the
number of polygon vertices, n, the higher is the
detail through which we graphically represent a
crustal block. In general, the definition of the
tectonic elements is a digitizing procedure, which
could also require employing specialized hard-
ware (digitizers) and thematic base maps, such as
gravity or magnetic anomaly maps, topography,
bathymetry, geologic maps, structural maps, etc.
In any case, the tectonic elements have two time
attributes that specify the temporal range of activ-
ity along their boundaries. These attributes define
the time interval of existence of the crustal blocks
as independent kinematic entities. For example,

Mesozoic plate reconstructions involving Africa
require the specification of at least six tectonic
elements to account for the deformation of this
continent. They are: Morocco, Tunisia, northwest
Africa, northeast Africa, central Africa, and Nu-
bia (Fig. 2.19).

Geological field studies performed in Mo-
rocco suggest that this block moved with respect
to northwest Africa only between �230 Ma (late
Ladinian) and �185 Ma (Pliensbachian), during
the formation of the Atlas Rift (e.g., Laville
and Piqué 1991), whereas for the rest of the
Mesozoic it remained fixed to northwest Africa
(Schettino and Turco 2009). Similarly, north-
west Africa moved with respect to central Africa
only between �120 Ma (Aptian) and �80 Ma
(Campanian), during an episode of extension that
produced the Benue Trough, a failed arm of the
northward propagating South Atlantic rift (e.g.,
Fairhead 1988). Therefore, it is always neces-
sary, when defining a set of tectonic elements,
to start from reliable field data, having strong
geochronologic constraints, and use only faults
that were active during the time interval under
consideration.
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Fig. 2.20 Eastern North
American COB, based on
the maximum horizontal
gradient of the free-air
gravity anomaly field
(Sandwell and
Smith 1997)

Some tectonic element boundaries are defined
on the basis of geophysical constraints. An
important example is represented by COBs (see
Sect. 1.3). In the first plate reconstructions based
on rigorous computational methods, Bullard
et al. (1965) matched the conjugate continental
margins around the Atlantic on the basis of a
fitting algorithm. They applied the method to
the 100, 500, 1,000, and 2,000 fm isobaths (1
fathomD 6 ft), then chose the best fitting set of
curves (500 fmD 914.4 m) as most representative
of the conjugate COBs.

Although this method produced a set of
reconstructions that resisted through time and
can be considered milestones in the history
of plate kinematics modelling, none of the
selected isobaths was really representative of the
true boundary between continental and oceanic
crust. The shape of bathymetry contour lines is
strongly affected by the sedimentary cover. For
instance, deposits associated with the delta of
a great river (such as the Nile or the Ganges)
can progressively shift the 1,000 mt isobath
seawards by hundreds of kilometers in a few

million years. The existence of such processes
implies that even though conjugate isobaths may
fit well at the beginning of the ocean opening,
subsequent sedimentation generally decreases
this initial goodness of fit. Therefore, more recent
studies have adopted a geophysical definition of
the COBs. For example, Schettino and Scotese
(2005) assumed that the COBs were associated
with the maximum horizontal gradient of the
gravity anomaly field. This assumption was based
on the observation that marine gravity anomaly
maps adequately filter the sediment cover,
and that COBs are associated with important
lithological discontinuities, which give rise to
sharp variations of the gravity anomaly field.
In this context, free-air gravity anomaly maps
such as those proposed by Sandwell and Smith
(1997) represent an invaluable tool for modern
plate tectonic modeling. Figure 2.20 shows a
map of the horizontal gradient of the gravity
anomaly field along the eastern margin of North
America. The line of maximum gradient can
be easily used to trace the North American
COB.

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 2.21 Pattern of magnetic anomalies along the east-
ern North American margin and in the western central
Atlantic, extracted from the global data set of Korhonen
et al. (2007). Positive anomalies are shown in dark green.
The location of the ECMA (vertical hatch) marks a zone

of transitional crust (or anomalous oceanic crust) along the
volcanic margin. The yellow line shows the location of the
COB according to the gravity data of Fig. 2.20 (maximum
horizontal gradient of the gravity anomalies)

Another class of geophysical markers that are
useful to identify COBs is represented by the
magnetic anomalies that border volcanic OCTs
(see Sect. 1.3). A classic example is represented
by the East Coast Magnetic Anomaly (ECMA) of
eastern North America (e.g., Schettino and Turco
2009). In this instance, a strong linear magnetic
anomaly associated with the extrusives and in-
trusives of the initial magmatic pulse marks the
site of transition from the rifting stage to drifting,
hence the location of the COB, as illustrated in
the example of Fig. 2.21. However, a comparison
between the location (and the geometry) of the
ECMA and the COB defined on the basis of grav-
ity anomaly data (Fig. 2.20) shows that the co-
incidence of these features is only approximate,
and that differences of up to 70–80 km exist be-
tween the two lineaments. Therefore, even when
based on a geophysical approach, the definition
of COBs remains to some extent qualitative.

A major problem in the definition of both
COBs and tectonic boundaries that are placed
along rift zones is represented by the considerable
thinning that characterizes the passive margins
of the corresponding tectonic elements. If we
use one of the geophysical techniques described
above to define a conjugate pair of COBs, then a
reconstruction based on the fit of the margins will
be representative of the onset of sea floor spread-
ing, not of the pre-rift configuration. In fact, tec-

tonic elements whose extensional boundaries are
defined using potential field data (either gravity
or magnetic data) are stretched elements, which
should be restored to their original size when
the objective is to make a pre-rift reconstruction.
There are three approaches to the solution of
this problem, which clearly does not affect the
reconstruction of the spreading history of oceanic
basins. All these methods require an estimation
of the amount of stretching that occurred dur-
ing the rifting stage. This is usually expressed
in terms of stretching factor “ (see Sect. 2.4).
A determination of this quantity can be made
when a set of crustal profiles along the continental
margins, obtained from seismic refraction exper-
iments, is available (e.g., Schettino and Turco
2009). The first step consists into an estimation
of the directions of stretching, for example by
landward prolongation of the first post-rift direc-
tions of sea floor spreading. We shall see that
these directions can be easily calculated on the
basis of a kinematic model. Then, the seismic
cross-sections are projected onto the directions of
stretching, to avoid an incorrect determination of
the continental margin width. At the next step, the
upper and lower boundaries of the stretched crust,
the latter coinciding obviously with the Moho,
are identified on the cross-sections. Assuming
that seismic profiles always start on unstretched
crust, then these boundaries are two functions,

http://dx.doi.org/10.1007/978-3-319-09135-8_1
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Fig. 2.22 Seismic
refraction profile SIS-04,
offshore Morocco
(Contrucci et al. 2004),
projected onto the direction
of Triassic-Jurassic rifting
(top). The green line
represents the bathymetric
surface. The bottom panel
shows a plot of the crustal
thickness (excluding
sediments),
H(x) D a(x)�b(x), along
the margin. The stretched
continental margin as
width L Š193 km. If we
restore the thickness to
H0 D 35 km, the width of
the margin is reduced to
L0Š110 km (pre-rift
width). Therefore, the
stretching factor “ is given
by: “ D L/L0Š1.75

say aD a(x) and bD b(x), of seaward increas-
ing offsets x along the profile. The example il-
lustrated in Fig. 2.22 shows the seismic pro-
file SIS-04, located offshore Morocco (Contrucci
et al. 2004), after projection onto the direction
of Triassic-Jurassic rifting (Schettino and Turco
2009). If L is the size of the stretched margin
(for example determined by the COB) and H0 is
the normal unstretched crustal thickness, then the
pre-rift restored size, L0, and the stretching factor,
“, will be given by (Fig. 2.22):

L0 D 1

H0

LZ

0

Œa.x/ � b.x/� dx � 1

H0

LZ

0

H.x/dx

(2.37)

“ D L=L0 D LH0

LZ

0

H.x/dx

(2.38)

As soon as the stretching factor “ has been
estimated, there are three possibilities for taking
into account thinning of passive margins during
the syn-rift stage in pre-rift reconstructions. In
a first method, the tectonic elements are defined
through their present day stretched boundaries,
but a pre-rift reconstruction will require an over-
lap of the stretched margins, as illustrated in
Fig. 2.23. This method works well both in the
case of passive margins of oceans and for failed
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Fig. 2.23 Overlap of the stretched continental margins in
absence of palinspastic restoration. Let W be the width
of the oceanic domain. In a pre-rift reconstruction, plate
B is displaced by W C (L–L0) C (L0–L 0

0) with respect to
the reference plate A, because the unstretched margins
(dashed lines) must be matched. Therefore, the stretched
continental margins will overlap by a quantity F D (L–
L0) C (L 0–L 0

0)

rifts. The amount of overlap is locally defined by
the quantity:

F D .L �L0/C �L0 � L0
0

�
D L0 .“� 1/C L0

0

�
“0 � 1

�
(2.39)

where the quantities L0, L
0

0, and “0 refer to the
conjugate plate. A second possibility requires a
preliminary restoration of the tectonic elements
to their unstretched shape through a process
that geologists call palinspastic restoration (e.g.,
Schmid et al. 1996; Schmid and Kissling 2000;
Schettino and Turco 2006). In this instance,
the boundaries of conjugate tectonic elements
will match in pre-rift reconstructions, but a
reconstruction at the time of rift-drift transition
will show a gap. Finally, a third approach could
be releasing the constraint of rigid tectonic
elements and allow stretching (or shortening)
of the crustal blocks along the directions of
relative motion. A modern computer program for

making plate reconstructions should allow usage
of this method, which is particularly attractive
in the case of small-scale reconstructions of
collisional settings and represents a link between
the classic approach of rigid plate kinematics,
mostly suitable for describing the evolution of
oceanic basins, and structural geology. In this
approach, the amount of deformation (i.e. strain)
of the tectonic elements should be specified
directly in the kinematic model, and the shape
of any crustal block included in the compilation
of tectonic elements would be defined by the
present day stretched or shortened margins,
so that it would not be necessary anymore to
perform manually a palinspastic restoration. In
this instance, the procedure of restoration would
be accomplished automatically by the software
with the correct timing.

2.7 Plate Circuits and Rotation
Models

Now we will consider the problem of represent-
ing the motion of a set of tectonic elements
through the geological time. The kinematics of
a set of tectonic plates can be described by
generating a sequence of plate reconstructions,
eventually combined into a computer animation.
In this representation, the temporal range of the
reconstructions is always subdivided into a series
of tectonic stages, time intervals during which
the relative motions can be described as rotations
about fixed Euler axes at constant angular veloc-
ities. The existence of such time intervals, which
may span several million years, is probably the
most fundamental principle of plate kinematics.
During a stage, it is possible to determine a set
of plate pairs (A,B), sharing common boundaries,
such that the motion of B with respect to A,
considered at rest in the present day position,
can be represented as a rotation about a fixed
Euler axis at constant angular velocity ¨. In this
instance, the relative motion between any plate
pair in the set occurs, within each stage, along
flow lines that are small circle arcs about an
Euler axis. The experimental evidence of this
fundamental principle relies on the analysis of
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Fig. 2.24 Geometry of fracture zones. In a reference
frame fixed to A, plate B rotates counterclockwise about
pole P1 by an angle �1 (stage 1). The resulting fracture
zone has the shape of a small circle arc about P1 (blue

line). The subsequent clockwise rotation about pole P2

during stage 2 separates the fracture zone in two arms
and inserts a new small circle about P2 in the central zone
(green line)

marine magnetic anomalies and the observation
that the trace of oceanic fracture zones can be
invariably decomposed into chains of small circle
arcs. However, we shall prove that it has a more
general validity. Furthermore, this principle puts
strong constraints on the equilibrium of the driv-
ing forces of plate tectonics, thus representing a
conceptual linkage between plate kinematics and
geodynamics.

The sketch of Fig. 2.24 illustrates the pro-
cess through which a fracture zone assumes the
distinctive shape of a chain of small circles.
On the basis of the fundamental principle stated
above, if (T0,T2, : : : ,Tn) are stage boundaries,
T0 < T1 < : : : < Tn, then there exist n stage poles
P1,P2, : : : ,Pn such that the relative displacement
of a plate B during the k�th stage can be rep-
resented by a finite rotation matrix SBA(Tk�1,Tk)
about the axis nk associated with the k�th Euler
pole Pk (Eq. 2.18). This rotation, which moves
B from the location at time Tk�1 to the position
occupied at time Tk, is called a stage rotation.
It can be represented either by matrix compo-
nents (Eq. 2.18) or as a triplet (œk,¥k,�k), where
(œk,¥k) are the geographic coordinates of a stage
pole Pk and �k is the finite angle of rotation
during that stage (Fig. 2.24). Clearly, if a set of
forward transformations SBA(Tk�1,Tk) has been
established, we can also move back through time
and determine the relative position of B at time
Tk�1 given the position at time Tk. This oper-
ation simply requires application of the inverse
transformation:

S BA .Tk; Tk�1/ D S �1
BA .Tk�1; Tk/ (2.40)

If Tk�1�T �Tk is an intermediate time during
the k�th stage, then the relative position of B at
time T can be determined by taking as rotation
angle the reduced angle �(T):

�.T / D T � Tk�1

Tk � Tk�1

�k (2.41)

Now let us consider the central point of a
transform fault that belongs to a present day
or extinct mid-ocean ridge. Let r0 be the posi-
tion vector of this point. We are looking for an
algorithm that simulates the geometry of the frac-
ture zone passing through r0. The task should be
accomplished calculating iteratively the location
of this point, relative to each of the conjugate
plates A and B, at any time T 2 [T0,Tn], where
T0 and Tn are respectively the time of onset of sea
floor spreading and the present day (or the time
of extinction). In this algorithm, it is necessary
to take into account that for any stage the point
moves by half of the full stage angle �k on each
of the conjugate plates. Therefore, the point must
be rotated using reduced backward stage pole
matrices, S�

BA(Tk, Tk � 1) and S�

AB(Tk, Tk � 1), hav-
ing the same stage pole locations of SBA(Tk, Tk � 1)
and SAB(Tk, Tk � 1), respectively, but halved stage
angles. If Tk�1�T �Tk, then the location of r0 at
time T on plate A, rA(T), will be given by:

rA.T / D S �
BA .Tk; T / : : : S �

BA .Tn�1; Tn�2/

� S �
BA .Tn; Tn�1/ r0 (2.42)
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Fig. 2.25 Construction of flow lines. The sequence of
stage rotations is the same of Fig. 2.24, and the dashed
line shows the corresponding fracture zone

A similar formula allows to calculate the lo-
cation of r0 at time T on plate B, rB(T). This
algorithm can be used to test the compatibility
of existing kinematic models with real fracture
zones trend. In fact, the chain of rotations in-
cluded in Eq. (2.42) implies that even small errors
on the single stage rotations are enhanced after
few matrix multiplications. The algorithm, which
should reproduce the geometry of any fracture
zone, was applied for the first time by Shaw
(1987) in a study on the South Atlantic plate mo-
tions. More recently, Schettino and Turco (2009)
used this method to give further evidence that an
independent Moroccan plate existed in the central
Atlantic during the Oligocene and early Miocene.
Equation 2.42 allows to predict the geometry of
fracture zones given a plate motions model, that
is, given a sequence of stage rotations. These
lines must not be confused with the flow lines
of relative motions, which display the path of
a representative point on a plate B relative to
a reference plate A. Figure 2.25 illustrates the
process of constructions of flow lines and the
difference with fracture zones. Although flow
lines can be traced for both oceanic basins and
zones of convergence, the latter tectonic context
historically represents the principal field of ap-
plication of this kind of kinematic representation
(Dewey et al. 1989; Schettino and Turco 2011).
Generally, the algorithm for generating flow lines
is simple in the case of oceanic basins and follows

the approach used for the modelling of fracture
zones (Eq. 2.42). The method is illustrated in
Fig. 2.25. In this example, a point that is currently
placed along the COB of one of the two plates,
say B, is moved backward through time to the
locations occupied at any time T 2 [T0,Tn] with
respect to the conjugate reference plate A.

In this instance, however, the stage rotations
are performed using the full stage angles �k and
not, as we saw in the case of fracture zones, the
halved angles. If r0 is the position vector of a
starting location along the continental margin of
B, then the location at time T, Tk�1 �T � Tk, is a
vector r(T) given by:

r.T / D S BA .Tk; T / : : : S BA .Tn�1; Tn�2/

� S BA .Tn; Tn�1/ r0 (2.43)

This method can be used for some, but not
for all, pairs of oceanic plates. Furthermore, it is
not generally applicable to the case of convergent
settings. The reason is that stage rotations exist
for some plate pairs sharing a common boundary,
but not for any pair of plates, not even when
they share a boundary. This theorem can be easily
proved considering the simple case of a three-
plates system. Let us consider an RRR triple junc-
tion like that of Fig. 2.17. If the relative motion
of B with respect to A is described by a stage
rotation, then by definition the Euler pole PBA is at
rest in the reference frame of A. Similarly, if the
motion of C with respect to A can be described
by a stage rotation, then the location of the stage
pole PCA is also at rest in the reference frame of
A. However, PBA will not be at rest with respect to
C, just like PCA will not be at rest with respect to
B. Therefore, the Euler vector ¨BCD¨BAC¨AC

cannot be an invariant neither in the frame of
B nor in that of C. This implies that a stage
pole does not exist for the plate pair (B,C), even
though both B and C move by stage rotations with
respect to A. For this reason, we shall use the
term “conjugate plates” only in the case of plates
sharing a common boundary (not necessarily a
spreading ridge) and whose relative motion can
be described by a sequence of stage rotations.
When the divergent relative motion between two
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Fig. 2.26 Fracture zones pattern and triple junction mi-
gration path for a system of three divergent plates. Plates
B and C move about fixed Euler axes at constant rate with
respect to A. The relative motion between B and C cannot
be represented by a stage rotation

plates does not occur about a fixed rotation axis,
the fracture zones assume the complicate shape
shown in Fig. 2.26 between B and C.

Let us consider now the problem of determin-
ing stage rotations for a pair of conjugate plates
A and B. In the case of oceanic basins, a subdi-
vision of the opening history in tectonic stages
is performed on the basis of the geometry of
fracture zones and an analysis of marine magnetic
anomalies. This procedure will be explained in
detail in Chap. 5. It allows to determine both the
stage boundaries (T0,T2, : : : ,Tn) and the relative
position of B with respect to A (considered at
rest in the present day position) at each time Tk

(kD 1,2, : : : ,n). Regarding the relative position at
time T0, it can determined through a fitting algo-
rithm applied to the conjugate COBs, as we shall
see in the next section. All these relative positions
are specified through finite reconstruction matri-
ces RBA(Tk), whose expression is given by (2.18).
The existence of these transformations is ensured
by Euler’s theorem (see Sect. 2.2). Generally,
the components of the versor n(Tk), associated
with the rotation axis at time Tk, are expressed
in terms of geographic coordinates (œ(Tk),¥(Tk))
of a finite reconstruction pole Pk. In this instance,
the triplet (œ(Tk),¥(Tk),�(Tk)), �(Tk) being the
rotation angle, specifies all the necessary param-

Fig. 2.27 Relationship between stage rotations and finite
reconstructions. To move a point P from the location at
time Tk�1 to that at time Tk, it is possible to go first to the
present day through an inverse finite reconstruction, then
to time Tk through a direct finite transformation

eters to perform the transformation of a tectonic
element from the present day location to the
position at time Tk relative to the conjugate plate.
Once the finite reconstruction matrices associated
with each stage boundary have been determined,
it is easy to calculate the corresponding stage ro-
tations by the following formula, whose graphical
proof is shown in Fig. 2.27:

S BA .Tk�1; Tk/ D RBA .Tk/ R�1
AB .Tk�1/ I

k D 1; 2 : : : ; n (2.44)

When considering finite reconstructions, it is
always necessary to keep in mind that they do
not represent real plate motions, but the combined
result of many instantaneous or stage rotations.
Therefore, the small circle arcs associated with
a finite reconstruction pole are never expressions
of existing geological structures, contrarily to
the case of stage and instantaneous Euler poles.
This is a key point for the correct interpretation
of kinematic data, which has been discussed in
depth in a seminal paper by John Dewey (1975).

Now we are ready to consider the process
of construction of a rotation model, which rep-
resents the primary data structure that is used
in plate tectonic modelling to store the relevant
kinematic information. In fact, this file contains
the information that is needed to reconstruct both
the plate motions and the tectonic history of a
region during a selected time interval. Rotation
models are tables, generally stored in ASCII

http://dx.doi.org/10.1007/978-3-319-09135-8_5
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files, used by dedicated algorithms during the
process of construction of some hierarchical data
structures (or trees in the sense of Computer Sci-
ence, see Appendix 2) that describe the relative
positions of a set of tectonic plates at any given
time. A rotation tree can be considered as a data
structure that specifies the multilevel tectonic
hierarchy of a plate system at an assigned time
T (Ross and Scotese 1988). It is often referred to
as a plate circuit, although this term is also used
when relative velocities are specified rather than
relative positions, usually in studies on current
plate motions. The nodes of these data structures
are tectonic elements, while an edge between any
pair of nodes indicates that their relative motion
can be described by a sequence of stage rotations.
Therefore, given a stage S, the edges of a plate
circuit C for time T 2 S define a set of conjugate
plate boundaries in a system of interacting tec-
tonic elements during the stage S, not the whole
set of active plate boundaries, although all the
existing plates at time T are represented in C.
Thus, if e and p are respectively the size (that
is, the number of edges) and the order (number
of plates) of C, then by (2.34) it always results:
e <3(p�2). It is also important to note that the
topology of plate circuits is not constant through
time, but changes as a consequence of major
plate boundary reorganizations. In general, the
definition of a plate circuit topology for each
tectonic stage is based on the geological or geo-
physical evidence and the identification of a set
of conjugate boundaries, such that the resulting
graph is a connected tree (that is, for any two
nodes u and v there exists a unique path from u to
v). The topology is specified implicitly during the
compilation of a rotation model, while the duty of
the reconstruction algorithms is to build a rotation
tree for any assigned reconstruction time T.

In the example of Fig. 2.28, we assume
that the relative motion between the plate pairs
(A,C), (B,C), (C,D), and (D,E) is represented
by rotations at constant angular velocity during a
time interval S� [T 0,T00]. Therefore, S is assumed
to be a tectonic stage. This assumption most
likely relies on the geometry of fracture zones
in the oceanic area and on geological field

Fig. 2.28 Sketch map illustrating the construction of
plate circuits. Left: A system of five plates. Finite rotations
of A with respect to C, B to C, D to C, and E to D are
known. Right: The corresponding plate circuit

evidence regarding the tectonic activity along
the transcurrent faults that separate D from C and
E. In this instance, four finite reconstruction
matrices must be defined for the conjugate
boundaries, which allow to determine four inde-
pendent stage rotations, SAC(T 0,T00), SBC(T 0,T00),
SDC(T 0,T00), and SED(T 0,T00) through Eq. (2.44).
If RAC(T), RBC(T), RDC(T), and RED(T) are the
finite reconstruction matrices at any time T 2
[T 0,T00], then any other relative position at time
T can be calculated by combining these basic
rotations.

For example, it is possible to determine the
relative position of A with respect to B and that
of E with respect to C at time T:

RAB.T / D RCB.T /RAC .T /I REC .T /

D RDC .T /RED.T /

In general, the tree structures associated with
plate circuits are arranged so that the greater is
the degree of a node in a plate circuit C, that
is, the number of edges incident with the node,
the higher will be its level in the hierarchical
structure. Therefore, the neighborhoods of nodes
in C will increase in size when we move toward
higher levels in the data structure.

Plate circuits are built by reconstruction al-
gorithms starting from a rotation model. This
table specifies, for any stage boundary, the fi-
nite reconstruction pole and rotation angle of
each identified pair of conjugate plates. A sample
fragment of these data structures is shown in
Fig. 2.29. In these tables, the tectonic elements

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 2.29 A fragment of
rotation model

are coded through plate identifiers. In order to
determine which of the two plates in a conju-
gate pair must be considered as the reference
plate, we shall conform to the principle that high-
degree nodes always appear at higher levels in
the hierarchical structure. Regarding the defini-
tion of the stage boundaries, it is necessary to
distinguish between the large first-order plates,
in a context of global tectonics, and the case
of small tectonic elements associated with intra-
plate deformation or collisional settings. A key
observation is that the changes of relative mo-
tion between large plates during the Mesozoic
and the Cenozoic, hence presumably also dur-
ing earlier time intervals, seem to have occurred
synchronously on a global scale, thereby the
major stage boundaries coincide. As an example,
the classic plate motions model of Müller et al.
(1997) is based on 15 synchronous stages from
the early Jurassic to the present. This implies that
the motions of the major tectonic plates cannot be
determined exclusively by processes occurring in
the mantle, including the subduction of slabs, and
independently from each other. Therefore, at any
time Earth’s tectonic plates must be considered
as a system of interacting bodies. Conversely,
stage boundaries associated with changes of stage
poles between small plates and other tectonic el-
ements must be established on a geological basis
and are not necessarily synchronous with major
events of reorganization of the plate boundaries.
In the next section, we shall discuss some impor-
tant details of the procedures followed in plate
kinematics for the construction of plate motions
models.

2.8 Plate Tectonic
Reconstructions

Usually plate motions models include a recon-
struction of the initial configuration, preceding
the development of plate boundaries. Figure 2.30
illustrates an example of fit of Pangaea, the large
supercontinent that existed before the opening of
the Atlantic ocean.

In the previous sections, we have learnt that
there are two kinds of initial fits: pre-rift fits,
which show the configuration of the continen-
tal masses preceding the development of plate
boundaries, and post-rift fits, which match the
stretched continental margins and show the con-
figuration at the onset of sea floor spreading.
In both cases, the match between the conjugate
COBs is performed through a geometrical fitting
procedure. The algorithm used by Bullard et al.
(1965) in their reconstructions of Pangaea was
the first rigorous method for fitting continental
margins. Here we shall discuss an improved ver-
sion of this algorithm, which was proposed by
Schettino and Turco (2009). Let us assume that
the COBs to be fitted are represented by two
series of unit vectors, respectively (p1,p2, : : : , pN)
and (q1,q2, : : : ,qM), which have been preliminar-
ily rotated to a geographic reference frame where
a test Euler pole e, with coordinates (œe,¥e), has
been moved to the North Pole (Fig. 2.31). A
transformation of the standard geographic coor-
dinates to this new reference frame is obtained
by rotating each position vector pi and qj about
an Equatorial pole placed at (0ı,¥eC 90ı) by
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Fig. 2.30 A pre-rift fit of Pangaea, based on Schettino
and Scotese (2005) and Schettino and Turco (2009). The
present day coastlines are shown for reference. The major
tectonic elements in this reconstruction are: central Africa
(CAF), northwest Africa (NWA), northeast Africa (NEA),
Nubia (NUB), Somalia (SOM), Madagascar (MAD), Mo-
rocco (MOR), Arabia (ARB), India (IND), E. Antarctica

(EAN), Australia (AUS), W. Antarctica (WAN), Brazilian
Craton (BRA), Paraná (PAR), Salado Block (SAL), Patag-
onia (PAT), N. America (NAM), Greenland (GRN), North
Slope (NSL), Okhotsk (OKH), Eurasia (EUR), Iberia
(IBE), Amurian Plate (AMU), N. China (NCH), Yang Tze
Platform (YTP), and Indochina (ICH)

Fig. 2.31 Geometrical fit
of conjugate COBs. In a
reference frame (x0 ,y0,z0)
where a test Euler pole, e,
has been moved to the
North Pole, the fitting
procedure consists to find
the best rotation about the
North Pole, by an angle �

that minimizes the squared
sum of longitude misfits
•¥i (i � N) and •¥

0

j(j � M)
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an angle �™eD�( /2�œe). For each point pi

on the first line, which can be carried onto the
second line at position p

0

i by rotation about the
North Pole, let •¥i(e) be the longitude difference
between the two locations. Similarly, for each
point qj on the second line, which can be carried
back onto the first one at position q

0

j by rotation

about the North Pole, let •¥
0

j(e) be the longitude
difference. In general, only n�N points of the
first line can be projected onto the second line,
and only m�M points of the second line can
be projected back onto the first line. If we rotate
the western line by an angle � about the North
Pole, then misfit between a rotated vertex and
its projection along the eastern line is given by
•¥i(e)�¥0. Similarly, if we rotate the eastern line
by angle�� about the North Pole, we obtain
individual misfits •¥0

j(e)��. The total mean-
square misfit will be given by:

¦2 .e/ D N

n2

nX
iD1

.•¥i .e/ ��/2

C M

m2

mX
j D1

�
•¥0

j .e/��
�2

(2.45)

This formula shows some differences with
respect to the one used by Bullard et al. (1965).
In fact, the original formula of these authors
assumed that the same number of points was
projected between the two lines. This assumption
is adequate only when the two COBs may match
perfectly, that is, when each line can be fit against
the whole conjugate line and not against a subset
of the input data. For example, we could have
missing information from one of the two conju-
gate COBs. In this instance, we must search for a
best fit of one line against a subset of the second
line, not necessarily a whole geometrical fit. Eq.
(2.45) takes into account of the possibility that
one the two lines is not complete. In these condi-
tions, the best fit Euler pole searching algorithm
also tries to maximize the percentage of matched
segments from each line, that is, the number of
projected points, because we could find wrong
Euler poles that furnish very good fits of small
segments of the two lines. This problem is solved
in Eq. (2.45) by multiplying the squared misfit

of each line respectively by N/n and M/m. This
expression reaches a minimum when the rotation
angle �D�(e) is given by:

� .e/ D

N
n2

nX
iD1

•¥i .e/C M
m2

mX
j D1

•¥0
j .e/

N
n
C M

m

(2.46)

The fitting procedure is a searching algorithm
of the Euler pole e which minimizes the misfit
¦2 in expression (2.45). The search is generally
based on trial Euler poles that are chosen over
a coarse grid of locations (for example, a 1� 1ı
global grid). For each trial pole e, the angle � that
minimizes ¦2 is determined through Eq. (2.46).
A first approximate location of the Euler pole
is obtained by selecting the trial pole that gives
the minimum value of � over the global grid.
Now a new scan is performed over a neighbor
of this point using a reduced grid spacing, for
example 0.1ı, so that a new more precise location
of the Euler pole and a new angle of rotation
are determined. The algorithm stops when the
desired resolution is reached.

Now let us consider the procedure for recon-
structing the position of a tectonic element at
time T in the geologic past, starting from a corre-
sponding plate circuit C(T). This reconstruction
algorithm has the following simple structure:

Algorithm 2.2 (Reconstruction Algorithm)
Input: a node n 2 C(T);
Output: A total reconstruction matrix Rn(T);
f

1. Rn(T) I; c n;
2. p Parent(c);
3. pD 0) jump #7;
4. Rn(T) Rcp(T)Rn(T);
5. c p;
6. Jump #2;
7. Rn(T) Rc(T)Rn(T);

g

A total reconstruction matrix, Rn(T), is a ma-
trix that moves a tectonic element n from its
present day location, in the geographic reference
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frame, to the position that this block had at time T
in a paleotectonic reference frame. An important
example of this class of frames is represented by
the paleomagnetic frames mentioned in Sect. 2.3,
but one could wish to refer the reconstructions
to a set of hot spots (e.g., Müller et al. 1993)
or even use a present day continent, for example
N. America or Eurasia, as a reference frame
for plate reconstructions. The existence of total
reconstruction matrices is again a consequence of
Euler’s theorem. The corresponding Euler pole is
called a total reconstruction pole. At step #1 of
Algorithm 2.1, the total reconstruction matrix is
initialized by the identity matrix I, and the current
node, c, is set to be the starting node. At step #2,
a variable p is assigned the parent of the current
node in the tree structure. At the next step, if the
current node c coincides with the root of the tree,
so that pD 0, then the iteration stops and the final
reconstruction matrix is updated by adding the
transformation of the root node with respect to the
paleotectonic reference frame, Rc. At step #4, the
current rotation matrix is updated by adding the
relative rotation of the current node with respect
to its parent. Then, at the next step, we move
upwards to the next higher level by assigning
the current node its parent and the sequence is
restarted. On exit, this algorithm furnishes the
total reconstruction matrix of n at time T in the
variable Rn(T).

As an example, the application of this algo-
rithm to the circuit of Fig. 2.28 would give the
following total reconstruction matrices:

8̂
ˆ̂<
ˆ̂̂:

RA.T / D RC .T /RAC .T /

RB.T / D RC .T /RBC .T /

RD.T / D RC .T /RDC .T /

RE.T / D RC .T /RDC .T /RED.T /

To calculate the set of finite reconstruction
matrices Rij(T) associated with a plate circuit at a
given intermediate time T, algorithm 2.2 uses the
components of these transformation matrices at
stage boundaries. If Tk�1�T �Tk, then the cor-
responding finite reconstruction of plate i relative
to plate j is given by:

Rij.T / D S ij .Tk�1; T / Rij .Tk�1/ (2.47)

where the rotation Sij is calculated using the
reduced angle (Eq. 2.41). Now we can address
the problem of complementing the kinematic
representation of a set of tectonic plates through
velocity and acceleration fields. We know that the
linear velocity v(r) at the location represented by
a position vector r can be calculated easily start-
ing from an Euler vector ¨ (Eq. 2.17). Therefore,
the problem of representing velocity fields can
be reduced to the problem of determining the
instantaneous axis of relative rotation between
two plates sharing a boundary at time T, indepen-
dently from the eventuality that these are conju-
gate plates or not. Furthermore, it is occasionally
necessary to determine absolute velocity fields
in the selected paleotectonic reference frame.
Clearly, in the case of relative velocity fields
between conjugate plates the calculation should
be simplified by the fact that the relative motions
are rotations about fixed axes at constant angular
velocities. However, even in this eventuality it is
necessary to take into account that the rotation
axis of a stage pole is fixed with respect to a
plate that is considered at rest in the present
day geographic frame. Therefore, the axis must
be rotated according to the total reconstruction
matrix of this plate at time T before it can be used
for calculating velocity vectors. Let nij(0) be the
unit vector of the rotation axis associated with a
stage rotation Sij(Tk�1,Tk). If Tk�1�T �Tk, and
Rj(T) is the total reconstruction matrix of the
reference plate at time T, then the orientation of
this axis at time T will be given by:

nij.T / D Rj .T /nij.0/ (2.48)

At this point, to form a complete Euler vector
we still need to assign an angular velocity ¨ at
time T. This task can be easily accomplished,
because during a stage the relative angular veloc-
ity between two plates is assumed to be approx-
imately constant, thereby we can always deter-
mine this quantity starting from the stage angle
�k and the temporal boundaries Tk�1 and Tk. It
results:

¨ D �k

Tk � Tk�1

(2.49)
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In the general case of two plates whose relative
motion occurs about a continuously changing
Euler pole, it is not possible to determine the
instantaneous rotation axis and angular velocity
starting from a stage rotation. Therefore, a more
general, although complicate, approach to the
problem becomes necessary. We know that all
the plates are represented in a plate circuit at
time T. For each node i, a finite reconstruction
matrix Rij(T) exists, which allows to calculate the
position of the corresponding plate with respect
to the parent plate j. We also know that the
edges of a plate circuit attest the existence of
specific kinematic relations between plate pairs,
consisting in the fact that the relative motions
are stage rotations, thereby they link pairs of
conjugate plates. Therefore, for any plate i not
coinciding with the root of the tree, it is possible
to determine a stage rotation matrix Sij and the
relative velocity field vij with respect to the parent
plate j in the hierarchical representation using the
following simple expression, which combines Eq.
(2.17) with Eqs. (2.48) and (2.49):

vij .r; T / D Rj .T /nij.0/�k

Tk � Tk�1

(2.50)

for any Tk�1� T �Tk. In the case of the root
continent, r, the corresponding finite reconstruc-
tion matrix coincides with a total reconstruction
matrix, Rr(T), that represents the transformation
of r with respect to the paleotectonic reference
frame. Therefore, if (i,j,k, : : : ,r) is a path in the
tree structure from node i to the root, then we
can always determine the absolute velocity field
of a plate in the selected reference frame by
composition of velocity vectors:

vi .r; T / D vij .r; T /C vjk .r; T /

C � � � C vr .r; T / (2.51)

where the absolute velocity field of the root node,
vr, is determined calculating stage rotations with
respect to the paleotectonic reference frame.

Now we are ready to solve the problem of
determining relative velocity fields between non-
conjugate plate pairs. In fact, if i and j are any

two plates, it is always possible to calculate their
relative velocity by subtracting their absolute
velocities:

vij .r; T / D vi .r ; T / � vj .r ; T / (2.52)

Another important kinematic variable is the
relative or absolute acceleration of a tectonic
plate. Curiously, this kind of vector fields have
been seldom considered in plate kinematics stud-
ies, in spite of their importance for the geody-
namic assessment of the models. Probably this is
a consequence of the fact that accelerations have
been traditionally considered as point events that
only occur at stage boundaries, consistently with
the current description of the driving mechanism
of plate tectonics. However, recent research has
shown that phases of accelerated motion have
existed in the geologic past, possibly associated
with the action of mantle plumes (Cande and
Stegman 2011). We shall consider in detail the
geodynamics of accelerated states in Chap. 13.
In order to obtain an acceleration field, it is
necessary to consider two successive times, T and
T0, close enough, and calculate a velocity field for
each of them. For example, Schettino and Scotese
(2002) used a time interval of 1 Myr for determin-
ing the acceleration across stage boundaries in the
Mediterranean region during the Mesozoic. The
acceleration is calculated simply by dividing the
velocity variation by the size of the time interval:

aij .r; T / D vij .r ; T 0/ � vij .r ; T /

T 0 � T
(2.53)

It is possible that in the previous discussion,
about the velocity field between non-conjugate
plate pairs, some readers wondered about the
effective number of situations characterized by
this kind of relative motion. We shall satisfy
the curiosity of these readers by proving an in-
teresting topological theorem, which will help
to clarify some key features of plate tectonic
configurations. We say that a plate boundary is
a conjugate boundary if it separates a pair of
conjugate plates. In this instance, any geological
structure associated with strike-slip motion, for
example a transform fault, will be aligned with

http://dx.doi.org/10.1007/978-3-319-09135-8_13
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Fig. 2.32 Nucleation of a new plate by splitting of an
existing n-th order plate. Free plate boundaries are shown
as dashed lines. Left: The new plate boundary splits two
conjugate boundaries through the insertion of two new
triple junctions, J0 and J00. In this case, the new boundary
is a free boundary and there is no need for a global

reorganization. Right: If one of the two boundaries that are
cut is a free boundary, then a large scale reorganization,
involving several conversions between free and conjugate
boundaries, is necessary. In this instance, a new conju-
gate boundary separates the parent plate from the newly
formed tectonic element

a small circle arc about a stage pole. When
a boundary separates two plates whose relative
motion occurs about a continuously changing
Euler pole, we say that this is a free boundary. In
this case, strike-slip faults, in particular transform
faults, and fracture zones have a quite complicate
pattern, as illustrated in Fig. 2.26. If C is a plate
circuit containing p nodes, then its size (i.e.,
the number of edges) is given by eD p�1. The
following theorem proves that this number does
not coincide with the total number of conjugate
pairs in a plate tectonic configuration, that is, with
the total number of conjugate boundaries, but is
always lower.

Topological Theorem (for Plate Tectonic Con-
figurations)
If G(j,b) is a global plate configuration, then
the number of free and conjugate boundaries are
given, respectively, by:

f D 1

3
b D e � 1 D p � 2 (2.54)

c D 2

3
b D j D 2f (2.55)

Proof In this proof, we always assume that in
normal conditions a system of tectonic plates
tries to maximize the number of conjugate bound-
aries during any episode of reorganization, be-
cause this is clearly a minimum energy configura-
tion. In a three-plates system, it results by (2.34)
that bD 3 and jD 2. We have already proved

that in this configuration only two of the three
boundaries can be conjugate boundaries, thereby
we would have f D 1 and cD 2, in agreement
with Eqs. (2.54) and (2.55). Now let us assume
that the theorem holds for a system with p plates.
We want to prove that in this case it also holds
if one of these plates splits, thus adding a new
tectonic element to the system.

Figure 2.32 shows two possible mechanisms
for generating a new additional tectonic plate
from an existing one. Clearly, in order to create
a new boundary that splits an existing plate, two
of its boundaries must be broken by insertion
of triple junctions. If the edges that are split
are conjugate boundaries, two extra conjugate
boundaries and one additional free boundary are
created and there is no need to change the tectonic
style of the remaining plate boundaries. In this
instance, f increases by one, while c increases
by two, thereby Eqs. (2.54) and (2.55) remain
valid and the theorem is proved. The new plate
boundary separating the two parts of the original
plate is always a free boundary when this kind
of plate nucleation occurs. A much more com-
plicated situation follows if at least one of the
two boundaries that are split is a free boundary.
In this instance, the proof relies on the fact that
for any pair of triple junctions in G, there exist at
least three alternate paths that link the two nodes.
An alternate path is a path formed by an alternate
sequence of conjugate and free edges.

The example of Fig. 2.33 shows the tree struc-
ture that can be formed with the set of all alternate
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Fig. 2.33 An example of global plate configuration, and the corresponding tree of alternate paths starting from node
J1. Dashed and solid lines are respectively free and conjugate plate boundaries

paths starting from a node. The tree is built setting
the root node as the start node, s, and generating
all the possible alternate paths originating in s
by a modified depth-first search or breadth-first
search algorithm (see Appendix 2). For example,
for the graph of Fig. 2.33 we could start from
node J1, then reach nodes J2, J6, and J8. From
node J2, we must proceed to node J3, while from
J8 we can proceed either to node J7, or node
J9, etc. When one of the edges that are split
in the process of nucleation of a new tectonic
plate is a free boundary, the new intermediate
boundary separating the original plate cannot be
a free boundary. More precisely, it could be a
free boundary, but this would not be the minimum
energy solution. In fact, Fig. 2.32 shows that after
insertion of the new triple junctions J0 and J00,
only one of the two arms of a free boundary
needs to be converted to a conjugate boundary
after splitting (the boundary between J0 and Jn

in the example of Fig. 2.32), whereas any other
solution would imply a local reorganization in-
volving more conversions. However, even in this
case the conversion of part of the former free
boundary induces a series of concatenate transi-
tions from free to conjugate boundaries and vice
versa that may propagate outside the perimeter
of the splitting plate, determining a total rear-
rangement of the plate configuration. For each
boundary conversion, another boundary incident
with the same triple junction must be subject to
the inverse of that transformation. At the same
time, a stage boundary is created, which could
either close an existing stage or start a new one
after a time interval of complex relative motion.

The simplest way to terminate the sequence of
boundary conversions and establish a new equi-
librium is to reach the opposite triple junction,
J00, along the shortest alternate path. This path
will include an even number of edges when only
one of the splitting boundaries is a free boundary,
whereas an odd number of edges are converted
when two free boundaries are split. The examples
of Fig. 2.34 illustrate these two possibilities.

It should be noted that the new boundary
linking J0 and J00, and the alternate path linking
these nodes form a closed loop in G, whose
outgoing edges are unaffected by the boundary
conversions. In the case of an even number of
converted edges, for each conjugate boundary
that is transformed into a free boundary there is
a free boundary that is converted into a conju-
gate boundary. Therefore, after the creation of
a new free boundary and two new conjugate
boundaries the total number of edges does not
change. This implies that also in this case f
and c increase respectively by one and by two
units, thereby Eqs. (2.54) and (2.55) remain valid
and the theorem is proved. When the number of
converted boundaries is odd, after the creation
of two new free boundaries (see Fig. 2.34) and
one additional conjugate boundary the sequence
of conversions allows an extra conversion of the
last free boundary into a conjugate edge, thereby
during the conversions f decreases by one and
c increases by one. Therefore, also in this case
f and c increase respectively by one and by two
units, so that Eqs. (2.54) and (2.55) conserve their
validity after the formation of the new plate. This
proves the topological theorem. �

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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Fig. 2.34 Alternate paths of converted boundaries during the splitting of a tectonic plate. Top: The new edge links a
free boundary to a conjugate boundary. Bottom: Two free boundaries are split

In Sect. 2.7 we have described a method of
construction of flow lines of relative motion,
which can be used only when the two plates
form a conjugate pair. Furthermore, we have
mentioned that it is not generally applicable to
the case of convergent boundaries. Now we want
to describe a technique to produce flow lines in
the general case of two plates separated by a
free boundary for at least some time intervals.
The method is based on the general technique
for determining relative velocity fields discussed
above. Let r0 be the present day position vector
of a point belonging to a plate B. We want to
generate a path on the globe, formed by the
relative positions of this point with respect to
another plate A at any time T in the geologic
past. The task is easily accomplished calculating
the relative velocity field vBA(T) for a sequence
of closed times T0, T0C •T, T0C 2•T, : : : in an
interval [T0,T00]. In fact, starting from the position
at the initial time, which is r(T0)DRBA(T0)r0,
we can calculate iteratively the position at any
successive time by the following formula:

r .T C •T / D r.T /C vBA.T /•T (2.56)

The kinematic methods described so far can be
applied equally well to the reconstruction of the
tectonic evolution of oceanic basins and to conti-
nental tectonics. In the former case, the finite re-
construction matrices associated with the rotation
model are determined on the basis of an analysis
of fracture zones and the pattern of marine mag-
netic anomalies, as it will be explained in Chap. 5.
In the case of reconstructions that involve defor-
mation of continental crust in the geologic past,
for example during rifting or collisions, or when
the finite rotations must describe relative motions
between continental blocks, these techniques are
inapplicable. In this context, the determination
of the reconstruction parameters (latitude and
longitude of the Euler poles and rotation angles)
mostly relies on geologic data that lack of in-
formation on measurement uncertainty, thereby it
is not generally possible to determine confidence
ellipses for the resulting reconstruction parame-
ters. Nevertheless, it is possible to generate semi-
quantitative reconstructions that correctly predict
the style and timing of tectonic deformation, thus
giving a theoretical framework to the geological
observation at regional or local scale.

http://dx.doi.org/10.1007/978-3-319-09135-8_5
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The asymmetric deformation of a tectonic ele-
ment of continental crust during its motion can
be described by modifying the format of the
tables associated with rotation models (Fig. 2.29).
Such a modification should consist into the in-
troduction of an additional field, which would
allow to establish the amount of shortening or
extension, with respect to the present day shape,
that a block experienced during its motion. This
method cannot be used to describe a symmetric
extension between two plates during a rifting
phase, because the additional attribute refers to
a single tectonic element which will be rotated
with respect to a parent plate, not to a plate
pair. For example, the method can be used in the
modelling of back arc basins, or in the descrip-
tion of complex systems, such as the assemblage
of microplates, slivers, and orogenic structures
that characterizes the Alpine-Himalayan belt. In
general, the additional field would describe the
deformation of a continental block during a stage
rotation through a stretching (or shortening) fac-
tor. For example, a value of 0.9 at 10 Ma would
mean that in a reconstruction at 10 Ma we must
shorten the tectonic element by 10 % with respect
to the present size, in the direction determined by
the stage matrix between 10 Ma and the present.
Similarly, if the deformation parameter is 0.8 at
20 Ma, this value implies two different phases of
extension, the first one between 20 and 10 Ma
and a second one between 10 Ma and the present.
Of course, these two phases of deformation could
develop along different directions, determined by
diverse stage poles, so that in general the present
day shape of a tectonic element would result from
the superposition of several tectonic events. An
example illustrating the combination of rotations
and phases of extension is shown in Fig. 2.35.

Describing the kinematics of deformable bod-
ies requires special techniques and an additional
computational effort for generating plate recon-
structions of the tectonic evolution of a region.
For example, it is not generally possible to deter-
mine the initial shape and location of a tectonic
element through a single finite rotation, accom-
panied by deformation of the block, because
usually the present day geometry results from
the superposition of different phases of extension

Fig. 2.35 Deformation of a continental block during its
motion. In this example, a tectonic element rotates clock-
wise about the stage pole S1 between 20 and 10 Ma,
and counterclockwise about S2 between 10 Ma and the
present. During the first stage, it is stretched in the same
directions of the flow lines about S1. Then, a second phase
of deformation is superimposed on the first one, and the
block is stretched again, this time in the direction of the
flow lines about S2

or shortening, which develop along distinct axes
of deformation. Now we are going to describe,
in a simplified form, the procedure of stretching
or shortening of a tectonic element along an
assigned direction, which cannot be defined as a
trivial algorithm.

The procedure of block deformation starts
with its rotation to a reference frame where
the stage pole coincides with the North Pole
(Fig. 2.36). Then, the points having minimum
and maximum latitudes, in the set of N
vertices associated with the spherical polygon
representation, are determined. Let qs and qn be
respectively these two points (Fig. 2.36), and
assume that the sequence of vertices (q1, q2, : : : ,
qN) is a clockwise sequence. The points qs and
qn can be used to divide the perimeter of the
tectonic element in two halves: an eastern half
that includes vertices from qs to qn, and a western
sequence, which includes vertices from qn to qs.
For each point in the western sequence, qi, let
•¥i be the longitudinal distance from the western
boundary. If “ is the deformation factor, then qi is
moved along its parallel to a new location, q0

i
, in

such a way that •¥
0

i D “•¥i. Finally, the resulting
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polygon is moved back to the original reference
frame before applying the rigid transformation
listed in the rotation model.

Another problem that often must be solved, in
the context of continental tectonics, is associated
with the impossibility to determine a priori, inde-
pendently from the specific kinematic history, a
list of finite reconstruction poles to be included
in a rotation model. The reason is that the typical

Fig. 2.36 Stretching and shortening continental blocks
by a factor “. In a reference frame (x0,y0,z0) where the
stage pole, S, has been moved to the North Pole, the
northernmost and southernmost vertices, qn and qs, of a
plate polygon are used to divide the block perimeter in two
halves. Then, each point along the eastern half is moved
along its parallel of latitude to stretch or shorten by factor
“ the corresponding small circle arc •¥ that separates it
from the western boundary

geological data are generally represented by par-
tially incoherent geologic structures (faults, fold
axes, etc.), which result from the superposition of
two or more phases of deformation, as illustrated
in Fig. 2.37. Even assuming that it is possible
to separate the original data in coherent subsets,
and to identify the timing of the deformation
phases through a precise dating of the geologic
structures, the oldest tectonic structures cannot
be used to determine finite reconstruction pa-
rameters, because it is likely that their strike
has been affected by the more recent phases
of deformation. In these conditions, the typical
approach is to reconstruct the tectonic history
of a region starting from the most recent phase
of deformation and going back through time. If
we can identify the most recent set of geologic
structures, for example between some time Tk and
the present (Fig. 2.37), then it is possible to de-
termine the parameters of a stage transformation
S(0,Tk), which clearly coincides with the finite
reconstruction matrix at time Tk: S(0,Tk)DR(Tk).
At this point, all the structures that are older than
Tk, and that have been affected by the most recent
phase of deformation, are rotated using the matrix
R(Tk), in order to remove the “overprint” of this
phase. After this operation, these structures be-
come coherent with other data that had not been
affected by the recent deformation. The resulting
data set can be used, at the next step, to determine
a second stage pole, S(Tk,Tk�1), which in turn al-
lows to calculate the finite reconstruction matrix
at time Tk �1 : R(Tk� 1)D S(Tk, Tk� 1)R(Tk), and

Fig. 2.37 Superposition of two phases of deformation
of a tectonic element. During phase 1, between T1 and
T2, a rift forms with extension axes having direction
WNW�ESE. Note that the resulting offset L between
the two separating blocks is always less than the width
W of the stretched zone. This phase is followed by a
second episode of extension between T3 and T4, having
NW�SE direction, which modifies the strike of some of

the original transfer zones and rift axes. At the end of this
phase the original block has been divided in four distinct
tectonic elements (A, B, C, and D). To determine a finite
reconstruction pole and angle of rotation for phase 1, it
is necessary to remove the effects of the second phase of
deformation, by reconstructing the shape of the tectonic
element at time T3
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Table 2.2 The NUVEL-1A velocity model

Plate ¨x ¨y ¨z ¨ œe ¥e

Africa 0.002401 �0.007939 0.013891 0.9270 59.160 �73.174

Antarctica 0.000689 �0.006541 0.013676 0.8695 64.315 �83.984
Arabia 0.008195 �0.005361 0.016730 1.1107 59.658 �33.193

Australia 0.009349 0.000284 0.016253 1.0744 60.080 C1.742

Caribbean 0.001332 �0.008225 0.011550 0.8160 54.195 �80.802

Cocos �0.008915 �0.026445 0.020895 1.9975 36.823 �108.629

Eurasia 0.000529 �0.007235 0.013123 0.8591 61.066 �85.819
India 0.008181 �0.004800 0.016760 1.1034 60.494 �30.403

North America 0.001768 �0.008439 0.009817 0.7486 48.709 �78.167

Nazca �0.000022 �0.013417 0.019579 1.3599 55.578 �90.096

South America 0.000472 �0.006355 0.009100 0.6365 54.999 �85.752

¨ D (¨x
2 C ¨y

2 C ¨z
2)1/2 is the angular velocity in deg/Myr;

¨x, ¨y, and ¨z are expressed in rad/Myr;
œe and ¥e are, respectively, the latitude and longitude of the Euler pole with respect to the Pacific

so on. Thus, in general, the finite reconstruction
poles associated with the kinematics of a set of
continental plates can be calculated only after the
stage transformations have been determined by
concatenation of stage matrices.

2.9 Current PlateMotions

We are going to conclude this chapter, dedicated
to plate kinematics, with a description of the
techniques used for the determination of the mod-
ern plate motions. The first models of current
plate kinematics were based on a combination of
heterogeneous data, represented by seismic slip
vectors, averaged spreading rates, and transform
fault azimuths (Chase 1978; Minster and Jordan
1978; DeMets et al. 1990). Each of these mod-
els specified a set of n�1 Euler vectors, ¨i, n
being the number of modern plates, relative to
a reference plate, for example the Pacific plate.
The models were obtained through least squares
procedures that minimized the quantity:

¦2D
n�1X
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niX
j D1

NijX
kD1
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��rk
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(2.57)

This formula allows to calculate the squared
sum of misfits between predicted and observed
spreading rates and azimuths of relative veloci-
ties. Each plate is assumed to have ni boundaries
that are spreading ridges, and for each of these
boundaries, there are Nij spreading rate data at
locations represented by position vectors rk. Let
¨i�¨j be the predicted relative angular velocity
of the i�th plate with respect to an adjacent plate
separated by a spreading ridge. By (2.17), the
predicted linear velocity between the two plates
at a location rk is given by: (¨i�¨j)� rk. If nk

and v(rk) are respectively a versor normal to the
ridge axis and the observed average spreading
velocity at rk, then the weighted misfit between
observed and predicted spreading rates is given
by the scalar difference between the projections
of v(rk) and (¨i�¨j)� rk onto the axis of nk,
divided by the standard error ¢k attributed to
v(rk). Similarly, it is assumed that the i�th plate
has mi generic boundaries, each having Mij di-
rectional observations. Let s(rk) be a unit ver-
sor representing one of these observations. The
predicted direction is clearly given by the versor
of the theoretical linear velocity (¨i�¨j)� rk.
Therefore, the weighted misfits of azimuth data
can be defined as the magnitudes of the vector
differences between predicted and observed di-
rection versors, divided by the standard error ¢k.

Table 2.2 lists the Euler vectors of NUVEL-
1A (DeMets et al. 1994), one of the most widely



70 2 Plate Motions

accepted kinematic models for the modern
plates, which represents a refinement of a
model published in 1990, known as NUVEL-
1 (Northwestern University VELocity model ver.
1, DeMets et al. 1990). In this model, the average
spreading rates used in the least squares fitting
procedure are determined through the analysis
of marine magnetic anomalies spanning the last
�3.2 Myrs. The model includes 12 large plates,
and the components of the Euler vectors are
expressed in a reference frame fixed to the Pacific
plate. The difference between the two versions is
in the geomagnetic polarity time scales used to
analyse the marine magnetic anomalies during
the determination of the spreading rates, so
that the angular velocities of NUVEL-1A are
95.62 % of the corresponding velocities listed in
NUVEL-1.

One of the main problems of the classic mod-
els is represented by the very different time inter-
vals associated with the input data. The spreading
rates along the world’s mid-ocean ridges, which
are estimated through the analysis of marine mag-
netic anomalies, represent averages over the last
�3.2 Myrs. These averages strongly depend from
the choice of a geomagnetic polarity time scale.
Conversely, earthquake slip vectors average di-
rections of relative motions over much shorter
time intervals (decades to centuries). Another
problem is represented by the relatively small
number of plates that are considered in these
models, which limits their capability to repre-
sent the internal deformation of some continents.
Therefore, there is not much surprise in seeing
that inconsistencies often emerge when the linear
velocities predicted on the basis of the Euler
vectors are compared to velocities estimated from
Global Positioning System (GPS) techniques and
other geodetic methods. In fact, the latter data
are consistent averages performed over a few
decades, which are not necessarily representative
of the long-term geological processes. Finally,
the most serious issue of NUVEL-1A and its
predecessors is probably the failure to satisfy
the closure rule (Eq. 2.35) along some three-
plate circuits. In particular, NUVEL-1A does not
satisfy Eq. 2.36 at the Galapagos triple junction
(Pacific-Cocos-Nazca circuit) and at the Bouvet

triple junction (Africa-South America-Antarctic
circuit) at the desired level of confidence.

A major improvement to NUVEL-1A, which
tries to overcome the difficulties mentioned
above, has been proposed in recent times by
DeMets et al. (2010). The new model, which
has been called MORVEL (Mid-Ocean Ridge
VELocity), extends the data set to the 25 plates
shown in Fig. 2.38. With respect to the system
of 23 plates shown in Fig. 2.16, this model
decomposes the eastern part of Africa in two
sub-plates (Lwandle and Somalia), separates
two sub-plates (Capricorn, and Macquarie)
from Australia, introduces the Yang-Tze plate
in eastern Asia and Sur in the South Atlantic,
but incorporates the Anatolian block in Eurasia,
Easter in Nazca, and the Okhotsk plate in N.
America. Using Eq. 2.34, we see that this
model includes 46 triple junctions and 69 plate
boundaries, 23 of which must be free boundaries.
Differently from its predecessors, MORVEL is
based on few earthquake slip directions. In this
model, about 75 % of the input data are sea floor
spreading rates and strikes of transform faults.
The very limited usage of earthquake slip vectors
(�2 % of the total data set) has minimized the
possibility of biased estimates of relative velocity
directions along the world’s subduction zones,
which are usually caused by forearc deformation
(e.g., Jarrard 1986; McCaffrey 1992). Finally,
it has been avoided a mix between long-term
geological data and geodetic velocities in the
estimation of Euler vectors, the usage of GPS
data having been limited to the determination
of the motion of six small plates, for which no
other data were available. The 24 Euler vectors
of MORVEL, relative to the Pacific plate, are
listed in Table 2.3, while the resulting linear
velocity fields between adjacent plates are shown
in Fig. 2.38.

The kinematic models described so far furnish
the Euler vectors of the major modern tectonic
plates relative to the Pacific. The components
of these vectors are expressed in the geographic
reference frame (where London, Eurasia, has a
fixed longitude). By vector summation, we can
calculate the Euler vector of relative motion be-
tween any pair of plates, assess closure conditions
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Fig. 2.38 The plate velocity model MORVEL (DeMets et al. 2010). The length of the arrows indicates 20 times the
relative displacement of a plate with respect to an adjacent plate. Plate labels are listed in Table 2.3

Table 2.3 The MORVEL velocity model

Plate Sym œe ¥e ¨ ¨x ¨y ¨z

Amurian AMU 65.9 �82.7 0.929 0.000841 �0.006567 0.014801

Antarctica ANT 65.9 �78.5 0.887 0.001260 �0.006194 0.014132

Arabia ARB 60.0 �33.2 1.159 0.008463 �0.005538 0.017518

Australia AUS 60.1 6.3 1.079 0.009331 0.001030 0.016325
Caribbean CAR 55.8 �77.5 0.905 0.001922 �0.008668 0.013064

Cocos COC 42.2 �112.8 1.676 �0.008397 �0.019977 0.019649

Capricorn CAP 62.3 �10.1 1.139 0.009098 �0.001621 0.017601

Eurasia EUR 61.3 �78.9 0.856 0.001381 �0.007040 0.013105

India IND 61.4 �31.2 1.141 0.008154 �0.004938 0.017484
Juan de Fuca JDF �0.6 37.8 0.625 0.008619 0.006685 �0.000114

Lwandle LWA 60.0 �66.9 0.932 0.003191 �0.007481 0.014087

Macquarie MAC 59.2 �8.0 1.686 0.014921 �0.002097 0.025276

North America NAM 48.9 �71.7 0.750 0.002702 �0.008170 0.009864

Nubia NUB 58.7 �66.6 0.935 0.003367 �0.007781 0.013944
Nazca NAZ 55.9 �87.8 1.311 0.000492 �0.012819 0.018947

Philippine PHB �4.6 �41.9 0.890 0.011524 �0.010340 �0.001246

Rivera RIV 25.7 �104.8 4.966 �0.019950 �0.075508 0.037587

South America SAM 56.0 �77.0 0.653 0.001434 �0.006210 0.009449

Scotia SCO 57.8 �78.0 0.755 0.001460 �0.006868 0.011150
Somalia SOM 59.3 �73.5 0.980 0.002480 �0.008373 0.014707

Sur SUR 55.7 �75.8 0.636 0.001534 �0.006064 0.009170

Sundaland SUN 59.8 �78.0 0.973 0.001776 �0.008356 0.014677

South Sandwich SAN �3.8 �42.4 1.444 0.018570 �0.016957 �0.001670

Yang Tze Platform YTP 65.5 �82.4 0.968 0.000927 �0.006945 0.015374
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across plate circuits, test triple junction velocity
triangles, etc. What we cannot do with these mod-
els, is to represent the absolute velocities of the
tectonic plates with respect to a reference frame
fixed to the deep mantle, for example fixed to the
top of the transition zone as in Fig. 2.9. However,
this is a necessary step if we want to consider
the kinematics of tectonic plates in relation to
the asthenospheric flows, and give a complete
geodynamic formulation of plate tectonics. Such
approach represents one the fundamental tasks
of this book, thereby now we shall illustrate
an approximate method to determine the Euler
vectors in a reference frame fixed to the deep
mantle.

The method was proposed 40 years ago by
Solomon and Sleep (1974) and applies equally
well to the modern plates and to a paleotectonic
context (Solomon et al. 1977). These authors
started from the assumption that the total torque
N exerted on the lithosphere (Eq. 2.3) is zero, and
that the asthenosphere is dragged passively by
the overlying lithosphere. The first assumption is
compatible with the fact that, apart from the case
of space geodesy studies, we always represent
plate motions through the geological time, not the
physical time, even when we study the present
day plate motions. When we consider physical
processes that occur at the time scale of the last
2–3 Myrs, it is always necessary to neglect any
motion related to the Earth’s rotation, including
variations in eccentricity of the orbit, axial tilt,
and precession. In Chap. 6, we shall discuss
the evidence that the total angular momentum L
(Eq. 2.5) of the lithosphere is constant over time
intervals of several Myrs, which implies that in
equilibrium conditions ND 0 at the time scale of
the geological processes. We shall prove that also
the second assumption is correct in conditions of
geodynamic equilibrium, but not during episodes
of plate acceleration, such as the northward accel-
eration of India during the Cretaceous to Eocene
time interval (Cande and Stegman 2011).

The method of Solomon and Sleep is based
on a balance of the torques exerted on the whole
lithosphere. The torques applied on individual
plates are associated with the viscous resistive
drag force that the asthenosphere exerts on the

base of the overlying lithosphere, and with plate
boundary forces, such as the gravitational forces
exerted by slabs. However, it is not necessary
to include symmetric features such as mid-ocean
ridges in the torque balance, because in this
instance the corresponding torques cancel out.
Therefore, the two fundamental torques that must
be included in the torque balance equation are
those associated with drag forces and those aris-
ing from downward pull forces exerted by slabs.
Let us assume that the passive drag applied at the
base of the lithosphere follows a simple viscous
law, so that it depends linearly from the velocity
of the lithosphere relative to the base of the fluid
asthenosphere. It is also reasonable to assume
that the slab pull force exerted along an active
margin does not depend from the plate velocity.
Let ¨i be the Euler vector of i�th plate relative
to the top transition zone, and vi(r)D¨i � r the
corresponding linear velocity field at each point
r along its surface. The simplest law describing
the resistive drag force per unit area (or traction)
at the base of the lithosphere, TiDTi(r), is the
following one:

T i .r/ D �Di vi .r/ D �Di ¨i � r (2.58)

In this expression Di is a drag coefficient
which may depend from position. To obtain the
total torque exerted on the i�th plate we must
integrate the local torque per unit area, r�Ti(r),
over the surface Si of the plate:

N i D �
Z

Si

ŒDi r � .¨i � r/�dS (2.59)

From this expression, it is easy to calculate
the total torque exerted on the lithosphere by the
underlying asthenosphere:

N D
X

i

N i D �
X

i

Di

Z

Si

Œr � .¨i � r/�dS

(2.60)

where for simplicity we have assumed that Di is
constant along the surface of a plate. If we expand

http://dx.doi.org/10.1007/978-3-319-09135-8_6
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the vector triple product in (2.60), this expression
can be rewritten as follows:

N D �
X

i

Di

Z

Si

.r � r/ ¨i dS

C
X

i

Di

Z

Si

.r �¨i /rdSi (2.61)

If we assume that the Earth’s radius is normal-
ized to unity, then r�rD 1, so that:

N D �
X

i

Di S�¨i C
X

i
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Z

Si

.r �¨i /rdSi

(2.62)

Expression (2.62) can be further simplified
introducing a new tensor quantity, which is
strictly related to the inertial tensor of a tectonic
plate (Eq. 2.23). Using the index notation (see
Appendix 1), the components of this quantity are
given by:

Qi
jk �

Z

Si

�
•jk � xj xk

�
dS D Ai •jk

�
Z

Si

xj xkdS I j; k D 1; 2; 3 (2.63)

where Ai is the area of the i�th plate. Using
this new tensor quantity, which depends only
from the plate geometry, Expression (2.62) can
be rewritten as follows:

N D �
X

i

Di Q
i ¨i (2.64)

If this were the only torque exerted on the
lithosphere, the torque balance equation would be
written: ND 0, that is:

X
i

Di Q
i ¨i D 0 (2.65)

Let ¨r be the Euler vector of a reference plate,
for example the Pacific plate, with respect to the
top transition zone. Knowing the Euler vector
of any other plate with respect to the reference

plate, ¨ir, it is possible to determine its absolute
Euler vector, ¨i, by adding the absolute angular
velocity of the reference plate: ¨iD¨irC¨r.
Therefore, Eq. (2.65) can be viewed as a linear
system of three equations with respect to the three
unknown components of ¨r:

 X
i

Di Q
i

!
¨r D �

X
i

Di Q
i ¨i r (2.66)

The total Q tensor for the whole lithosphere
can be obtained simply by summation of the
tensors Qi associated with each plate. It results:

Q D
X

i

Qi D 8�

3
I (2.67)

where I is the identity matrix. Further simplifi-
cation of Eq. (2.66) follows if we assume that
the drag coefficients Di coincide for all plates:
DiDD. In this instance, using (2.67) we obtain an
immediate solution for ¨r in terms of the relative
Euler vectors of a velocity model:

¨r D � 3

8�

X
i

Qi ¨ir (2.68)

This solution corresponds to a condition of
no-net-rotation (NRR) for the whole lithosphere
(LD 0). In fact, for DiDD Eq. (2.65) can be
rewritten as follows:

X
i

Qi ¨i �Q� D 8�

3
� D 0) � D 0

(2.69)

where � can be considered as the net rotation of
the whole lithosphere. It should be noted that the
solution (2.68) only holds in the unlikely event
that the unique torques exerted on the lithosphere
come from asthenospheric drag, and that the drag
coefficient D can be considered constant over
the entire lithosphere. Of course, none of these
two strong conditions is likely to be verified.
Slab pull forces are essential components of the
global torque balance, and the drag coefficient
along the irregular continental LAB cannot be

http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
http://dx.doi.org/10.1007/978-3-319-09135-8_BM1
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equal to the drag coefficient of the oceanic areas.
Notwithstanding these issues, the NNR condi-
tion (2.68) has been widely used to build “ab-
solute” plate motions models (e.g., Argus and
Gordon 1991), and represents the basis for the
definition of a geocentric reference frame. This
is the International Terrestrial Reference Frame
(ITRF), which is particularly important for the
representation of kinematic data obtained from
geodetic techniques, but it is also linked to an
inertial frame tied to stellar objects, the Celestial
Reference Frame. This NNR reference frame is
periodically updated by the International Earth
Rotation and Reference Systems Service (IERS).
It is realized through the acquisition of time
series of mean station positions at weekly or daily
sampling from a global network of observation
sites equipped with various space geodesy sys-
tems: very long baseline interferometry (VLBI),
satellite laser ranging (SLR), Global Positioning
System (GPS), and Doppler Orbitography Radio-
positioning Integrated by Satellite (DORIS) (Al-
tamimi et al. 2002). Then, an assignment of pre-
cise coordinates and linear velocities at reference
epochs is made. These data are used, in con-
junction with Eq. (2.17), to estimate statistically
the angular velocities of each plate having an
observation site. Finally, a best fit alignment with
the current plates velocity model NNR-NUVEL-
1A is performed, in order to satisfy the condition
(2.68) (Altamimi et al. 2003).

We can determine the components of the ten-
sors Qi using a computational method proposed
by Schettino (1999b). Table 2.4 lists the six
independent components of these tensors for the
set of MORVEL plates shown in Fig. 2.38. This
data set can be used to determine the Euler vector
of the reference plate through Eq. (2.68). The
instantaneous Euler pole of the Pacific plate,
determined on the basis of the relative Euler
vectors of Table 2.3 and the Q tensor components
of Table 2.4, is located at 63.5ıS, 114.4ıE, and
its angular velocity is ¨D 0.65ı/Myr. The NNR
version of MORVEL is listed in Table 2.5, while
the corresponding velocity fields are shown in
Fig. 2.39.

An estimation of the errors associated with the
computation of the tensors Qi can be performed

as follows. First, it is possible to show that the
area of each plate, Ai, can be calculated decom-
posing the corresponding spherical polygon into
a set of spherical triangles, then using the well-
known Girard’s formula for calculating the area
of each triangle (Schettino 1999b).

From (2.63), we see that these quantities are
related to the diagonal components of Qi by the
following expression:

T r
�
Qi
� DX

j

Z

Si

�
1 � x2

j

�
dS D 2Ai (2.70)

Therefore, an estimate of the errors associated
with the diagonal components of Qi, which are
listed in the last column of Table 2.4, can be
obtained by evaluating the expression:

©i D T r
�
Qi
�� 2Ai

2Ai

(2.71)

It is important to note that the velocity fields
of the NNR version of MORVEL do not really
represent velocities relative to the deep mantle.
In fact, the equations associated with the NNR
condition (2.68) do not consider the contribution
of slab pull forces to the total torque balance,
and are based upon the implausible assumption
that the drag coefficient is uniform across the
Earth’s LAB. However, the method described
above can be considered as a good starting point
for the study of the absolute plate motions. For
example, we can improve the model introduc-
ing in the torque balance equation the torques
associated with the pull exerted by subducting
slabs.

Slab pull is a downward-directed force that
a sinking slab exerts on the unsubducted litho-
sphere along a trench line (Forsyth and Uyeda
1975). If Ti is the small circle representative of a
trench line, then this force is everywhere normal
to Ti. Therefore, if dl is an infinitesimal vector
element tangent to Ti, then the torque exerted on
the unsubducted lithosphere is given by:

N i D Ci

Z

Ti

r � .dl � r/ (2.72)
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Table 2.4 Q tensors and areas of the 25 MORVEL plates

Plate A Q11 Q22 Q33 Q12 Q13 Q23 Diag. Err.

AMU 0.130659 0.108248 0.089481 0.063589 0.028732 0.036320 �0.051295 0.0000 %

ANT 1.434290 1.328262 1.176115 0.364247 �0.050791 0.052812 0.080667 0.0015 %
ARB 0.120824 0.074248 0.066810 0.100589 �0.048782 �0.029553 �0.031041 �0.0004 %

AUS 0.935403 0.602384 0.568115 0.700304 0.230373 �0.218401 0.241845 �0.0002 %

CAR 0.103729 0.094940 0.014300 0.098213 0.024762 �0.006107 0.020566 �0.0024 %

COC 0.072230 0.071072 0.003020 0.070372 �0.005543 0.001064 0.010141 0.0028 %

CAP 0.203647 0.196537 0.022175 0.188580 �0.021636 0.007182 0.045603 �0.0005 %
EUR 1.218422 1.017712 0.913393 0.505738 �0.041466 �0.222433 �0.315605 0.0000 %

IND 0.30636 0.286350 0.042306 0.284051 �0.057048 �0.013096 �0.060493 �0.0021 %

JDF 0.006315 0.005162 0.004356 0.003111 �0.001501 0.001916 0.002491 �0.0079 %

LWA 0.117115 0.063149 0.081116 0.089959 �0.043343 0.036053 0.029664 �0.0026 %

MAC 0.007890 0.006131 0.007510 0.002139 0.000812 �0.003172 0.001465 0.0000 %
NAM 1.440479 1.282025 1.008008 0.590974 0.079145 0.026680 0.378356 0.0017 %

NUB 1.440653 0.372568 1.301217 1.207515 �0.051346 �0.005428 0.044223 �0.0002 %

NAZ 0.403564 0.391445 0.070630 0.345043 �0.014536 �0.003992 �0.115869 �0.0012 %

PAC 2.681816 1.204054 2.045135 2.114430 �0.400314 0.062295 �0.057354 �0.0002 %

PHB 0.144484 0.081761 0.078620 0.128588 0.062670 0.029123 �0.029347 0.0003 %
RIV 0.002486 0.002289 0.000489 0.002193 �0.000625 0.000239 0.000763 �0.0201 %

SAM 1.023883 0.624948 0.586878 0.835938 0.344415 0.181243 �0.174029 �0.0001 %

SCO 0.042001 0.036816 0.034549 0.012637 0.005706 0.012013 �0.014486 0.0000 %

SOM 0.354795 0.221032 0.153739 0.334814 �0.154901 0.024755 0.035861 �0.0007 %

SUR 0.027055 0.018681 0.026496 0.008933 0.001954 0.012245 �0.002957 0.0000 %
SUN 0.281465 0.232911 0.054798 0.275220 0.093052 0.004760 �0.016178 �0.0002 %

SAN 0.004543 0.003525 0.004269 0.001292 0.000527 0.001817 �0.000940 0.0000 %

YTP 0.062249 0.051303 0.024035 0.049159 0.019688 0.011653 �0.022080 �0.0008 %

Earth 12.566357 8.377553 8.377560 8.377628 0.000004 �0.000012 �0.000029 0.0001 %
Av.%.error �0.0001 % �0.0003 % �0.0002 % 0.0006 % 0.0000 % 0.0000 % 0.0000 %

Units are in steradians

where Ci is a constant that is assumed to be
independent from the subduction velocity, and
the line integral is calculated following a coun-
terclockwise path.

If we expand the triple vector product in
(2.72), we obtain the following simple expression
for the torque:

N i D Ci

Z

Ti

d l D Ci

�
rf � r i

�
(2.73)

In this expression, ri and rf are, respectively,
the position vectors of the start and end points
of the trench line Ti. Therefore, we see that
the torque exerted on a subducting plate by the
attached slab only depends from the width of
the subduction zone, not by its curvature. If we

introduce the torques (2.73) in the total torque
balance equation, we obtain a more realistic equa-
tion, which potentially can be solved to determine
the absolute Euler vector of the reference plate:

 X
i

Di Q
i

!
¨r D

X
j

Cj

�
r

j

f � r
j
i

�

�
X

i

Di Q
i ¨ir (2.74)

This is a system of three equations in the
unknown components of ¨r, which can be solved
if the drag coefficients Di and the constants Cj are
known. In this instance, the lithosphere always
has a non-zero angular momentum, even when
DiDD for all plates.
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Table 2.5 The NNR�MORVEL velocity model

Plate œe ¥e ¨ ¨1 ¨2 ¨3

AMU 63.4 237.5 0.298 �0.001248 �0.001962 0.004645

ANT 65.7 242.4 0.250 �0.000829 �0.001589 0.003976
ARB 48.8 351.7 0.561 0.006374 �0.000933 0.007363

AUS 33.9 37.9 0.634 0.007241 0.005636 0.006170

CAR 35.6 267.6 0.286 �0.000168 �0.004062 0.002908

COC 27.0 235.7 1.197 �0.010487 �0.015371 0.009493

CAP 44.3 23.1 0.610 0.007008 0.002985 0.007445
EUR 49.3 253.8 0.223 �0.000708 �0.002435 0.002949

IND 50.4 356.9 0.545 0.006064 �0.000333 0.007329

JDF �38.2 60.0 0.951 0.006529 0.011291 �0.010270

LWA 51.9 291.0 0.286 0.001101 �0.002876 0.003932

MAC 49.2 371.1 1.145 0.012831 0.002508 0.015120
NAM �4.6 279.7 0.208 0.000612 �0.003564 �0.000292

NUB 47.9 291.9 0.293 0.001277 �0.003175 0.003788

NAZ 46.4 259.0 0.695 �0.001597 �0.008213 0.008791

PAC �63.5 114.4 0.650 �0.002090 0.004605 �0.010156

PHB �45.9 328.7 0.909 0.009435 �0.005735 �0.011401
RIV 20.3 252.7 4.535 �0.022040 �0.070903 0.027431

SAM �22.2 247.8 0.107 �0.000656 �0.001604 �0.000707

SCO 23.0 254.5 0.146 �0.000630 �0.002263 0.000995

SOM 50.2 275.9 0.339 0.000391 �0.003767 0.004551

SUR �32.3 249.2 0.106 �0.000555 �0.001459 �0.000986
SUN 50.2 265.2 0.337 �0.000313 �0.003750 0.004522

SAN �29.9 323.2 1.361 0.016481 �0.012351 �0.011826

YTP 63.4 243.6 0.334 �0.001163 �0.002339 0.005218

Fig. 2.39 The “absolute” plate velocity model NNR�MORVEL (DeMets et al. 2010). The length of the arrows
indicates 20 times the relative displacement of a plate with respect to an adjacent plate
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Problems

1. An Eulerian reference frame is a geocentric
reference frame obtained rotating an Euler
pole to the North pole. Determine the equa-
tion of transformation from geographic to
Eulerian latitude;

2. The number of edges in a circuit with p plates
is always eD p�1. Explain why;

3. Show that the relation eD p�1 is compatible
with (2.34), e and p being the number of
edges and the number of plates in a circuit;

4. Given the three-plates system formed by the
Pacific, North American, and Juan de Fuca
plates, determine the relative velocity vector
of Juan de Fuca with respect to N. America
at (46.5ıN, 125.8ıW) using the data in Ta-
ble 2.5;

5. Assuming that the spreading asymmetry is
zero along the Juan de Fuca Ridge, how

long time is required for a point at (46.9ıN,
129.4ıW) along the ridge to enter the Casca-
dia Trench and what is the predicted location
of ridge subduction?

6. Subduction of the Capricorn plate beneath
Sundaland along the Sumatra Trench is
highly oblique. Strike-slip motion along
the Sumatran Fault, which is parallel to
the trench in the forearc region, determines
partitioning of such oblique subduction into
a trench-normal component and a trench-
parallel component. Determine the slip rate
and the sense of shear along the Sumatran
Fault at (2.5ıS, 101.5ıE);

7. The Periadriatic Line in northern Italy and
Croatia is a wide E–W and NW–SE structure
that accommodated strike-slip motion be-
tween Africa and Europe in the geologic past
(see figure). What would be the style of this
fault at (46.4ıN, 11ıE) and (42.8ıN, 17.8ıE)
if it were a present day plate boundary?

8. Anatolia is a small microplate between Ara-
bia and Europe in the eastern Mediterranean,
whose N and SE boundaries are transcur-
rent faults (see figure). Starting from the

relative velocity of Arabia with respect to
Europe, calculate the westward escape ve-
locity of this microplate along its strike-slip
boundaries;
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9. Determine the evolution of the Pacific-N.
America-J. de Fuca triple junction in the
Pacific reference frame, and describe the ge-
ological setting around the region where the
corresponding plate boundaries meet;

10. Determine the time interval of stability of the
triple junction between Nazca, Antarctica,
and S. America, and the subsequent migra-
tion path;

References

Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a
new release of the international terrestrial reference
frame for earth science applications. J Geophys Res
107(B10):2214. doi:10.1029/2001JB000561

Altamimi Z, Sillard P, Boucher C (2003) The impact of a
no-net-rotation condition on ITRF2000. Geophys Res
Lett 30(2):1064. doi:10.1029/2002GL016279

Anderson-Fontana S, Engeln JF, Lundgren P, Larson RL,
Stein S (1986) Tectonics and evolution of the Juan
Fernandez microplate at the Pacific-Nazca-Antarctic
triple junction. J Geophys Res 91(B2):2005–2018.
doi:10.1029/JB091iB02p02005

Argus DF, Gordon RG (1991) No-net-rotation model
of current plate velocities incorporating plate motion
model NUVEL-1. Geophys Res Lett 18(11):2039–
2042

Beck ME Jr (1986) Model for late Mesozoic-early Tertiary
tectonics of coastal California and western Mexico and
speculations on the origin of the San Andreas Fault.
Tectonics 5(1):49–64. doi:10.1029/TC005i001p00049

Besse J, Courtillot V (1988) Paleogeographic maps of the
continents bordering the Indian Ocean since the early
Jurassic. J Geophys Res 93(B10):11,791–11,808

Bird P (2003) An updated digital model of plate bound-
aries. Geochem Geophys Geosyst 4(3):1027. doi:10.
1029/2001GC000252

Briais A, Patriat P, Tapponnier P (1993) Updated interpre-
tation of magnetic anomalies and seafloor spreading
stages in the South China Sea: implications for the
Tertiary tectonics of Southeast Asia. J Geophys Res
98(B4):6299–6328

Brun J-P (1999) Narrow rifts versus wide rifts: inferences
for the mechanics of rifting from laboratory experi-
ments. Philos Trans R Soc Lond 357:695–712

Buck WR (1991) Modes of continental lithospheric exten-
sion. J Geophys Res 96(B12):20161–20178. doi:10.
1029/91JB01485

Bullard EC, Everett JE, Smith AG (1965) The fit of the
continents around the Atlantic: a symposium on con-
tinental drift. Philos Trans R Soc Lond A 258(1088):
41–51

Butler RWH, Spencer S, Griffiths HM (1997) Transcur-
rent fault activity on the Dead Sea Transform in
Lebanon and its implications for plate tectonics and
seismic hazard. J Geol Soc 154:757–760. doi:10.1144/
gsjgs.154.5.0757

Campbell WH (2003) Introduction to geomagnetic fields,
2nd edn. Cambridge University Press, Cambridge,
UK, 337 pp

Cande SC, Stegman DR (2011) Indian and African plate
motions driven by the push force of the Réunion plume
head. Nature 475:47–52. doi:10.1038/nature10174

Chase CG (1978) Plate kinematics: the Americas, East
Africa, and the rest of the world. Earth Planet Sci Lett
37:355–368

Coffin MF, Rabinowitz PD (1987) Reconstruction of
Madagascar and Africa: evidence from the Davie Frac-
ture Zone and Western Somali Basin. J Geophys Res
92(B9):9385–9406. doi:10.1029/JB092iB09p09385

Contrucci I, Klingelhöfer F, Perrot J, Bartolome R,
Gutscher MA, Sahabi M, Malod J, Rehault J-P (2004)
The crustal structure of the NW-Moroccan continental

http://dx.doi.org/10.1029/2001JB000561
http://dx.doi.org/10.1029/2002GL016279
http://dx.doi.org/10.1029/JB091iB02p02005
http://dx.doi.org/10.1029/TC005i001p00049
http://dx.doi.org/10.1029/2001GC000252
http://dx.doi.org/10.1029/2001GC000252
http://dx.doi.org/10.1029/91JB01485
http://dx.doi.org/10.1029/91JB01485
http://dx.doi.org/10.1144/gsjgs.154.5.0757
http://dx.doi.org/10.1144/gsjgs.154.5.0757
http://dx.doi.org/10.1038/nature10174
http://dx.doi.org/10.1029/JB092iB09p09385


References 79

margin from wide-angle and reflection seismic data.
Geophys J Int 159:117–128

Corti G, Bonini M, Conticelli S, Innocenti F, Manetti
P, Sokoutis D (2003) Analogue modelling of conti-
nental extension: a review focused on the relations
between the patterns of deformation and the presence
of magma. Earth Sci Rev 63:169–247. doi:10.1016/
S0012-8252(03)00035-7

Cox A, Hart RB (1986) Plate tectonics: how it works.
Blackwell Scientific Publications, Palo Alto, 392 pp

Dalziel IWD (1981) Back-arc extension in the southern
Andes: a review and critical reappraisal. Philos Trans
R Soc Lond A 300(1454):319–335

DeMets C, Gordon RG, Argus DF, Stein S (1990) Current
plate motions. Geophys J Int 101:425–478

DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of
recent revisions to the geomagnetic reversal timescale.
Geophys Res Lett 21:2191–2194

DeMets C, Gordon RG, Argus DF (2010) Geologically
current plate motions. Geophys J Int 181:1–80. doi:10.
1111/j.1365-246X.2009.04491.x

Dewey JF (1975) Finite plate implications: some implica-
tions for the evolution of rock masses at plate margins.
Am J Sci 275-A:260–284

Dewey JF, Helman ML, Turco E, Hutton DHW, Knott
SD (1989) Kinematics of the Western Mediter-
ranean. In: Coward MP, Dietrich D, Park RG (eds)
Alpine tectonics. Geol Soc Spec Publ 45, London,
pp 265–283

Fairhead JD (1988) Mesozoic plate tectonic recon-
structions of the central South Atlantic Ocean: the
role of the West and Central African rift sys-
tem. Tectonophysics 155(1–4):181–191. doi:10.1016/
0040-1951(88)90265-X

Forsyth D, Uyeda S (1975) On the relative impor-
tance of the driving forces of plate motion. Geophys
J Int 43(1):163–200. doi:10.1111/j.1365-246X.1975.
tb00631.x

Fournier M, Patriat P, Leroy S (2001) Reappraisal of
the Arabia�India�Somalia triple junction kinematics.
Earth Planet Sci Lett 189:103–114

Frank FC (1968) Curvature of island arcs. Nature 220:363
Frisch W, Meschede M, Blakey R (2011) Plate tectonics.

Springer, Berlin, 212 pp
Gaina C, Müller DR, Royer J-Y, Stock J, Hardebeck J,

Symonds P (1998) The tectonic history of the Tas-
man Sea: a puzzle with 13 pieces. J Geophys Res
103(B6):12413–12433. doi:10.1029/98JB00386

Gaina C, Gernigon L, Ball P (2009) Palaeocene–recent
plate boundaries in the NE Atlantic and the formation
of the Jan Mayen microcontinent. J Geol Soc Lond
166:601–616. doi:10.1144/0016-76492008-112

Garfunkel Z (1981) Internal structure of the Dead Sea
leaky transform (rift) in relation to plate kinematics.
Tectonophysics 80(1–4):81–108. doi:10.1016/0040-
1951(81)90143-8

Gould R (1988) Graph theory. Benjamin, Menlo Park,
332 pp

Hamilton WB (1987) Crustal extension in the basin
and Range Province, southwestern United States. In:

Coward MP, Dewey JF, Hancock PL (eds) Conti-
nental extensional tectonics, GSA Spec. Publ., 28
pp 155–176

Hamilton WB (2002) The closed upper–mantle circulation
of plate tectonics. In: Stein S, Freymueller JT (eds)
Plate boundary zones, vol 30, Geodynamics series.
AGU, Washington, DC, pp 359–410. doi:10.1029/
GD030p0359

Hey RN (1977) A new class of pseudofaults and their
bearing on plate tectonics: a propagating rift model.
Earth Planet Sci Lett 37:321–325

Hey RN, Menard HW, Atwater TM, Caress DW (1988)
Changes in direction of seafloor spreading revisited. J
Geophys Res 93(B4):2803–2811

Jarrard RD (1986) Relations among subduction parame-
ters. Rev Geophys 24:217–284

Jestin F, Huchon P, Gaulier JM (1994) The Somalia plate
and the East African rift system: present-day kine-
matics. Geophys J Int 116(3):637–654. doi:10.1111/j.
1365-246X.1994.tb03286.x

Jung W-Y, Vogt PR (1997) A gravity and magnetic
anomaly study of the extinct Aegir Ridge, Norwegian
Sea. J Geophys Res 102(B3):5065–5089

Kleinrock MC, Phipps Morgan J (1988) Triple junction
reorganization. J Geophys Res 93(B4):2981–2996.
doi:10.1029/JB093iB04p02981

Korhonen JV et al (2007) Magnetic anomaly map of the
world (and associated DVD), Scale: 1:50,000,000, 1st
edn. Commission for the Geological Map of the World,
Paris

Kreemer C, Holt WE, Haines AJ (2003) An inte-
grated global model of present-day plate motions
and plate boundary deformation. Geophys J Int 154:
8–34

Laville E, Piqué A (1991) La Distension crustale atlan-
tique et atlasique au Maroc au debut du Mesozoique;
le rejeu des structures hercyniennes. Bull Soc Géol Fr
162(6):1161–1171

Lebrun J-F, Lamarche G, Collot J-Y (2003) Subduc-
tion initiation at a strike-slip plate boundary: the
Cenozoic Pacific-Australian plate boundary, south of
New Zealand. J Geophys Res 108:2453. doi:10.1029/
2002JB002041

Lonsdale P (1988) Structural pattern of the Galapagos
microplate and evolution of the Galapagos triple junc-
tions. J Geophys Res 93(B11):13551–13574. doi:10.
1029/JB093iB11p13551

McCaffrey R (1992) Oblique plate convergence, slip
vectors, and forearc deformation. J Geophys Res
97:8905–8915

McKenzie D (1976) The East Anatolian Fault: a major
structure in Eastern Turkey. Earth Planet Sci Lett
29(1):189–193. doi:10.1016/0012-821X(76)90038-8

McKenzie D (1978) Some remarks on the development of
sedimentary basins. Earth Planet Sci Lett 40(1):25–32.
doi:10.1016/0012-821X(78)90071-7

McKenzie D, Morgan WJ (1969) Evolution of triple
junctions. Nature 224:125–133

Menard HW, Atwater TM (1968) Changes in direction of
sea floor spreading. Nature 219:463–467

http://dx.doi.org/10.1016/S0012-8252(03)00035-7
http://dx.doi.org/10.1016/S0012-8252(03)00035-7
http://dx.doi.org/10.1111/j.1365-246X.2009.04491.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04491.x
http://dx.doi.org/10.1016/0040-1951(88)90265-X
http://dx.doi.org/10.1016/0040-1951(88)90265-X
http://dx.doi.org/10.1111/j.1365-246X.1975.tb00631.x
http://dx.doi.org/10.1111/j.1365-246X.1975.tb00631.x
http://dx.doi.org/10.1029/98JB00386
http://dx.doi.org/10.1144/0016-76492008-112
http://dx.doi.org/10.1016/0040-1951(81)90143-8
http://dx.doi.org/10.1016/0040-1951(81)90143-8
http://dx.doi.org/10.1029/GD030p0359
http://dx.doi.org/10.1029/GD030p0359
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03286.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03286.x
http://dx.doi.org/10.1029/JB093iB04p02981
http://dx.doi.org/10.1029/2002JB002041
http://dx.doi.org/10.1029/2002JB002041
http://dx.doi.org/10.1029/JB093iB11p13551
http://dx.doi.org/10.1029/JB093iB11p13551
http://dx.doi.org/10.1016/0012-821X(76)90038-8
http://dx.doi.org/10.1016/0012-821X(78)90071-7


80 2 Plate Motions

Minster JB, Jordan TH (1978) Present-day plate motions.
J Geophys Res 83:5331–5354

Müller RD, Royer J-Y, Lawver LA (1993) Revised
plate motions relative to the hotspots from combined
Atlantic and Indian Ocean hotspot tracks. Geology
21:275–278

Müller RD, Roest WR, Royer J-Y, Gahagan LM, Sclater
JG (1997) Digital isochrons of the world’s ocean floor.
J Geophys Res 102(B2):3211–3214

Patriat P, Courtillot V (1984) On the stability of
triple junctions and its relation to episodicity
in spreading. Tectonics 3(3):317–332. doi:10.1029/
TC003i003p00317

Pindell JL, Cande SC, Pitman WC III, Rowley DB,
Dewey JF, Labrecque J, Haxby W (1988) A plate-
kinematic framework for models of Caribbean evolu-
tion. Tectonophysics 155:121–138

Ramos VA, Cristallini EO, Pérez DJ (2002) The Pampean
flat-slab of the Central Andes. J S Am Earth Sci
15(1):59–78. doi:10.1016/S0895-9811(02)00006-8

Roest WR, Srivastava SP (1989) Sea-floor spreading in
the Labrador Sea: a new reconstruction. Geology 17:
1000–1003

Ross MI, Scotese CR (1988) A hierarchical tectonic
model of the Gulf of Mexico and Caribbean region.
Tectonophysics 155(1–4):139–168

Rowley DB, Lottes AL (1988) Plate-kinematic recon-
structions of the North Atlantic and Arctic: late Juras-
sic to present. Tectonophysics 155(1–4):73–120

Sandwell DT, Smith WHF (1997) Marine gravity anomaly
from Geosat and ERS 1 satellite altimetry. J Geophys
Res 102:10039–10054

Schettino A (1998) Computer aided paleogeographic re-
constructions. Comput Geosci 24(3):259–267

Schettino A (1999a) Polygon intersections in spheri-
cal topology: application to plate tectonics. Comput
Geosci 25(1):61–69

Schettino A (1999b) Computational methods for calculat-
ing geometric parameters of tectonic plates. Comput
Geosci 25(8):897–907

Schettino A, Scotese CR (2002) Global kinematic con-
straints to the tectonic history of the Mediterranean
region and surrounding areas during the Jurassic and
Cretaceous. In: Rosenbaum G, Lister GS (eds) Re-
construction of the evolution of the Alpine-Himalayan
orogen. J Virtual Explor 7:147–166

Schettino A, Scotese CR (2005) Apparent polar wander
paths for the major continents (200 Ma – present day):
a paleomagnetic reference frame for global plate tec-
tonic reconstructions. Geophys J Int 163(2):727–759

Schettino A, Tassi L (2012) Trench curvature and
deformation of the subducting lithosphere. Geophys
J Int 188(1):18–34. doi:10.1111/j.1365-246X.2011.
05262.x

Schettino A, Turco E (2006) Plate kinematics of
the Western Mediterranean region during the
Oligocene and early Miocene. Geophys J Int 166(3):
1398–1423

Schettino A, Turco E (2009) Breakup of Pangaea and
plate kinematics of the central Atlantic and Atlas
regions. Geophys J Int 110:1078–1097

Schettino A, Turco E (2011) Tectonic history of the
western Tethys since the late Triassic. GSA Bull
123(1/2):89–105. doi:10.1130/B30064.1

Schlich R (1974) Sea floor spreading history and deep
sea drilling results in the Madagascar and Mascarene
Basins, Western Indian Ocean. In: Simpson ESW,
Schlich R, et al. (eds) Initial reports of the deep
sea drilling project, 25, US Govt. Printing Office,
Washington, pp 663–678

Schmid SM, Kissling E (2000) The arc of the western
Alps in the light of geophysical data on deep crustal
structure. Tectonics 19(1):62–85

Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G,
Kissling E (1996) Geophysical-geological transect
and tectonic evolution of the Swiss-Italian Alps.
Tectonics 15(5):1036–1064

Sengör AMC (1979) The North Anatolian transform
fault: its age, offset and tectonic significance. J Geol
Soc 136:269–282. doi:10.1144/gsjgs.136.3.0269

Shaw PR (1987) Investigations of relative plate
motions in the South Atlantic using SEASAT
altimeter data. J Geophys Res 92(B9):
9363–9375

Smythe DK (1989) Rockall Trough-Cretaceous or late
Palaeozoic? Scott J Geol 25(1):5–43

Solomon SC, Sleep NH (1974) Some simple physical
models for absolute plate motions. J Geophys Res
79(17):2557–2567. doi:10.1029/JB079i017p02557

Solomon SC, Sleep NH, Jurdy DM (1977) Mechanical
models for absolute plate motions in the early
Tertiary. J Geophys Res 82(2):203–212. doi:10.1029/
JB082i002p00203

Treves B (1984) Orogenic belts as accretionary prisms:
the example of the northern Apennines. Ofioliti 9:
577–618

Vigny C, Socquet A, Rangin C, Chamot-Rooke N,
Pubellier M, Bouin M-N, Bertrand G, Becker M
(2003) Present-day crustal deformation around
Sagaing fault, Myanmar. J Geophys Res 108:2533.
doi:10.1029/2002JB001999,B11

Wernicke B (1985) Uniform-sense normal simple shear
of the continental lithosphere. Can J Earth Sci 22:
108–125

Whittaker JM, Müller RD, Roest WR, Wessel P, Smith
WHF (2008) How supercontinents and superoceans
affect seafloor roughness. Nature 456:938–941.
doi:10.1038/nature07573

http://dx.doi.org/10.1029/TC003i003p00317
http://dx.doi.org/10.1029/TC003i003p00317
http://dx.doi.org/10.1016/S0895-9811(02)00006-8
http://dx.doi.org/10.1111/j.1365-246X.2011.05262.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05262.x
http://dx.doi.org/10.1130/B30064.1
http://dx.doi.org/10.1144/gsjgs.136.3.0269
http://dx.doi.org/10.1029/JB079i017p02557
http://dx.doi.org/10.1029/JB082i002p00203
http://dx.doi.org/10.1029/JB082i002p00203
http://dx.doi.org/10.1029/2002JB001999,%20B11
http://dx.doi.org/10.1038/nature07573


http://www.springer.com/978-3-319-09134-1


	2 Plate Motions
	2.1 The Continuum Mechanics Representation
	2.2 Euler's Theorem and Rigid Rotations
	2.3 Reference Frames
	2.4 Plate Boundaries
	2.5 Triple Junctions
	2.6 Tectonic Elements
	2.7 Plate Circuits and Rotation Models
	2.8 Plate Tectonic Reconstructions
	2.9 Current Plate Motions
	Problems
	References


